1
|
Valencia R, Kranrod JW, Fang L, Soliman AM, Azer B, Clemente-Casares X, Seubert JM. Linoleic acid-derived diol 12,13-DiHOME enhances NLRP3 inflammasome activation in macrophages. FASEB J 2024; 38:e23748. [PMID: 38940767 DOI: 10.1096/fj.202301640rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua W Kranrod
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amro M Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brandon Azer
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Solati Z, Surendran A, Aukema HM, Ravandi A. Impact of Reperfusion on Plasma Oxylipins in ST-Segment Elevation Myocardial Infarction. Metabolites 2023; 14:19. [PMID: 38248822 PMCID: PMC10821107 DOI: 10.3390/metabo14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
ST-segment elevation myocardial infarction (STEMI) occurs as a result of acute occlusion of the coronary artery. Despite successful reperfusion using primary percutaneous coronary intervention (PPCI), a large percentage of myocardial cells die after reperfusion, which is recognized as ischemia/reperfusion injury (I/R). There are rapid changes in plasma lipidome during myocardial reperfusion injury. However, the impact of coronary artery reperfusion on plasma oxylipins is unknown. This study aimed to investigate alterations in the oxylipin profiles of STEMI patients during ischemia and at various reperfusion time points following PPCI. Blood samples were collected from patients presenting with STEMI prior to PPCI (Isch, n = 45) and subsequently 2 h following successful reperfusion by PPCI (R-2 h, n = 42), after 24 h (R-24 h, n = 44), after 48 h (R-48 h, n = 43), and then 30 days post PPCI (R-30 d, n = 29). As controls, blood samples were collected from age- and sex-matched patients with non-obstructive coronary artery disease after diagnostic coronary angiography. High-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) using deuterated standards was used to identify and quantify oxylipins. In patients presenting with STEMI prior to reperfusion (Isch group), the levels of docosahexaenoic acid (DHA)-derived oxylipins were significantly higher when compared with controls. Their levels were also significantly correlated with the peak levels of creatine kinase (CK) and troponin T(TnT) before reperfusion (CK: r = 0.33, p = 0.046, TnT: r = 0.50, p = 1.00 × 10-3). The total concentrations of oxylipins directly produced by 5-lipoxygenase (5-LOX) were also significantly elevated in the Isch group compared with controls. The ratio of epoxides (generated through epoxygenase) to diols (generated by soluble epoxide hydrolysis (sEH)) was significantly lower in the Isch group compared with the controls. Following reperfusion, there was an overall reduction in plasma oxylipins in STEMI patients starting at 24 h post PPCI until 30 days. Univariate receiver operating characteristic (ROC) curve analysis also showed that an elevated ratio of epoxides to diols during ischemia is a predictor of smaller infarct size in patients with STEMI. This study revealed a large alteration in plasma oxylipins in patients presenting with STEMI when compared with controls. Total oxylipin levels rapidly reduced post reperfusion with stable levels reached 24 h post reperfusion and maintained for up to 30 days post infarct. Given the shifts in plasma oxylipins following coronary artery reperfusion, further research is needed to delineate their clinical impact in STEMI patients.
Collapse
Affiliation(s)
- Zahra Solati
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Arun Surendran
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Harold M. Aukema
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Amir Ravandi
- Precision Cardiovascular Medicine Group, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada (H.M.A.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Cardiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
3
|
Li Y, You C, Liu Z, He F, Zhao F, Song X, Xie Z, Wei S, Yang Y, Wei H, Che F, Yu J. CYP2C8 and CYP2J2 gene variations increase the risk of hypertensive intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2023; 32:106974. [PMID: 36587509 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Many studies have shown that cytochrome P450 (CYP) gene polymorphisms are usually associated with an increased risk of cardiovascular and cerebrovascular diseases. To explore the association of CYP2C8 and CYP2J2 gene polymorphisms with hypertensive intracerebral hemorrhage (HICH) in the Han Chinese population. METHODS Forty HICH patients and 40 control subjects were recruited for this study. Two single nucleotide polymorphisms (SNP) (rs1058932, rs2275622) in the CYP2C8 gene and two SNPs (rs2271800, rs1155002) in the CYP2J2 gene were selected for genotyping by direct sequencing. Statistical analysis was applied to examine the effect of genetic variation on HICH. RESULTS We found that variant alleles of CYP2C8 rs1058932 (A) and rs2275622 (C) were both significantly associated with HICH, especially in females. We also found significant associations of CYP2C8 rs1058932 (A) and rs2275622 (C) variant alleles with poor outcomes in HICH patients, especially in males. CONCLUSIONS CYP2C8 gene polymorphisms might increase the risk of HICH in the Han Chinese population and might lead to poor outcomes. This finding adds to the body of literature supporting novel therapeutic strategies for HICH.
Collapse
Affiliation(s)
- Yue Li
- Qingdao University, Qingdao, Shandong, China; Department of Neurology, Linyi People's Hospital, Linyi, Shandong, China
| | - Cuiping You
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhenchuan Liu
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Feng He
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Fuchun Zhao
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaojie Song
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhongxiang Xie
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Shuai Wei
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Yongfang Yang
- Rehabilitation department, Linyi People's Hospital, Linyi, Shandong, China
| | - Hongyan Wei
- Department of Neurological Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong, China
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China.
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
4
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
5
|
Nguyen N, Morisseau C, Li D, Yang J, Lam E, Woodside DB, Hammock BD, Shih PAB. Soluble Epoxide Hydrolase Is Associated with Postprandial Anxiety Decrease in Healthy Adult Women. Int J Mol Sci 2022; 23:11798. [PMID: 36233100 PMCID: PMC9569757 DOI: 10.3390/ijms231911798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolism of bioactive oxylipins by soluble epoxide hydrolase (sEH) plays an important role in inflammation, and sEH may be a risk modifier in various human diseases and disorders. The relationships that sEH has with the risk factors of these diseases remain elusive. Herein, sEH protein expression and activity in white blood cells were characterized before and after a high-fat meal in healthy women (HW) and women with anorexia nervosa (AN). sEH expression and sEH activity were significantly correlated and increased in both groups two hours after consumption of the study meal. Fasting sEH expression and activity were positively associated with body mass index (BMI) in both groups, while an inverse association with age was found in AN only (p value < 0.05). sEH was not associated with anxiety or depression in either group at the fasting timepoint. While the anxiety score decreased after eating in both groups, a higher fasting sEH was associated with a lower postprandial anxiety decrease in HW (p value < 0.05). sEH characterization using direct measurements verified the relationship between the protein expression and in vivo activity of this important oxylipin modulator, while a well-controlled food challenge study design using HW and a clinical control group of women with disordered eating elucidated sEH’s role in the health of adult women.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dongyang Li
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Eileen Lam
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - D. Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Pei-an Betty Shih
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
6
|
Abstract
INTRODUCTION Cytochrome P450s (CYPs) are a superfamily of monooxygenases with diverse biological roles. CYP2J2 is an isozyme highly expressed in the heart where it metabolizes endogenous substrates such as N-3/N-6 polyunsaturated fatty acids (PUFA) to produce lipid mediators involved in homeostasis and cardioprotective responses. Expanding our knowledge of the role CYP2J2 has within the heart is important for understanding its impact on cardiac health and disease. AREAS COVERED The objective of this review was to assess the state of knowledge regarding cardiac CYP2J2. A literature search was conducted using PubMed-MEDLINE (from 2022 and earlier) to evaluate relevant studies regarding CYP2J2 mediated cardioprotection, small molecule modulators, effects of CYP2J2 substrates toward biologically relevant effects and implications of CYP2J2 polymorphisms and sexual dimorphism in the heart. EXPERT OPINION Cardiac CYP2J2-mediated metabolism of endogenous and exogenous substrates have been shown to impact cardiac function. Identifying individual factors, like sex and age, that affect CYP2J2 require further elucidation to better understand CYP2J2's clinical relevance. Resolving the biological targets and activities of CYP2J2-derived PUFA metabolites will be necessary to safely target CYP2J2 and design novel analogues. Targeting CYP2J2 for therapeutic aims offers a potential novel approach to regulating cardiac homeostasis, drug metabolism and cardioprotection.
Collapse
|
7
|
McGurk KA, Farrell L, Kendall AC, Keavney BD, Nicolaou A. Genetic analyses of circulating PUFA-derived mediators identifies heritable dihydroxyeicosatrienoic acid species. Prostaglandins Other Lipid Mediat 2022; 160:106638. [PMID: 35472599 DOI: 10.1016/j.prostaglandins.2022.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Estimates of heritability are the first step in identifying a trait with substantial variation due to genetic factors. Large-scale genetic analyses can identify the DNA variants that influence the levels of circulating lipid species and the statistical technique Mendelian randomisation can use these DNA variants to address potential causality of these lipids in disease. We estimated the heritability of plasma eicosanoids, octadecanoids and docosanoids to identify those lipid species with substantial heritability. We analysed plasma lipid mediators in 31 White British families (196 participants) ascertained for high blood pressure and deeply clinically and biochemically phenotyped over a 25-year period. We found that the dihydroxyeicosatrienoic acid (DHET) species, 11,12-DHET and 14,15-DHET, products of arachidonic acid metabolism by cytochrome P450 (CYP) monooxygenase and soluble epoxide hydrolase (sEH), exhibited substantial heritability (h2 = 33%-37%; Padj<0.05). Identification of these two heritable bioactive lipid species allows for future large-scale, targeted, lipidomics-genomics analyses to address causality in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Farrell
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bernard D Keavney
- Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Untargeted Metabolomics Analysis of the Serum Metabolic Signature of Childhood Obesity. Nutrients 2022; 14:nu14010214. [PMID: 35011090 PMCID: PMC8747180 DOI: 10.3390/nu14010214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity rates among children are growing rapidly worldwide, placing massive pressure on healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obesity in children have not been thoroughly investigated. Herein, we explored metabolites associated with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight children. Three metabolomic assays were combined and yielded 726 unique identified metabolites: gas chromatography–mass spectrometry (GC–MS), hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC LC–MS/MS), and lipidomics. Univariate and multivariate analyses showed clear discrimination between the untargeted metabolomes of obese and normal-weight children, with 162 significantly differentially expressed metabolites between groups. Children with obesity had higher concentrations of branch-chained amino acids and various lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential biomarkers and used to study obesity pathomechanisms.
Collapse
|
9
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
10
|
Soluble Epoxide Hydrolase in Aged Female Mice and Human Explanted Hearts Following Ischemic Injury. Int J Mol Sci 2021; 22:ijms22041691. [PMID: 33567578 PMCID: PMC7915306 DOI: 10.3390/ijms22041691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13–16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC–MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.
Collapse
|
11
|
Hildreth K, Kodani SD, Hammock BD, Zhao L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J Nutr Biochem 2020; 86:108484. [PMID: 32827665 PMCID: PMC7606796 DOI: 10.1016/j.jnutbio.2020.108484] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid found in the Western diet. Cytochrome P450-derived LA metabolites 9,10-epoxyoctadecenoic acid (9,10-EpOME), 12,13-epoxyoctadecenoic acid (12,13-EpOME), 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME) have been studied for their association with various disease states and biological functions. Previous studies of the EpOMEs and DiHOMEs have focused on their roles in cytotoxic processes, primarily in the inhibition of the neutrophil respiratory burst. More recent research has suggested the DiHOMEs may be important lipid mediators in pain perception, altered immune response and brown adipose tissue activation by cold and exercise. The purpose of this review is to summarize the current understanding of the physiological and pathophysiological roles and modes of action of the EpOMEs and DiHOMEs in health and disease.
Collapse
Affiliation(s)
- Kelsey Hildreth
- Department of Nutrition, University of Tennessee, Knoxville, TN
| | - Sean D Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN.
| |
Collapse
|
12
|
Pinckard KM, Shettigar VK, Wright KR, Abay E, Baer LA, Vidal P, Dewal RS, Das D, Duarte-Sanmiguel S, Hernández-Saavedra D, Arts PJ, Lehnig AC, Bussberg V, Narain NR, Kiebish MA, Yi F, Sparks LM, Goodpaster BH, Smith SR, Pratley RE, Lewandowski ED, Raman SV, Wold LE, Gallego-Perez D, Coen PM, Ziolo MT, Stanford KI. A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation 2020; 143:145-159. [PMID: 33106031 DOI: 10.1161/circulationaha.120.049813] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function. METHODS To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation. We then performed lipidomics and identified an increase in the lipokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME). We utilized a mouse model with sustained overexpression of 12,13-diHOME and investigated the role of 12,13-diHOME in a nitric oxide synthase type 1 deficient (NOS1-/-) mouse and in isolated cardiomyocytes to determine effects on function and respiration. We also investigated 12,13-diHOME in a cohort of human patients with heart disease. RESULTS Here, we determined that transplantation of BAT (+BAT) improves cardiac function via the release of the lipokine 12,13-diHOME. Sustained overexpression of 12,13-diHOME using tissue nanotransfection negated the deleterious effects of a high-fat diet on cardiac function and remodeling, and acute injection of 12,13-diHOME increased cardiac hemodynamics via direct effects on the cardiomyocyte. Furthermore, incubation of cardiomyocytes with 12,13-diHOME increased mitochondrial respiration. The effects of 12,13-diHOME were absent in NOS1-/- mice and cardiomyocytes. We also provide the first evidence that 12,13-diHOME is decreased in human patients with heart disease. CONCLUSIONS Our results identify an endocrine role for BAT to enhance cardiac function that is mediated by regulation of calcium cycling via 12,13-diHOME and NOS1.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Revati S Dewal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Devleena Das
- Department of Biomedical Engineering (D.D., S.D.-S., D.G.P.), The Ohio State University, Columbus
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering (D.D., S.D.-S., D.G.P.), The Ohio State University, Columbus.,Department of Nutrition (S.D.-S.), The Ohio State University, Columbus
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Peter J Arts
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Adam C Lehnig
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | | | | | | | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - E Douglas Lewandowski
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Internal Medicine (E.D.L., S.V.R., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus.,Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.).,Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL (E.D.L.)
| | - Subha V Raman
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Internal Medicine (E.D.L., S.V.R., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus.,College of Nursing (L.E.W.), The Ohio State University, Columbus
| | - Daniel Gallego-Perez
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Surgery (D.G.P.), The Ohio State University College of Medicine, Columbus.,Department of Biomedical Engineering (D.D., S.D.-S., D.G.P.), The Ohio State University, Columbus
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL (F.Y., L.M.S., B.H.G., S.R.S., R.E.P., E.D.L., P.M.C.)
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus.,Department of Internal Medicine (E.D.L., S.V.R., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., E.D.L., S.V.R., L.E.W., D.G.P., M.T.Z., K.I.S.).,Department of Physiology and Cell Biology (K.M.P., V.K.S., K.R.W., E.A., L.A.B., P.V., R.S.D., D.H.-S., P.J.A., A.C.L., L.E.W., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus.,Department of Internal Medicine (E.D.L., S.V.R., M.T.Z., K.I.S.), The Ohio State University College of Medicine, Columbus
| |
Collapse
|
13
|
An isolated retrograde-perfused newborn mouse heart preparation. MethodsX 2020; 7:101058. [PMID: 32983923 PMCID: PMC7492986 DOI: 10.1016/j.mex.2020.101058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
The Langendorff-perfused model is a powerful tool to study biological responses in the isolated heart in the absence of confounders. The model has been adapted recently to enable study of the isolated mouse heart and the effects of genetic manipulation. Unfortunately, the small size and fragility of the mouse heart pose significant challenges, limiting application of the Langendorff model to the study of adult mice. Cardiac development is a complex and dynamic process that is incompletely understood. Thus, establishing an isolated-perfused heart model in the newborn mouse would be an important and necessary advance. Here we present a method to successfully cannulate and perfuse the isolated newborn murine heart. We describe the basic and fundamental physiological characteristics of the ex-vivo retrograde-perfused beating neonatal heart in wild-type C57Bl/6 male mice. Our approach will enable future study of the physiological and pharmacological responses of the isolated immature murine heart to enhance knowledge of how developmental cardiac biology impacts health and disease.The Langendorff model is a powerful tool to study the heart without confounders. An isolated-perfused newborn murine heart model has yet to be established. We demonstrate the first successful isolated neonatal murine heart preparation.
Collapse
|
14
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
15
|
Gollasch B, Dogan I, Rothe M, Gollasch M, Luft FC. Maximal exercise and plasma cytochrome P450 and lipoxygenase mediators: a lipidomics study. Physiol Rep 2020; 7:e14165. [PMID: 31304687 PMCID: PMC6640589 DOI: 10.14814/phy2.14165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/15/2023] Open
Abstract
Epoxides derived from arachidonic acid (AA) are released during exercise and may contribute to vasodilation. However, exercise may also affect circulating levels of other epoxides derived from cytochromes P450 (CYP) monooxygenase and lipoxygenase (LOX) pathways, many of whose exhibit cardiovascular activity in vitro. The effects of exercise on their levels have not been documented. We tested the hypothesis that acute, maximal exercise would influence the plasma concentrations of these vasoactive substances. We measured plasma CYP and LOX mediators derived from both the n − 3 and n − 6 fatty acid (FA) classes in healthy volunteers before, during and after short‐term exhaustive exercise. Lipid mediators were profiled by means of LC–MS/MS tandem mass spectrometry. A maximal Bruce treadmill test was performed to voluntary exhaustion. Exhaustive exercise increased the circulating levels of epoxyoctadecenoic (12,13‐EpOME), dihydroxyeicosatrienoic (5,6‐DHET), dihydroxyeicosatetraenoic acids (5,6‐DiHETE, 17,18‐DiHETE), but had no effect on the majority of CYP and LOX metabolites. Although our calculations of diol/epoxide ratios revealed preferred hydrolysis of epoxyeicosatrienoic acids (EEQs) into their diols (DiHETEs), this hydrolysis was resistant to maximal exercise. Our study is the first documentation that bioactive endogenous n − 3 and n − 6 CYP lipid mediators are released by short‐term exhaustive exercise in humans. In particular, the CYP epoxy‐metabolite status, 12,13‐EpOME/DiHOME, 5,6‐EET/DHET, 5,6‐EEQ/DiHETE and 17,18‐EEQ/DiHETE may contribute to the cardiovascular response during maximal exercise.
Collapse
Affiliation(s)
- Benjamin Gollasch
- Experimental and Clinical Research Center (ECRC), a Joint Institution between the Charité University Medicine, Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany.,HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | | | | | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a Joint Institution between the Charité University Medicine, Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a Joint Institution between the Charité University Medicine, Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany.,Max-Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Gollasch B, Wu G, Dogan I, Rothe M, Gollasch M, Luft FC. Effects of hemodialysis on plasma oxylipins. Physiol Rep 2020; 8:e14447. [PMID: 32562348 PMCID: PMC7305238 DOI: 10.14814/phy2.14447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is an important risk factor for cardiovascular and all‐cause mortality. Survival rates among end‐stage renal disease (ESRD) hemodialysis patients are poor and most deaths are related to cardiovascular disease. Oxylipins constitute a family of oxygenated natural products, formed from fatty acid by pathways involving at least one step of dioxygen‐dependent oxidation. They are derived from polyunsaturated fatty acids (PUFAs) by cyclooxygenase (COX) enzymes, by lipoxygenases (LOX) enzymes, or by cytochrome P450 epoxygenase. Oxylipins have physiological significance and some could be of regulatory importance. The effects of decreased renal function and dialysis treatment on oxylipin metabolism are unknown. We studied 15 healthy persons and 15 CKD patients undergoing regular hemodialysis treatments and measured oxylipins (HPLC‐MS lipidomics) derived from cytochrome P450 (CYP) monooxygenase and lipoxygenase (LOX)/CYP ω/(ω‐1)‐hydroxylase pathways in circulating blood. We found that all four subclasses of CYP epoxy metabolites were increased after the dialysis treatment. Rather than resulting from altered soluble epoxide hydrolase (sEH) activity, the oxylipins were released and accumulated in the circulation. Furthermore, hemodialysis did not change the majority of LOX/CYP ω/(ω‐1)‐hydroxylase metabolites. Our data support the idea that oxylipin profiles discriminate ESRD patients from normal controls and are influenced by renal replacement therapies.
Collapse
Affiliation(s)
- Benjamin Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany.,HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Guanlin Wu
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany.,Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | | | | | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany.,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
17
|
Higher Epoxyeicosatrienoic Acids in Cardiomyocytes-Specific CYP2J2 Transgenic Mice Are Associated with Improved Myocardial Remodeling. Biomedicines 2020; 8:biomedicines8060144. [PMID: 32486275 PMCID: PMC7344501 DOI: 10.3390/biomedicines8060144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023] Open
Abstract
Elevated cis-epoxyeicosatrienoic acids (EETs) are known to be cardioprotective during ischemia-reperfusion injury in cardiomyocyte-specific overexpressing cytochrome P450 2J2 (CYP2J2) transgenic (Tr) mice. Using the same Tr mice, we measured changes in cardiac and erythrocyte membranes EETs following myocardial infarction (MI) to determine if they can serve as reporters for cardiac events. Cardiac function was also assessed in Tr vs. wild-type (WT) mice in correlation with EET changes two weeks following MI. Tr mice (N = 25, 16 female, nine male) had significantly higher cardiac cis- and trans-EETs compared to their WT counterparts (N = 25, 18 female, seven male). Total cardiac cis-EETs in Tr mice were positively correlated with total cis-EETs in erythrocyte membrane, but there was no correlation with trans-EETs or in WT mice. Following MI, cis- and trans-EETs were elevated in the erythrocyte membrane and cardiac tissue in Tr mice, accounting for the improved cardiac outcomes observed. Tr mice showed significantly better myocardial remodeling following MI, evidenced by higher % fractional shortening, smaller infarct size, lower reactive oxygen species (ROS) formation, reduced fibrosis and apoptosis, and lower pulmonary edema. A positive correlation between total cardiac cis-EETs and total erythrocyte membrane cis-EETs in a Tr mouse model suggests that erythrocyte cis-EETs may be used as predictive markers for cardiac events. All cis-EET regioisomers displayed similar trends following acute MI; however, the magnitude of change for each regioisomer was markedly different, warranting measurement of each individually.
Collapse
|
18
|
Bannehr M, Löhr L, Gelep J, Haverkamp W, Schunck WH, Gollasch M, Wutzler A. Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts. Cardiovasc Toxicol 2020; 19:365-371. [PMID: 30725262 DOI: 10.1007/s12012-019-09508-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac ischemia/reperfusion injury is associated with the formation and action of lipid mediators derived from polyunsaturated fatty acids. Among them, linoleic acid (LA) is metabolized to epoxyoctadecanoic acids (EpOMEs) by cytochrome P450 (CYP) epoxygenases and further to dihydroxyoctadecanoic acids (DiHOMEs) by soluble epoxide hydrolase (sEH). We hypothesized that EpOMEs and/or DiHOMEs may affect cardiac post-ischemic recovery and addressed this question using isolated murine hearts in a Langendorff system. Hearts from C57Bl6 mice were exposed to 12,13-EpOME, 12,13-DiHOME, or vehicle (phosphate buffered sodium; PBS). Effects on basal cardiac function and functional recovery during reperfusion following 20 min of ischemia were investigated. Electrocardiogram (ECG), left ventricular (LV) pressure and coronary flow (CF) were continuously measured. Ischemia reperfusion experiments were repeated after administration of the sEH-inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). At a concentration of 100 nM, both EpOME and DiHOME decreased post-ischemic functional recovery in murine hearts. There was no effect on basal cardiac parameters. The detrimental effects seen with EpOME, but not DiHOME, were averted by sEH inhibition (AUDA). Our results indicate that LA-derived mediators EpOME/DiHOME may play an important role in cardiac ischemic events. Inhibition of sEH could provide a novel treatment option to prevent detrimental DiHOME effects in acute cardiac ischemia.
Collapse
Affiliation(s)
- Marwin Bannehr
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Lena Löhr
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia Gelep
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wilhelm Haverkamp
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Maik Gollasch
- Experimental and Clinical Research Center, 16341, Berlin, Germany
- Department of Nephrology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexander Wutzler
- Experimental and Clinical Research Center, 16341, Berlin, Germany
- Department of Electrophysiology and Cardiac Rhythm Management, St. Joseph Hospital, Ruhr-University Bochum, 44791, Bochum, Germany
| |
Collapse
|
19
|
Vascular Lipidomic Profiling of Potential Endogenous Fatty Acid PPAR Ligands Reveals the Coronary Artery as Major Producer of CYP450-Derived Epoxy Fatty Acids. Cells 2020; 9:cells9051096. [PMID: 32365470 PMCID: PMC7290345 DOI: 10.3390/cells9051096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.
Collapse
|
20
|
Han KH, Kim B, Ji SC, Kang HG, Cheong HI, Cho JY, Ha IS. Mechanism of Chronic Kidney Disease Progression and Novel Biomarkers: A Metabolomic Analysis of Experimental Glomerulonephritis. Metabolites 2020; 10:E169. [PMID: 32344531 PMCID: PMC7240957 DOI: 10.3390/metabo10040169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
While a complex network of cellular and molecular events is known to be involved in the pathophysiological mechanism of chronic kidney disease (CKD), the divergence point between reversal and progression and the event that triggers CKD progression are still unknown. To understand the different mechanisms between reversible and irreversible kidney disease and to search for urinary biomarkers that can predict prognosis, a metabolomic analysis was applied to compare acute and chronic experimental glomerulonephritis (GN) models. Four metabolites, namely, epoxyoctadecenoic acid (EpOME), epoxyeicosatetraenoic acid (EpETE), α-linolenic acid (ALA), and hydroxyretinoic acid, were identified as predictive markers after comparing the chronic nephritis model with acute nephritis and control groups (false discovery rate adjusted p-value (q-value) < 0.05). Renal mRNA expression of cytochrome P450 and epoxide hydrolase was also identified as being involved in the production of epoxide metabolites from these polyunsaturated fatty acids (p < 0.05). These results suggested that the progression of chronic kidney disease is associated with abnormally activated epoxide hydrolase, leading to an increase in EpOME and EpETE as pro-inflammatory eicosanoids.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Aran 13gil 15, Jeju-si, Jeju 63241, Korea;
| | - Bora Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Sang Chun Ji
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hee Gyung Kang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Joo-Youn Cho
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Il-Soo Ha
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| |
Collapse
|
21
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
22
|
Genetic Deletion or Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Cardiac Ischemia/Reperfusion Injury by Attenuating NLRP3 Inflammasome Activation. Int J Mol Sci 2019; 20:ijms20143502. [PMID: 31319469 PMCID: PMC6678157 DOI: 10.3390/ijms20143502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.
Collapse
|
23
|
Gilroy DW, Bishop-Bailey D. Lipid mediators in immune regulation and resolution. Br J Pharmacol 2019; 176:1009-1023. [PMID: 30674066 DOI: 10.1111/bph.14587] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/31/2022] Open
Abstract
We are all too familiar with the events that follow a bee sting-heat, redness, swelling, and pain. These are Celsus' four cardinal signs of inflammation that are driven by very well-defined signals and hormones. In fact, targeting the factors that drive this onset phase is the basis upon which most current anti-inflammatory therapies were developed. We are also very well aware that within a few hours, these cardinal signs normally disappear. In other words, inflammation resolves. When it does not, inflammation persists, resulting in damaging chronic conditions. While inflammatory onset is actively driven, so also is its resolution-years of research have identified novel internal counter-regulatory signals that work together to switch off inflammation. Among these signals, lipids are potent signalling molecules that regulate an array of immune responses including vascular hyper reactivity and pain, as well as leukocyte trafficking and clearance, so-called resolution. Here, we collate bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and their role in inflammation, as well as resolution. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - David Bishop-Bailey
- Comparative Biological Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
24
|
Samokhvalov V, Jamieson KL, Darwesh AM, Keshavarz-Bahaghighat H, Lee TYT, Edin M, Lih F, Zeldin DC, Seubert JM. Deficiency of Soluble Epoxide Hydrolase Protects Cardiac Function Impaired by LPS-Induced Acute Inflammation. Front Pharmacol 2019; 9:1572. [PMID: 30692927 PMCID: PMC6339940 DOI: 10.3389/fphar.2018.01572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a bacterial wall endotoxin producing many pathophysiological conditions including myocardial inflammation leading to cardiotoxicity. Linoleic acid (18:2n6, LA) is an essential n-6 PUFA which is converted to arachidonic acid (20:4n6, AA) by desaturation and elongation via enzyme systems within the body. Biological transformation of PUFA through CYP-mediated hydroxylation, epoxidation, and allylic oxidation produces lipid mediators, which may be subsequently hydrolyzed to corresponding diol metabolites by soluble epoxide hydrolase (sEH). In the current study, we investigate whether inhibition of sEH, which alters the PUFA metabolite profile, can influence LPS induced cardiotoxicity and mitochondrial function. Our data demonstrate that deletion of soluble epoxide hydrolase provides protective effects against LPS-induced cardiotoxicity by maintaining mitochondrial function. There was a marked alteration in the cardiac metabolite profile with notable increases in sEH-derived vicinal diols, 9,10- and 12,13-dihydroxyoctadecenoic acid (DiHOME) in WT hearts following LPS administration, which was absent in sEH null mice. We found that DiHOMEs triggered pronounced mitochondrial structural abnormalities, which also contributed to the development of extensive mitochondrial dysfunction in cardiac cells. Accumulation of DiHOMEs may represent an intermediate mechanism through which LPS-induced acute inflammation triggers deleterious alterations in the myocardium in vivo and cardiac cells in vitro. This study reveals novel research exploring the contribution of DiHOMEs in the progression of adverse inflammatory responses toward cardiac function in vitro and in vivo.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Tim Y T Lee
- Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Matthew Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Fred Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci 2018; 19:E1916. [PMID: 29966295 PMCID: PMC6073148 DOI: 10.3390/ijms19071916] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is a known arachidonic acid (AA) epoxygenase that mediates the formation of four bioactive regioisomers of cis-epoxyeicosatrienoic acids (EETs). Although its expression in the liver is low, CYP2J2 is mainly observed in extrahepatic tissues, including the small intestine, pancreas, lung, and heart. Changes in CYP2J2 levels or activity by xenobiotics, disease states, or polymorphisms are proposed to lead to various organ dysfunctions. Several studies have investigated the regulation of CYP2J2 and EET formation in various cell lines and have demonstrated that such regulation is tissue-dependent. In addition, studies linking CYP2J2 polymorphisms to the risk of developing cardiovascular disease (CVD) yielded contradictory results. This review will focus on the mechanisms of regulation of CYP2J2 by inducers, inhibitors, and oxidative stress modeling certain disease states in various cell lines and tissues. The implication of CYP2J2 expression, polymorphisms, activity and, as a result, EET levels in the pathophysiology of diabetes and CVD will also be discussed.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Eric A Evangelista
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
26
|
Bukhari IA, Almotrefi AA, Mohamed OY, Al-Masri AA, Sheikh SA. Protective effect of fenofibrate against ischemia-/reperfusion-induced cardiac arrhythmias in isolated rat hearts. Fundam Clin Pharmacol 2018; 32:141-146. [DOI: 10.1111/fcp.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ishfaq A. Bukhari
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abdulrahman A. Almotrefi
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Osama Y. Mohamed
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abeer A. Al-Masri
- Department of Physiology; Cardiovascular Research Group; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Saeed A. Sheikh
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| |
Collapse
|
27
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Jamieson KL, Samokhvalov V, Akhnokh MK, Lee K, Cho WJ, Takawale A, Wang X, Kassiri Z, Seubert JM. Genetic deletion of soluble epoxide hydrolase provides cardioprotective responses following myocardial infarction in aged mice. Prostaglandins Other Lipid Mediat 2017; 132:47-58. [DOI: 10.1016/j.prostaglandins.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
|
29
|
A novel mechanism of ascorbate direct modulation of soluble epoxide hydrolase. Prostaglandins Other Lipid Mediat 2017; 131:59-66. [DOI: 10.1016/j.prostaglandins.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/09/2022]
|
30
|
Dai M, Wu L, He Z, Zhang S, Chen C, Xu X, Wang P, Gruzdev A, Zeldin DC, Wang DW. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol 2015; 230:2108-19. [PMID: 25626689 DOI: 10.1002/jcp.24939] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022]
Abstract
Macrophages, owning tremendous phenotypic plasticity and diverse functions, were becoming the target cells in various inflammatory, metabolic and immune diseases. Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to form epoxyeicosatrienoic acids (EETs), which possess various beneficial effects on cardiovascular system. In the present study, we evaluated the effects of EETs treatment on macrophage polarization and recombinant adeno-associated virus (rAAV)-mediated CYP2J2 expression on lipopolysaccharide (LPS)-induced cardiac dysfunction, and sought to investigate the underlying mechanisms. In vitro studies showed that EETs (1µmol/L) significantly inhibited LPS-induced M1 macrophage polarization and diminished the proinflammatory cytokines at transcriptional and post-transcriptional level; meanwhile it preserved M2 macrophage related molecules expression and upregulated anti-inflammatory cytokine IL-10. Furthermore, EETs down-regulated NF-κB activation and up-regulated peroxisome proliferator-activated receptors (PPARα/γ) and heme oxygenase 1 (HO-1) expression, which play important roles in regulating M1 and M2 polarization. In addition, LPS treatment in mice induced cardiac dysfunction, heart tissue damage and infiltration of M1 macrophages, as well as the increase of inflammatory cytokines in serum and heart tissue, but rAAV-mediated CYP2J2 expression increased EETs generation in heart and significantly attenuated the LPS-induced harmful effects, which mechanisms were similar as the in vitro study. Taken together, the results indicate that CYP2J2/EETs regulates macrophage polarization by attenuating NF-κB signaling pathway via PPARα/γ and HO-1 activation and its potential use in treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Meiyan Dai
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lujin Wu
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuowen He
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Zhang
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhen Xu
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihua Wang
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Dao Wen Wang
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Qin J, Sun D, Jiang H, Kandhi S, Froogh G, Hwang SH, Hammock BD, Wolin MS, Thompson CI, Hintze TH, Huang A. Inhibition of soluble epoxide hydrolase increases coronary perfusion in mice. Physiol Rep 2015; 3:3/6/e12427. [PMID: 26071213 PMCID: PMC4510629 DOI: 10.14814/phy2.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Roles of soluble epoxide hydrolase (sEH), the enzyme responsible for hydrolysis of epoxyeicosatrienoic acids (EETs) to their diols (DHETs), in the coronary circulation and cardiac function remain unknown. We tested the hypothesis that compromising EET hydrolysis/degradation, via sEH deficiency, lowers the coronary resistance to promote cardiac perfusion and function. Hearts were isolated from wild type (WT), sEH knockout (KO) mice and WT mice chronically treated with t-TUCB (sEH inhibitor), and perfused with constant flow at different pre-loads. Compared to WT controls, sEH-deficient hearts required significantly greater basal coronary flow to maintain the perfusion pressure at 100 mmHg and exhibited a greater reduction in vascular resistance during tension-induced heart work, implying a better coronary perfusion during cardiac performance. Cardiac contractility, characterized by developed tension in response to changes in preload, was potentially increased in sEH-KO hearts, manifested by an enlarged magnitude at each step-wise increase in end-diastolic to peak-systolic tension. 14,15-EEZE (EET antagonist) prevented the adaptation of coronary circulation in sEH null hearts whereas responses in WT hearts were sensitive to the inhibition of NO. Cardiac expression of EET synthases (CYP2J2/2C29) was comparable in both genotypic mice whereas, levels of 14,15-, 11,12- and 8,9-EETs were significantly higher in sEH-KO hearts, accompanied with lower levels of DHETs. In conclusion, the elevation of cardiac EETs, as a function of sEH deficiency, plays key roles in the adaptation of coronary flow and cardiac function.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York Department of GI Surgery, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sung Hee Hwang
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Barau C, Ghaleh B, Berdeaux A, Morin D. Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol 2014; 29:1-9. [DOI: 10.1111/fcp.12087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/20/2014] [Accepted: 06/13/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Barau
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Alain Berdeaux
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Didier Morin
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| |
Collapse
|
33
|
Fleming I. The Pharmacology of the Cytochrome P450 Epoxygenase/Soluble Epoxide Hydrolase Axis in the Vasculature and Cardiovascular Disease. Pharmacol Rev 2014; 66:1106-40. [DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Fu Z, Zhu Q, Ma Y, Huang D, Pan S, Xie X, Liu F, Cha E. Diplotypes of CYP2C9 gene is associated with coronary artery disease in the Xinjiang Han population for women in China. Lipids Health Dis 2014; 13:143. [PMID: 25182955 PMCID: PMC4246459 DOI: 10.1186/1476-511x-13-143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/12/2014] [Indexed: 11/14/2022] Open
Abstract
Background Cytochrome P450 (CYP) 2C9 is expressed in the vascular endothelium and metabolizes arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have the crucial role in the modulation of cardiovascular homeostasis. We sought to assess the association between the human CYP2C9 gene and coronary artery disease (CAD) in Xinjiang Han Population of China. Methods 301 CAD patients and 220 control subjects were genotyped for 4 single-nucleotide polymorphisms (SNPs) of the human CYP2C9 gene (rs4086116, rs2475376, rs1057910, and rs1934967) by a Real-Time PCR instrument. The datas were assessed for 3 groups: total, men, and women via diplotype-based case–control study. Results For women, the distribution of genotypes, dominant model and alleles of SNP2 (rs2475376) showed significant difference between the CAD patients and control participants (p = 0.033, P = 0.010 and p = 0.038, respectively). The significant difference of the dominant model (CC vs CT + TT) was retained after adjustment for covariates in women (OR: 2.427, 95% confidence interval [CI]: 1.305-4.510, p = 0.005). The haplotype (C-T-A-C) and the diplotypes (CTAC/CTAC) in CYP2C9 gene were lower in CAD patients than in control subjects (p* = 0.0016, and p* = 0.036 respectively). The haplotype (C-C-A-T) was higher in the CAD patients than in the control subjects in women (p* = 0.016). Conclusions CC genotype of rs2475376 and C-C-A-T haplotype in CYP2C9 may be a risk genetic marker of CAD in women. T allele of rs2475376, the haplotype (C-T-A-C) and the diplotype (CTAC/CTAC) could be protective genetic markers of CAD for women in Han population of China.
Collapse
Affiliation(s)
| | | | - Yitong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Li Yu Shan South Road 137, Urumqi 830054, China.
| | | | | | | | | | | |
Collapse
|
35
|
Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J Mol Cell Cardiol 2014; 74:199-208. [PMID: 24893205 DOI: 10.1016/j.yjmcc.2014.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease, including acute myocardial infarction (AMI), is the leading cause of morbidity and mortality globally, despite well-established treatments. The discovery and development of novel therapeutics that prevent the progression of devastating consequences following AMI are thus important in reducing the global burden of this devastating disease. Scientific evidence for the protective effects of epoxyeicosatrienoic acids (EETs) in the cardiovascular system is rapidly emerging and suggests that promoting the effects of these cytochrome P450-derived epoxyeicosanoids is a potentially viable clinical therapeutic strategy. Through a translational lens, this review will provide insight into the potential clinical utility of this therapeutic strategy for AMI by 1) outlining the known cardioprotective effects of EETs and underlying mechanisms demonstrated in preclinical models of AMI with a particular focus on myocardial ischemia-reperfusion injury, 2) describing studies in human cohorts that demonstrate a relationship between EETs and associated pathways with coronary artery disease risk, and 3) discussing preclinical and clinical areas that require further investigation in order to increase the probability of successfully translating this rapidly emerging body of evidence into a clinically applicable therapeutic strategy for AMI.
Collapse
|
36
|
Harris TR, Hammock BD. Soluble epoxide hydrolase: gene structure, expression and deletion. Gene 2013; 526:61-74. [PMID: 23701967 DOI: 10.1016/j.gene.2013.05.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/29/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022]
Abstract
Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | | |
Collapse
|