1
|
Gress C, Fuchs M, Carstensen-Aurèche S, Müller M, Hohlfeld JM. Prostaglandin D2 receptor 2 downstream signaling and modulation of type 2 innate lymphoid cells from patients with asthma. PLoS One 2024; 19:e0307750. [PMID: 39052598 PMCID: PMC11271944 DOI: 10.1371/journal.pone.0307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11β-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11β-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.
Collapse
Affiliation(s)
- Christina Gress
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Saskia Carstensen-Aurèche
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Jens M. Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Ozaki N, Sakamoto N, Horikami D, Tachibana Y, Nagata N, Kobayashi K, Arai YT, Sone M, Hirayama K, Murata T. 15-Hydroxyeicosatrienoic acid induces nasal congestion by changing vascular functions in mice. Allergol Int 2024; 73:464-472. [PMID: 38286715 DOI: 10.1016/j.alit.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Nasal congestion in allergic rhinitis (AR) is caused by vascular hyperpermeability and vascular relaxation of the nasal mucosa. We previously detected high levels of a lipoxygenation metabolite of dihomogammalinolenic acid, 15-hydroxy-8Z,11Z,13E-eicosatrienoic acid (15-HETrE) in the nasal lavage fluid of AR model mice. Here, we investigated the effects of 15-HETrE on vascular functions associated with nasal congestion. METHODS We measured 15-HETrE levels in the nasal lavage fluid of ovalbumin-induced AR model mice and nasal discharge of patients with AR. We also assessed nasal congestion and vascular relaxation in mice. Vascular contractility was investigated using isolated mouse aortas. RESULTS Five ovalbumin challenges increased 15-HETrE levels in AR model mice. 15-HETrE was also detected in patients who exhibiting AR-related symptoms. Intranasal administration of 15-HETrE elicited dyspnea-related behavior and decreased the nasal cavity volume in mice. Miles assay and whole-mount immunostaining revealed that 15-HETrE administration caused vascular hyperpermeability and relaxation of the nasal mucosa. Intravital imaging demonstrated that 15-HETrE relaxed the ear vessels that were precontracted via thromboxane receptor stimulation. Moreover, 15-HETrE dilated the isolated mouse aortas, and this effect was attenuated by K+ channel inhibitors and prostaglandin D2 (DP) and prostacyclin (IP) receptor antagonists. Additionally, vasodilatory effects of 15-HETrE were accompanied by an increase in intracellular cAMP levels. CONCLUSIONS Our results indicate that 15-HETrE, whose levels are elevated in the nasal cavity upon AR, can be a novel lipid mediator that exacerbates nasal congestion. Moreover, it can stimulate DP and IP receptors and downstream K+ channels to dilate the nasal mucosal vasculature.
Collapse
Affiliation(s)
- Noriko Ozaki
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Sakamoto
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Horikami
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuri Tachibana
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nanae Nagata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Kazuhiro Hirayama
- Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Gong X, Fu Y, Zhou L, Wei A, Pan C, Zhu T, Li H. Decoding chronic rhinosinusitis: A metabolomics-based approach. Int Forum Allergy Rhinol 2024; 14:828-840. [PMID: 38343156 DOI: 10.1002/alr.23331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a common and intractable disease in otorhinolaryngology, laying a heavy burden on healthcare systems. The worldwide researchers are making efforts to find solutions to this disease. Metabolomics has recently gained more and more traction, and might become a promising tool to unravel the complexity of CRS. This paper provides an overview of current studies on the metabolomics of various CRS subtypes. METHODS We conducted a comprehensive literature search in PubMed, Web of Science, EMBASE, Google Scholar, and Cochrane Library, up to May 25, 2023. Search strategies incorporated key terms such as "chronic rhinosinusitis" and "metabolomics" with relevant synonyms and MeSH terms. Titles and abstracts of 86 screened articles were assessed for relevance to CRS and metabolomics. Methodological robustness, data reliability, and relevance were considered for shortlisted articles. RESULTS After the refined process, a total of 26 articles were included in this study and sorted out by research themes, methodology and pivotal discoveries. These included studies identified the metabolic pathways and markers related to the pathophysiology in each subtype of CRS. CONCLUSIONS Metabolomics helps to shed light on the complexity of CRS. The mentioned findings highlight the importance of specific metabolic pathways and markers in understanding the pathophysiology of CRS. Despite that, challenges and future directions in metabolomics research for CRS would be worth being further explored.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Lei Zhou
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Aiming Wei
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chongsheng Pan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Mavroudakis L, Lanekoff I. Identification and Imaging of Prostaglandin Isomers Utilizing MS 3 Product Ions and Silver Cationization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2341-2349. [PMID: 37587718 PMCID: PMC10557378 DOI: 10.1021/jasms.3c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Prostaglandins (PGs) are important lipid mediators involved in physiological processes, such as inflammation and pregnancy. The pleiotropic effects of the PG isomers and their differential expression from cell types impose the necessity for studying individual isomers locally in tissue to understand the molecular mechanisms. Currently, mass spectrometry (MS)-based analytical workflows for determining the PG isomers typically require homogenization of the sample and a separation method, which results in a loss of spatial information. Here, we describe a method exploiting the cationization of PGs with silver ions for enhanced sensitivity and tandem MS to distinguish the biologically relevant PG isomers PGE2, PGD2, and Δ12-PGD2. The developed method utilizes characteristic product ions in MS3 for training prediction models and is compatible with direct infusion approaches. We discuss insights into the fragmentation pathways of Ag+ cationized PGs during collision-induced dissociation and demonstrate the high accuracy and robustness of the model to predict isomeric compositions of PGs. The developed method is applied to mass spectrometry imaging (MSI) of mouse uterus implantation sites using silver-doped pneumatically assisted nanospray desorption electrospray ionization and indicates localization to the antimesometrial pole and the luminal epithelium of all isomers with different abundances. Overall, we demonstrate, for the first time, isomeric imaging of major PG isomers with a simple method that is compatible with liquid-based extraction MSI methods.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry−BMC, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
5
|
Sharma P, Dhanjal DS, Chopra C, Tambuwala MM, Sohal SS, van der Spek PJ, Sharma HS, Satija S. Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chem Biol Interact 2022; 365:110050. [DOI: 10.1016/j.cbi.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
|
6
|
Li JX, Wang ZZ, Zhai GT, Chen CL, Zhu KZ, Yu Z, Liu Z. Untargeted metabolomic profiling identifies disease-specific and outcome-related signatures in chronic rhinosinusitis. J Allergy Clin Immunol 2022; 150:727-735.e6. [PMID: 35460727 DOI: 10.1016/j.jaci.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although metabolomics provides novel insights into disease mechanisms and biomarkers, the metabolic alterations in local tissues affected by chronic rhinosinusitis (CRS) are unknown. OBJECTIVE This study aims to determine the metabolomic profiles of sinonasal tissues associated with different types of CRS and their treatment outcomes. METHODS Untargeted metabolomic profiling was performed on sinonasal tissues obtained from patients with eosinophilic CRS with nasal polyps (CRSwNP), noneosinophilic CRSwNP or CRS without nasal polyps (CRSsNP), and controls. The mRNA levels of inflammatory cytokines in nasal tissues were detected by quantitative RT-PCR. Nasal polyp tissues were cultured ex vivo and treated with glutathione. RESULTS Distinct metabolomic profiles were observed for the CRS subtypes. Eosinophilic CRSwNP had profoundly enhanced unsaturated fatty acid oxidization, which correlated with mucosal eosinophil numbers and IL-5 mRNA levels. Noneosinophilic CRSwNP was characterized by uric acid accumulation. Increased uric acid levels were positively correlated with mucosal neutrophil numbers and IFN-γ, IL-17A, IL-1β, and IL-8 mRNA levels. Disrupted purine metabolism was specifically detected in CRSsNP. Reduced levels of amino acid metabolites were found in eosinophilic CRSwNP and CRSsNP, and were inversely associated with mucosal total inflammatory cell numbers and inflammatory cytokines. Compared to non-difficult-to-treat CRS, difficult-to-treat CRS had higher glutathione disulfide levels, which were positively correlated with IL-8 mRNA levels. Glutathione treatment reduced IL-8 mRNA expression in cultured nasal polyp tissues. CONCLUSIONS Specific metabolic signatures are associated with different types of CRS, inflammatory patterns and disease outcomes, which may provide novel insights into pathophysiological mechanisms, subtype-specific biomarkers, and treatment targets of CRS.
Collapse
Affiliation(s)
- Jing-Xian Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Zheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Ting Zhai
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cai-Ling Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke-Zhang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M. Prostaglandin D 2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP 2 receptor. Respir Res 2021; 22:262. [PMID: 34620168 PMCID: PMC8499518 DOI: 10.1186/s12931-021-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11β-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11β-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Christina Gress
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Jens M Hohlfeld
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - David A Sandham
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Meike Müller
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
8
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Xu GB, Guan PP, Wang P. Prostaglandin A1 Decreases the Phosphorylation of Tau by Activating Protein Phosphatase 2A via a Michael Addition Mechanism at Cysteine 377. Mol Neurobiol 2020; 58:1114-1127. [PMID: 33095414 DOI: 10.1007/s12035-020-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Prostaglandin (PG) A1 is a metabolic product of cyclooxygenase 2 (COX-2) that is potentially involved in regulating the development and progression of Alzheimer's disease (AD). PGA1 is a cyclopentenone (cy) PG characterized by the presence of a chemically reactive α,β-unsaturated carbonyl. PGA1 is potentially involved in the regulation of multiple biological processes via Michael addition; however, the specific roles of PGA1 in AD remain unclear. TauP301S transgenic (Tg) mice were used as in vivo AD models, and neuroblastoma (N) 2a cells were used as an in vitro neuronal model. The PGA1-binding proteins were identified by HPLC-MS-MS after intracerebroventricular injection (i.c.v) of PGA1. Western blotting was used to determine tau phosphorylation in PGA1-treated Tg mice in the absence or in the presence of okadaic acid (OA), an inhibitor of protein phosphatase (PP) 2A. A combination of pull-down assay, immunoprecipitation, western blotting, and HPLC-MS-MS was used to determine that the PP2A scaffold subunit A alpha (PPP2R1A) is activated by the direct binding of PGA1 to cysteine 377. The effect of inhibiting tau hyperphosphorylation was tested in the Morris maze to determine the inhibitory effects of PGA1 on cognitive decline in tauP301S Tg mice. Incubation with N2a cells, pull-down assay, and mass spectrometry (MS) analysis revealed and indicated that PGA1 binds to more than 1000 proteins; some of these proteins are associated with AD and especially with tauopathies. Moreover, short-term administration of PGA1 in tauP301S Tg mice significantly decreased tau phosphorylation at Thr181, Ser202, and Ser404 in a dose-dependent manner. This effect was caused by the activation of PPP2R1A in tauP301S Tg mice. Importantly, PGA1 can form a Michael adduct with cysteine 377 of PPP2R1A, which is critical for the enzymatic activity of PP2A. Long-term treatment of tauP301S Tg mice with PGA1 activated PP2A and significantly reduced tau phosphorylation resulting in improvements in cognitive decline in tauP301S Tg mice. Our data provided new insight into the mechanisms of the ameliorating effects of PGA1 on cognitive decline in tauP301S Tg mice by activating PP2A via a mechanism involving the formation of a Michael adduct with cysteine 377 of PPP2R1A.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.,Liaoning Cheng Da Biotechnology Co., Ltd, Shenyang, 110179, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
10
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Werder RB, Lynch JP, Simpson JC, Zhang V, Hodge NH, Poh M, Forbes-Blom E, Kulis C, Smythe ML, Upham JW, Spann K, Everard ML, Phipps S. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN- λ production. Sci Transl Med 2019; 10:10/440/eaao0052. [PMID: 29743346 DOI: 10.1126/scitranslmed.aao0052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Prostaglandin D2 (PGD2) signals through PGD2 receptor 2 (DP2, also known as CRTH2) on type 2 effector cells to promote asthma pathogenesis; however, little is known about its role during respiratory syncytial virus (RSV) bronchiolitis, a major risk factor for asthma development. We show that RSV infection up-regulated hematopoietic prostaglandin D synthase expression and increased PGD2 release by cultured human primary airway epithelial cells (AECs). Moreover, PGD2 production was elevated in nasopharyngeal samples from young infants hospitalized with RSV bronchiolitis compared to healthy controls. In a neonatal mouse model of severe viral bronchiolitis, DP2 antagonism decreased viral load, immunopathology, and morbidity and ablated the predisposition for subsequent asthma onset in later life. This protective response was abolished upon dual DP1/DP2 antagonism and replicated with a specific DP1 agonist. Rather than mediating an effect via type 2 inflammation, the beneficial effects of DP2 blockade or DP1 agonism were associated with increased interferon-λ (IFN-λ) [interleukin-28A/B (IL-28A/B)] expression and were lost upon IL-28A neutralization. In RSV-infected AEC cultures, DP1 activation up-regulated IFN-λ production, which, in turn, increased IFN-stimulated gene expression, accelerating viral clearance. Our findings suggest that DP2 antagonists or DP1 agonists may be useful antivirals for the treatment of viral bronchiolitis and possibly as primary preventatives for asthma.
Collapse
Affiliation(s)
- Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Jennifer C Simpson
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia.,Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia
| | - Vivian Zhang
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia
| | - Nick H Hodge
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | - Matthew Poh
- School of Paediatrics and Child Health, University of Western Australia, Western Australia 6840, Australia
| | | | - Christina Kulis
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - John W Upham
- Diamantina Institute, University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland 4102, Australia
| | - Kirsten Spann
- Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4067, Australia.,School of Biomedical Sciences, Queensland University of Technology, Queensland 4001, Australia
| | - Mark L Everard
- School of Paediatrics and Child Health, University of Western Australia, Western Australia 6840, Australia
| | - Simon Phipps
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston 4006, Australia. .,Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4067, Australia
| |
Collapse
|
12
|
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 2018; 19:189. [PMID: 30268119 PMCID: PMC6162887 DOI: 10.1186/s12931-018-0893-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and dysregulation of the immune response.Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2 receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2 innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus production, structural damage, and compromised lung function. This review will discuss the importance of the DP2 receptor pathway and the current understanding of its role in asthma.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonary Service, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936-1080 USA
| |
Collapse
|
13
|
Targeting the PGD 2/CRTH2/DP1 Signaling Pathway in Asthma and Allergic Disease: Current Status and Future Perspectives. Drugs 2018; 77:1281-1294. [PMID: 28612233 PMCID: PMC5529497 DOI: 10.1007/s40265-017-0777-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostaglandin D2 (PGD2) released by degranulating mast cells is believed to play a key role in orchestrating mechanisms of inflammation in allergies and asthma. The biological effects of PGD2 are mediated by D-prostanoid (DP1), CRTH2 (DP2), and thromboxane prostanoid (TP) receptors. The CRTH2 receptor is involved in induction of migration and activation of T helper type 2 (Th2) lymphocytes, eosinophils, and basophils; up-regulation of adhesion molecules; and promotion of pro-inflammatory Th2-type cytokines (interleukin [IL]-4, 5, 13), whereas the DP receptor is associated with relaxation of smooth muscles, vasodilation, inhibition of cell migration, and apoptosis of eosinophils. A number of CRTH2/PGD2 receptor antagonists have been investigated in asthma and allergic diseases. The CRTH2 antagonist (OC000459) or dual CRTH2 and TP receptor antagonist (ramatroban) were effective in reducing eosinophilia, nasal mucosal swelling, and clinical symptoms of allergic rhinitis, with the latter drug registered for clinical use in this indication. OC000459 and setipiprant reduced the late but not early phase of response in an allergen challenge in atopic asthmatics. In persistent asthma, some molecules induced limited improvement in lung function, quality of life, and asthma symptoms (OC000459, BI671800), but in other trials with AMG 853 and AZ1981 these findings were not confirmed. The clear discrepancy between animal studies and clinical efficacy of CRTH2 antagonism in allergic rhinitis, and lack of efficacy in a general cohort of asthmatics, highlight the issue of patient phenotyping. There is no doubt that the PGD2/CATH2/DP1 pathway plays a key role in allergic inflammation and further studies with selective or combined antagonisms in well defined cohorts of patients are needed.
Collapse
|
14
|
Castillo EF, Zheng H, Yang XO. Orchestration of epithelial-derived cytokines and innate immune cells in allergic airway inflammation. Cytokine Growth Factor Rev 2018; 39:19-25. [PMID: 29169815 PMCID: PMC5866749 DOI: 10.1016/j.cytogfr.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Allergic asthma, a chronic respiratory disease, is a leading worldwide health problem, which inflames and constricts the airways, leading to breathing difficulty. Many studies have focused on the pathogenesis contributed by the adaptive immune system, including CD4+ T lymphocytes in delayed type hypersensitivity and B cell-produced IgE in anaphylaxis. More recently, a focus on the airway mucosal barrier and the innate immune system has highlighted, in coordination with T and B cells, to initiate and establish disease. This review highlights the impacts of epithelial-derived cytokines and innate immune cells on allergic airway reactions.
Collapse
Affiliation(s)
- Eliseo F Castillo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - Handong Zheng
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
15
|
Santus P, Radovanovic D. Prostaglandin D2 receptor antagonists in early development as potential therapeutic options for asthma. Expert Opin Investig Drugs 2016; 25:1083-92. [PMID: 27409410 DOI: 10.1080/13543784.2016.1212838] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Asthma is a chronic inflammatory disease characterized by bronchial hyper-reactivity. Although many currently available treatment regimens are effective, poor symptom control and refractory severe disease still represent major unmet needs. In the last years, numerous molecular therapeutic targets that interfere with the innate inflammatory response in asthma have been identified. Promising preliminary results concern the signaling cascade promoted by prostaglandin D2 (PGD2) and its receptor antagonists. AREAS COVERED The aim of this review is to provide the most recent clinical and preclinical data on the efficacy and safety of newly developed compounds for the treatment of allergic asthma. The authors will present an overview of the pathogenetic molecular mechanisms sustaining the chronic inflammatory response in asthma; the focus will be then directed on the mediators of the PGD2 pathway, the chemoattractant receptor-homologous molecule expressed on TH2 cells, and their latest antagonists developed. EXPERT OPINION Bronchodilators and corticosteroids are not sufficient to achieve a satisfactory management of all asthmatic patients; the development of new specific treatments appears therefore essential. The good results in terms of cellular, functional and clinical outcomes, together with an acceptable safety of the CRTh2 antagonists represent a promising start for a tailored management of allergic asthma.
Collapse
Affiliation(s)
- Pierachille Santus
- a Health Sciences Department, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, Scientific Institute of Milan-IRCCS , Università degli Studi di Milano , Milan , Italy
| | - Dejan Radovanovic
- a Health Sciences Department, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, Scientific Institute of Milan-IRCCS , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
16
|
D prostanoid receptor 2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells. J Allergy Clin Immunol 2014; 135:395-406. [PMID: 25312757 PMCID: PMC4314591 DOI: 10.1016/j.jaci.2014.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/23/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022]
Abstract
Background The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor–homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown. Objectives We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells. Methods DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR. The effects of the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin D2 on epithelial cell migration and differentiation were determined. Results Numbers of submucosal DP2+ cells were increased in asthmatic patients compared with those in healthy control subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa, P < .001). The bronchial epithelium expressed DP2, but its expression was decreased in asthmatic patients compared with that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72 [11]/10 mm2 epithelial area, P = .001), with similar differences observed in vitro by primary epithelial cells. Squamous metaplasia of the bronchial epithelium was increased in asthmatic patients and related to decreased DP2 expression (rs = 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2 promoted epithelial cell migration and at air-liquid interface cultures increased the number of MUC5AC+ and involucrin-positive cells, which were blocked with the DP2-selective antagonist AZD6430. Conclusions DP2 is expressed by the bronchial epithelium, and its activation drives epithelial differentiation, suggesting that in addition to its well-characterized role in inflammatory cell migration, DP2 might contribute to airway remodeling in asthmatic patients.
Collapse
|
17
|
Oeste CL, Pérez-Sala D. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function. MASS SPECTROMETRY REVIEWS 2014; 33:110-125. [PMID: 23818260 DOI: 10.1002/mas.21383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Cyclopentenone prostaglandins (cyPG) are endogenous lipid mediators involved in the resolution of inflammation and the regulation of cell proliferation and cellular redox status. Upon exogenous administration they have shown beneficial effects in models of inflammation and tissue injury, as well as potential antitumoral actions, which have raised a considerable interest in their study for the development of therapeutic tools. Due to their electrophilic nature, the best-known mechanism of action of these mediators is the covalent modification of proteins at cysteine residues through Michael addition. Identification of cyPG targets through proteomic approaches, including MS/MS analysis to pinpoint the modified residues, is proving critical to characterize their mechanisms of action. Among the targets of cyPG are proinflammatory transcription factors, proteins involved in cell defense, such as the regulator of the antioxidant response Keap1 and detoxifying enzymes like GST, and key signaling proteins like Ras proteins. Moreover, cyPG may interact with redox-active small molecules, such as glutathione and hydrogen sulfide. Much has been learned about cyPG in the past few years and this knowledge has also contributed to clarify both pharmacological actions and signaling mechanisms of these and other electrophilic lipids. Given the fact that many cyPG targets are involved in or are targets for redox regulation, there is a complex interplay with redox-induced modifications. Here we address the modification of protein cysteine residues by cyPG elucidated by proteomic studies, paying special attention to the interplay with redox signaling.
Collapse
Affiliation(s)
- Clara L Oeste
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
18
|
Hematopoietic prostaglandin D synthase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:97-133. [PMID: 22520473 DOI: 10.1016/b978-0-12-396493-9.00004-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2. PLoS One 2012; 7:e33329. [PMID: 22442685 PMCID: PMC3307725 DOI: 10.1371/journal.pone.0033329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.
Collapse
|
20
|
Pettipher R, Whittaker M. Update on the development of antagonists of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). From lead optimization to clinical proof-of-concept in asthma and allergic rhinitis. J Med Chem 2012; 55:2915-31. [PMID: 22224640 DOI: 10.1021/jm2013997] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Roy Pettipher
- Oxagen Ltd., 91 Milton Park, Abingdon, Oxon OX14 4RY, UK.
| | | |
Collapse
|
21
|
Pettipher R, Vinall SL, Xue L, Speight G, Townsend ER, Gazi L, Whelan CJ, Armer RE, Payton MA, Hunter MG. Pharmacologic profile of OC000459, a potent, selective, and orally active D prostanoid receptor 2 antagonist that inhibits mast cell-dependent activation of T helper 2 lymphocytes and eosinophils. J Pharmacol Exp Ther 2011; 340:473-82. [PMID: 22106101 DOI: 10.1124/jpet.111.187203] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
D prostanoid receptor 2 (DP₂) [also known as chemoattractant receptor-homologous molecule expressed on T helper 2 (Th2) cells (CRTH2)] is selectively expressed by Th2 lymphocytes, eosinophils, and basophils and mediates recruitment and activation of these cell types in response to prostaglandin D₂ (PGD₂). (5-Fluoro-2-methyl-3-quinolin-2-ylmethylindo-1-yl)-acetic acid (OC000459) is an indole-acetic acid derivative that potently displaces [³H]PGD₂ from human recombinant DP₂ (K(i) = 0.013 μM), rat recombinant DP₂ (K(i) = 0.003 μM), and human native DP₂ (Th2 cell membranes; K(i) = 0.004 μM) but does not interfere with the ligand binding properties or functional activities of other prostanoid receptors (prostaglandin E₁₋₄ receptors, D prostanoid receptor 1, thromboxane receptor, prostacyclin receptor, and prostaglandin F receptor). OC000459 inhibited chemotaxis (IC₅₀ = 0.028 μM) of human Th2 lymphocytes and cytokine production (IC₅₀ = 0.019 μM) by human Th2 lymphocytes. OC000459 competitively antagonized eosinophil shape change responses induced by PGD₂ in both isolated human leukocytes (pK(B) = 7.9) and human whole blood (pK(B) = 7.5) but did not inhibit responses to eotaxin, 5-oxo-eicosatetraenoic acid, or complement component C5a. OC000459 also inhibited the activation of Th2 cells and eosinophils in response to supernatants from IgE/anti-IgE-activated human mast cells. OC000459 had no significant inhibitory activity on a battery of 69 receptors and 19 enzymes including cyclooxygenase 1 (COX1) and COX2. OC000459 was found to be orally bioavailable in rats and effective in inhibiting blood eosinophilia induced by 13,14-dihydro-15-keto-PGD₂ (DK-PGD₂) in this species (ED₅₀ = 0.04 mg/kg p.o.) and airway eosinophilia in response to an aerosol of DK-PGD₂ in guinea pigs (ED₅₀ = 0.01 mg/kg p.o.). These data indicate that OC000459 is a potent, selective, and orally active DP₂ antagonist that retains activity in human whole blood and inhibits mast cell-dependent activation of both human Th2 lymphocytes and eosinophils.
Collapse
Affiliation(s)
- Roy Pettipher
- Oxagen Ltd, 91 Milton Park, Abingdon, Oxon, OX14 4RY, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Luna-Gomes T, Magalhães KG, Mesquita-Santos FP, Bakker-Abreu I, Samico RF, Molinaro R, Calheiros AS, Diaz BL, Bozza PT, Weller PF, Bandeira-Melo C. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:6518-26. [PMID: 22102725 DOI: 10.4049/jimmunol.1101806] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGD(2) is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD(2) synthesis, the hematopoietic PGD synthase (H-PGDS). In this study, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD(2). PGD(2) synthesis was evaluated within human blood eosinophils, in vitro differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD(2) was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within nonstimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1-5 μM) evoked PGD(2) synthesis, which was located at the nuclear envelope and was inhibited by pretreatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Prestimulation of human eosinophils with arachidonic acid (10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD(2) synthesis, which, by acting on membrane-expressed specific receptors (D prostanoid receptors 1 and 2), displayed an autocrine/paracrine ability to trigger leukotriene C(4) synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD(2) in response to arachidonic acid stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD(2)-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD(2), hence representing during allergic inflammation an extra cell source of PGD(2), which functions as an autocrine signal for eosinophil activation.
Collapse
Affiliation(s)
- Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Prostaglandin D₂ (PGD₂) is a major prostanoid, produced mainly by mast cells, in allergic diseases, including bronchial asthma. PGD₂-induced vasodilatation and increased permeability are well-known classical effects that may be involved in allergic inflammation. Recently, novel functions of PGD₂ have been identified. To date, D prostanoid receptor (DP) and chemoattractant receptor homologous molecule expressed on T(H)2 cells (CRTH2) have been shown to be major PGD₂-related receptors. These two receptors have pivotal roles mediating allergic diseases by regulating the functions of various cell types, such as T(H)2 cells, eosinophils, basophils, mast cells, dendritic cells, and epithelial cells. This review will focus on the current understanding of the roles of PGD₂ and its metabolites in T(H)2 inflammation and the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
- Masafumi Arima
- Department of Developmental Genetics (H2), Chiba University Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|
24
|
Xue L, Barrow A, Pettipher R. Interaction between prostaglandin D and chemoattractant receptor-homologous molecule expressed on Th2 cells mediates cytokine production by Th2 lymphocytes in response to activated mast cells. Clin Exp Immunol 2009; 156:126-33. [PMID: 19220324 DOI: 10.1111/j.1365-2249.2008.03871.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanisms by which immunologically activated mast cells stimulate the production of proinflammatory cytokines by T helper type 2 (Th2) lymphocytes were investigated in a human cell culture system. Supernatants collected from cord blood-derived mast cells after treatment with immunoglobulin E (IgE)/anti-IgE contained an activity that stimulated the production of interleukin (IL)-4, IL-5 and IL-13 (both mRNA and protein) by Th2 lymphocytes. This activity was not detected in supernatants from unactivated mast cells and its production was inhibited by treatment of activated mast cells with the cyclo-oxygenase inhibitor diclofenac. The concentration of diclofenac used inhibited completely the production of prostaglandin D(2) (PGD(2)) but did not inhibit the release of histamine or leukotriene C(4). The effect of supernatants from activated mast cells was mimicked by exogenous PGD(2) at concentrations similar to those detected in the cultures of activated mast cells, and addition of exogenous PGD(2) to supernatants from diclofenac-treated mast cells restored their ability to stimulate Th2 cytokine production. The ability of the mast cell supernatants to stimulate production of Th2 cytokines was not affected by addition of diclofenac to the Th2 cells directly, indicating that the production, but not the action, of the factor was sensitive to diclofenac treatment. Inhibition of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) abolished the effect of the mast cell supernatants on Th2 cytokine production. These data indicate that mast cells have the ability to stimulate Th2 cells to elaborate cytokines independently of T cell receptor activation or co-stimulation and this response is mediated by PGD(2) acting upon CRTH2 expressed by Th2 cells.
Collapse
Affiliation(s)
- L Xue
- Oxagen Ltd, Abingdon, Oxon, UK.
| | | | | |
Collapse
|
25
|
Khan AH, Ashwani A, Javed T, Nelson SM, Carson RJ. Effect of femto to nano molar concentrations of prostaglandin analogues on pregnant rat uterine contractility. Eur J Pharmacol 2008; 581:185-90. [DOI: 10.1016/j.ejphar.2007.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 11/14/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
26
|
The roles of the prostaglandin D(2) receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 2007; 153 Suppl 1:S191-9. [PMID: 17965752 DOI: 10.1038/sj.bjp.0707488] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prostaglandin D(2) (PGD(2)) is produced by mast cells, Th2 lymphocytes and dendritic cells and has been detected in high concentrations at sites of allergic inflammation. PGD(2) exerts its inflammatory effects through high affinity interactions with the G protein coupled receptors DP(1) and chemoattractant-homologous receptor expressed on Th2 cells (CRTH2, also known as DP(2)). DP(1) and CRTH2 act in concert to promote a number of biological effects associated with the development and maintenance of the allergic response. During the process of allergen sensitization, DP(1) activation may enhance polarization of Th0 cells to Th2 cells by inhibiting production of interleukin 12 by dendritic cells. Upon exposure to allergen in sensitized individuals, activation of DP(1) may contribute to the long lasting blood flow changes in the target organ. CRTH2 is expressed by Th2 lymphocytes, eosinophils and basophils and may mediate the recruitment of these cell types during the late phase allergic response. The role played by CRTH2 in promoting the production of Th2 cytokines and IgE make antagonism of this receptor a particularly attractive approach to the treatment of chronic allergic disease.
Collapse
|
27
|
Schuligoi R, Schmidt R, Geisslinger G, Kollroser M, Peskar BA, Heinemann A. PGD2 metabolism in plasma: Kinetics and relationship with bioactivity on DP1 and CRTH2 receptors. Biochem Pharmacol 2007; 74:107-17. [DOI: 10.1016/j.bcp.2007.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 12/12/2022]
|
28
|
Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov 2007; 6:313-25. [PMID: 17396136 DOI: 10.1038/nrd2266] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunological activation of mast cells is an important trigger in the cascade of inflammatory events leading to the manifestation of allergic diseases. Pharmacological studies using the recently discovered DP(1) and CRTH2 antagonists combined with genetic analysis support the view that these receptors have a pivotal role in mediating aspects of allergic diseases that are resistant to current therapy. This Review focuses on the emerging roles that DP(1) and CRTH2 (also known as DP(2)) have in acute and chronic aspects of allergic diseases and proposes that, rather than having opposing actions, these receptors have complementary roles in the initiation and maintenance of the allergy state. We also discuss recent progress in the discovery and development of selective antagonists of these receptors.
Collapse
Affiliation(s)
- Roy Pettipher
- Oxagen Limited, 91 Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | | | | |
Collapse
|
29
|
Abstract
As therapeutic strategies to prevent acute rejection progressively improve, transplant vasculopathy (TV) constitutes the single most important limitation for long-term functioning of solid organ allografts. In TV, allograft arteries characteristically develop severe, diffuse intimal hyperplastic lesions that eventually compromise luminal flow and cause ischemic graft failure. Traditional immunosuppressive strategies that check acute allograft rejection do not prevent TV; indeed 50% of transplant recipients will have significant disease within five years of organ transplantation, and 90% will have significant TV a decade after their surgery. TV can involve the entire length of the transplanted arterial bed, including penetrating intraorgan arterioles. Indeed, the luminal narrowing of such penetrating vessels may be the most functionally significant because arterioles represent the major contributors to tissue vascular resistance. Because of the diffuseness of TV involvement in the allograft vascular bed, the only currently definitive therapy requires re-transplantation. Nevertheless, as we better understand the pathogenesis and critical mediators of these lesions, pharmacological advances can be anticipated. Other articles in this thematic review series focus on the specifics of the inciting injury, the cytokines and chemokines that drive TV development, and the nature of the recruited cells in TV lesions, as well as the pathogenic similarities between TV and other vascular lesions such as atherosclerosis. This review focuses on the mechanisms of vascular wall remodeling in TV, including the intimal accumulation of smooth muscle-like cells and associated extracellular matrix, medial smooth muscle cell degeneration, and adventitial fibrosis. A brief overview highlights the aneurysmal changes that can accrue when vessel wall inflammation has a cytokine profile distinct from the typical proinflammatory interferon-gamma-dominated milieu.
Collapse
Affiliation(s)
- Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
30
|
Gyles SL, Xue L, Townsend ER, Wettey F, Pettipher R. A dominant role for chemoattractant receptor-homologous molecule expressed on T helper type 2 (Th2) cells (CRTH2) in mediating chemotaxis of CRTH2+ CD4+ Th2 lymphocytes in response to mast cell supernatants. Immunology 2007; 119:362-8. [PMID: 17067313 PMCID: PMC1819579 DOI: 10.1111/j.1365-2567.2006.02440.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human cultured mast cells, immunologically activated with immunoglobuin E (IgE)/anti-IgE, released a factor(s) that promoted chemotaxis of human CRTH2+ CD4+ T helper type 2 (Th2) lymphocytes. Mast cell supernatants collected at 20 min, 1 hr, 2 hr and 4 hr after activation caused a concentration-dependent increase in the migration of Th2 cells. The effect of submaximal dilutions of mast-cell-conditioned media was inhibited in a dose-dependent manner by ramatroban (IC50 = 96 nm), a dual antagonist of both the thromboxane-like prostanoid (TP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), but not by the selective TP antagonist SQ29548, implicating CRTH2 in mediating the chemotactic response of these Th2 cells. The effect of mast-cell-conditioned media was mimicked by prostaglandin D2 (PGD2) and this eicosanoid was detected in the conditioned media from activated mast cells in concentrations sufficient to account for the activity of the mast cell supernatants. Treatment of the mast cells with the cyclo-oxygenase inhibitor diclofenac (10 microm) inhibited both the production of PGD2 and the CRTH2+ CD4+ Th2-stimulatory activity, while addition of exogenous PGD2 to conditioned media from diclofenac-treated mast cells restored the ability of the supernatants to promote chemotaxis of these Th2 cells. The degree of inhibition caused by diclofenac treatment of the mast cells was concordant with the degree of inhibition of chemotactic responses afforded by CRTH2 blockade. These data suggest that PGD2, or closely related metabolites of arachidonic acid, produced from mast cells may play a central role in the activation of CRTH2+ CD4+ Th2 lymphocytes through a CRTH2-dependent mechanism.
Collapse
MESH Headings
- Carbazoles/pharmacology
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Culture Media, Conditioned/pharmacology
- Cyclooxygenase Inhibitors/pharmacology
- Diclofenac/pharmacology
- Dose-Response Relationship, Immunologic
- Humans
- Immunoglobulin E/immunology
- Lymphocyte Activation/drug effects
- Mast Cells/immunology
- Prostaglandin D2/analysis
- Prostaglandin D2/biosynthesis
- Prostaglandin D2/pharmacology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Receptors, Thromboxane/antagonists & inhibitors
- Sulfonamides/pharmacology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Shân L Gyles
- Department of Drug Discovery, Oxagen Ltd, Abingdon, Oxon, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Sandig H, Pease JE, Sabroe I. Contrary prostaglandins: the opposing roles of PGD2 and its metabolites in leukocyte function. J Leukoc Biol 2006; 81:372-82. [PMID: 17043246 DOI: 10.1189/jlb.0706424] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Traditionally, PGD(2) has been considered to be a pro-inflammatory mediator, acting via classical PG receptors, such as the PGD(2) receptor (DP). PGD(2) is degraded rapidly in vitro and in vivo to a variety of metabolites, the majority of which were thought, until recently, to be physiologically inactive. Several "inactive" metabolites, particularly 15d-PGJ(2), have been shown to have wide-ranging effects on leukocytes and other cell types, however, and a potentially important anti-inflammatory role for PGD(2) has now been recognized, and the complexity of PGD(2) signaling is beginning to be elucidated. PGD(2) and its metabolites are biologically active over a broad concentration range, and, intriquingly, it appears that there are marked concentration-dependent variations in the consequences of signaling by these eicosanoids, which have the potential to exert pro- and anti-inflammatory effects. For example, the actions of PGD(2) can influence multiple stages in the life of the mature eosinophil, from causing its release from the bone marrow to inducing its recruitment and activation and, ultimately, regulating its apoptosis. This review is concerned with the diverse responses induced in leukocytes by PGD(2) and its metabolites and the signaling mechanisms which are thought to be responsible for them.
Collapse
Affiliation(s)
- Hilary Sandig
- Department of Asthma, Allergy and Respiratory Science, King's College London, 5th Floor Thomas Guy House, Guy's Hospital, London, UK.
| | | | | |
Collapse
|
32
|
Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2006; 26:987-94. [PMID: 16497993 DOI: 10.1161/01.atv.0000214999.12921.4f] [Citation(s) in RCA: 475] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expansion and rupture of abdominal aortic aneurysms (AAA) result in high morbidity and mortality rates. Like stenotic atherosclerotic lesions, AAA accumulate inflammatory cells, but usually exhibit much more extensive medial damage. Leukocyte recruitment and expression of pro-inflammatory Th1 cytokines typically characterize early atherogenesis of any kind, and modulation of inflammatory mediators mutes atheroma formation in mice. However, the mechanistic differences between stenotic and aneurysmal manifestations of atherosclerosis remain unexplained. We recently showed that aortic allografts deficient in interferon-gamma (IFN-gamma) signaling developed AAA correlating with skewed Th2 cytokine environments, suggesting important regulatory roles for Th1/Th2 cytokine balance in modulating matrix remodeling and important implications for the pathophysiology of aortic aneurysm and atherosclerosis. Further probing of their distinct aspects of immune and inflammatory responses in vascular diseases should continue to shed new light on the pathophysiologic mechanisms that give rise to aneurysmal versus occlusive manifestations and atherosclerosis.
Collapse
Affiliation(s)
- Koichi Shimizu
- The Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
33
|
Herlong JL, Scott TR. Positioning prostanoids of the D and J series in the immunopathogenic scheme. Immunol Lett 2006; 102:121-31. [PMID: 16310861 DOI: 10.1016/j.imlet.2005.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/08/2005] [Accepted: 10/08/2005] [Indexed: 10/25/2022]
Abstract
Prostaglandin D(2) (PGD(2)) is produced by a variety of immune and non-hematopoietic cells and appears to function in both an inflammatory and homeostatic capacity. Two genetically distinct PGD(2)-synthesizing enzymes have been identified to date, including hematopoietic- and lipocalin-type PGD synthases (H-PGDS and L-PGDS, respectively). Though the inter-species expression profiles of these two enzymes vary widely, H-PGDS is generally localized to the cytosolic aspect of immune and inflammatory cells, whereas L-PGDS is more resigned to tissue-based expression. PGD(2) activity is principally mediated through two unique G protein-coupled receptors (GPCR), designated DP(1) and DP(2). These receptors exhibit overlapping binding profiles, yet their respective agonists elicit generally distinctive responses. Additional to DP receptors, the PGD(2) metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) binds the nuclear peroxisome proliferator-activated receptor gamma (PPARgamma) and has the facility to initiate a variety of anti-inflammatory phenotypes either through or independent of PPARgamma association. This review highlights the collective relevance of PGD(2) and its respective synthases, receptors, and metabolites in immunopathologic responses.
Collapse
Affiliation(s)
- J L Herlong
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
34
|
Sandig H, Andrew D, Barnes AA, Sabroe I, Pease J. 9α,11β-PGF2and its stereoisomer PGF2αare novel agonists of the chemoattractant receptor, CRTH2. FEBS Lett 2005; 580:373-9. [PMID: 16378605 DOI: 10.1016/j.febslet.2005.11.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 10/20/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
CRTH2 is a recently described chemoattractant receptor for the prostaglandin, PGD(2), expressed by Th2 cells, eosinophils and basophils, and believed to play a role in allergic inflammation. Here we describe the potency of several PGD(2) metabolites at the receptor to induce cell migration and activation. We report for the first time that the PGD(2) metabolite, 9alpha,11beta-PGF(2), and its stereoisomer, PGF(2alpha), are CRTH2 agonists. 9alpha,11beta-PGF(2) is a major metabolite produced in vivo following allergen challenge, whilst PGF(2alpha) is generated independently of PGD synthetase, with implications for CRTH2 signalling in the presence or absence of PGD(2) production.
Collapse
Affiliation(s)
- Hilary Sandig
- Leukocyte Biology Section, NHLI Division, Imperial College Faculty of Medicine, South Kensington, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
35
|
Xue L, Gyles SL, Wettey FR, Gazi L, Townsend E, Hunter MG, Pettipher R. Prostaglandin D2Causes Preferential Induction of Proinflammatory Th2 Cytokine Production through an Action on Chemoattractant Receptor-Like Molecule Expressed on Th2 Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:6531-6. [PMID: 16272307 DOI: 10.4049/jimmunol.175.10.6531] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGD2, produced by mast cells, has been detected in high concentrations at sites of allergic inflammation. It can stimulate vascular and other inflammatory responses by interaction with D prostanoid receptor (DP) and chemoattractant receptor-like molecule expressed on Th2 cells (CRTH2) receptors. A significant role for PGD2 in mediating allergic responses has been suggested based on the observation that enhanced eosinophilic lung inflammation and cytokine production is apparent in the allergen-challenged airways of transgenic mice overexpressing human PGD2 synthase, and PGD2 can enhance Th2 cytokine production in vitro from CD3/CD28-costimulated Th2 cells. In the present study, we investigated whether PGD2 has the ability to stimulate Th2 cytokine production in the absence of costimulation. At concentrations found at sites of allergic inflammation, PGD2 preferentially elicited the production of IL-4, IL-5, and IL-13 by human Th2 cells in a dose-dependent manner without affecting the level of the anti-inflammatory cytokine IL-10. Gene transcription peaked within 2 h, and protein release peaked approximately 8 h after stimulation. The effect of PGD2 was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD2 but not by the selective DP agonist BW245C, suggesting that the stimulation is mediated by CRTH2 and not DP. Ramatroban, a dual CRTH2/thromboxane-like prostanoid receptor antagonist, markedly inhibited Th2 cytokine production induced by PGD2, while the selective thromboxane-like prostanoid receptor antagonist SQ29548 was without effect. These data suggest that PGD2 preferentially up-regulates proinflammatory cytokine production in human Th2 cells through a CRTH2-dependent mechanism in the absence of any other costimulation and highlight the potential utility of CRTH2 antagonists in the treatment of allergic diseases.
Collapse
MESH Headings
- Base Sequence
- Bridged Bicyclo Compounds, Heterocyclic
- Carbazoles/pharmacology
- Cells, Cultured
- Cytokines/biosynthesis
- DNA/genetics
- Fatty Acids, Unsaturated
- Humans
- Hydantoins/pharmacology
- Hydrazines/pharmacology
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation Mediators/metabolism
- Interleukin-13/biosynthesis
- Interleukin-13/genetics
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Interleukin-5/biosynthesis
- Interleukin-5/genetics
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/drug effects
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/drug effects
- Receptors, Prostaglandin/metabolism
- Sulfonamides/pharmacology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Luzheng Xue
- Oxagen Limited, Abingdon, Oxon, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|