1
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD. A carboxysome-based CO 2 concentrating mechanism for C 3 crop chloroplasts: advances and the road ahead. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:940-952. [PMID: 38321620 DOI: 10.1111/tpj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Collapse
Affiliation(s)
- Nghiem D Nguyen
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, 137 Sullivan's Ck Rd, Acton, Australian Capital Territory, 2601, Australia
| | - Britta Förster
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sarah Rottet
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Benedict M Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, ARC Centre of Excellence in Synthetic Biology, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - G Dean Price
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
3
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
4
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
5
|
Förster B, Rourke LM, Weerasooriya HN, Pabuayon ICM, Rolland V, Au EK, Bala S, Bajsa-Hirschel J, Kaines S, Kasili R, LaPlace L, Machingura MC, Massey B, Rosati VC, Stuart-Williams H, Badger MR, Price GD, Moroney JV. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad116. [PMID: 36987927 DOI: 10.1093/jxb/erad116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
LCIA is a chloroplast envelope protein associated with the CO2 concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an E. coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (βca5) missing the plastid carbonic anhydrase βCA5. Both DCAKO and βca5 cannot grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the βca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Britta Förster
- The Australian National University, Canberra, ACT 2600, Australia
| | - Loraine M Rourke
- The Australian National University, Canberra, ACT 2600, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vivien Rolland
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eng Kee Au
- The Australian National University, Canberra, ACT 2600, Australia
| | - Soumi Bala
- The Australian National University, Canberra, ACT 2600, Australia
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38677, USA
| | - Sarah Kaines
- The Australian National University, Canberra, ACT 2600, Australia
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lillian LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Baxter Massey
- The Australian National University, Canberra, ACT 2600, Australia
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Murray R Badger
- The Australian National University, Canberra, ACT 2600, Australia
| | - G Dean Price
- The Australian National University, Canberra, ACT 2600, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Agüera E, de la Haba P. Climate Change Impacts on Sunflower ( Helianthus annus L.) Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2646. [PMID: 34961117 PMCID: PMC8705722 DOI: 10.3390/plants10122646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The biochemical, biological, and morphogenetic processes of plants are affected by ongoing climate change, causing alterations in crop development, growth, and productivity. Climate change is currently producing ecosystem modifications, making it essential to study plants with an improved adaptive capacity in the face of environmental modifications. This work examines the physiological and metabolic changes taking place during the development of sunflower plants due to environmental modifications resulting from climate change: elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures. Variations in growth, and carbon and nitrogen metabolism, as well as their effect on the plant's oxidative state in sunflower (Helianthus annus L.) plants, are studied. An understanding of the effect of these interacting factors (elevated CO2 and elevated temperatures) on plant development and stress response is imperative to understand the impact of climate change on plant productivity.
Collapse
Affiliation(s)
- Eloísa Agüera
- Department of Botany, Ecology and Plant Physiology, Faculty of Science, University of Córdoba, 14071 Córdoba, Spain;
| | | |
Collapse
|
7
|
Adavi SB, Sathee L. Elevated CO 2 alters tissue balance of nitrogen metabolism and downregulates nitrogen assimilation and signalling gene expression in wheat seedlings receiving high nitrate supply. PROTOPLASMA 2021; 258:219-233. [PMID: 33047233 DOI: 10.1007/s00709-020-01564-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Tissue and canopy-level evidence suggests that elevated carbon dioxide (EC) inhibits shoot nitrate assimilation in plants and thereby affects nitrogen (N) and protein content of the economic produce. It is speculated that species or genotypes relying more on root nitrate assimilation can adapt better under EC due to the improved/steady supply of reductants required for nitrate assimilation. A study was conducted to examine the effect of EC on N assimilation and associated gene expression in wheat seedlings. Wheat genotypes, BT-Schomburgk (BTS) with comparatively high leaf nitrate reductase (NR) activity and Gluyas Early (GE) with high root NR activity were grown in hydroponic culture for 30 days with two different nitrate levels (0.05 mM and 5 mM) in the climate controlled growth chambers maintained at either ambient (400 ± 10 μmol mol-1) or EC (700 ± 10 μmol mol-1) conditions. Exposure to EC downregulated the activity of enzyme NR and glutamate synthase (GOGAT) in leaf tissues, whereas in roots, activities of both the enzymes were upregulated by exposure to EC. In addition, EC downregulated N assimilation and signalling gene expression under high N availability. Root N assimilation was less affected in comparison with shoot N assimilation; thereby, the proportion of root contribution towards total assimilation was higher. The results suggest that EC could alter and re-programme N assimilation and signalling in wheat seedlings. The genotype and tissue-specific effects of EC on N assimilation also warrants the need for identification of suitable genotypes and revision of fertiliser regime for tapping the beneficial effects of EC conditions.
Collapse
Affiliation(s)
- Sandeep B Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
8
|
Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO 2 Concentrating Mechanisms into Land Plants to Enhance Yields. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:461-485. [PMID: 32151155 PMCID: PMC7845915 DOI: 10.1146/annurev-arplant-081519-040100] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
9
|
|
10
|
Vikramathithan J, Hwangbo K, Lim JM, Lim KM, Kang DY, Park YI, Jeong WJ. Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Nölke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R, Schillberg S. The Integration of Algal Carbon Concentration Mechanism Components into Tobacco Chloroplasts Increases Photosynthetic Efficiency and Biomass. Biotechnol J 2019; 14:e1800170. [PMID: 29888874 DOI: 10.1002/biot.201800170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Increasing the productivity of crops is a major challenge in agricultural research. Given that photosynthetic carbon assimilation is necessary for plant growth, enhancing the efficiency of photosynthesis is one strategy to boost agricultural productivity. The authors attempted to increase the photosynthetic efficiency and biomass of tobacco plants by expressing individual components of the Chlamydomonas reinhardtii carbon concentration mechanism (CCM) and integrating them into the chloroplast. Independent transgenic varieties are generated accumulating the carbonic anhydrase CAH3 in the thylakoid lumen or the bicarbonate transporter LCIA in the inner chloroplast membrane. Independent homozygous transgenic lines showed enhanced CO2 uptake rates (up to 15%), increased photosystem II efficiency (by up to 18%), and chlorophyll content (up to 19%). Transgenic lines produced more shoot biomass than wild-type and azygous controls, and accumulated more carbohydrate and amino acids, reflecting the higher rate of photosynthetic CO2 fixation. These data demonstrate that individual algal CCM components can be integrated into C3 plants to increase biomass, suggesting that transgenic lines combining multiple CCM components could further increase the productivity and yield of C3 crops.
Collapse
Affiliation(s)
- Greta Nölke
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Mirna Barsoum
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Marcel Houdelet
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Elsa Arcalís
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Fritz Kreuzaler
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
- Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
12
|
Yamano T, Toyokawa C, Fukuzawa H. High-resolution suborganellar localization of Ca 2+-binding protein CAS, a novel regulator of CO 2-concentrating mechanism. PROTOPLASMA 2018; 255:1015-1022. [PMID: 29372336 DOI: 10.1007/s00709-018-1208-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 05/19/2023]
Abstract
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
13
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
14
|
Atkovska K, Hub JS. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 2017; 7:12027. [PMID: 28931899 PMCID: PMC5607303 DOI: 10.1038/s41598-017-11437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
Formate-nitrite transporters (FNTs) facilitate the translocation of monovalent polyatomic anions, such as formate and nitrite, across biological membranes. FNTs are widely distributed among pathogenic bacteria and eukaryotic parasites, but they lack human homologues, making them attractive drug targets. The mechanisms and energetics involved in anion permeation across the FNTs have remained largely unclear. Both, channel and transporter mode of function have been proposed, with strong indication of proton coupling to the permeation process. We combine molecular dynamics simulations, quantum mechanical calculations, and pK a calculations, to compute the energetics of the complete permeation cycle of an FNT. We find that anions as such, are not able to traverse the FNT pore. Instead, anion binding into the pore is energetically coupled to protonation of a centrally located histidine. In turn, the histidine can protonate the permeating anion, thereby enabling its release. Such mechanism can accommodate the functional diversity among the FNTs, as it may facilitate both, export and import of substrates, with or without proton co-transport. The mechanism excludes proton leakage via the Grotthuss mechanism, and it rationalises the selectivity for weak acids.
Collapse
Affiliation(s)
- Kalina Atkovska
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany.,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany
| | - Jochen S Hub
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany. .,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany.
| |
Collapse
|
15
|
Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A, Pollock SV, Förster B, Price GD, Moroney JV. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3879-3890. [PMID: 28633328 PMCID: PMC5853530 DOI: 10.1093/jxb/erx189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 05/22/2023]
Abstract
The supply of inorganic carbon (Ci) at the site of fixation by Rubisco is a key parameter for efficient CO2 fixation in aquatic organisms including the green alga, Chlamydomonas reinhardtii. Chlamydomonas reinhardtii cells, when grown on limiting CO2, have a CO2-concentrating mechanism (CCM) that functions to concentrate CO2 at the site of Rubisco. Proteins thought to be involved in inorganic carbon uptake have been identified and localized to the plasma membrane or chloroplast envelope. However, current CCM models suggest that additional molecular components are involved in Ci uptake. In this study, the gene Cia8 was identified in an insertional mutagenesis screen and characterized. The protein encoded by Cia8 belongs to the sodium bile acid symporter subfamily. Transcript levels for this gene were significantly up-regulated when the cells were grown on low CO2. The cia8 mutant exhibited reduced growth and reduced affinity for Ci when grown in limiting CO2 conditions. Prediction programs localize this protein to the chloroplast. Ci uptake and the photosynthetic rate, particularly at high external pH, were reduced in the mutant. The results are consistent with the model that CIA8 is involved in Ci uptake in C. reinhardtii.
Collapse
Affiliation(s)
- Marylou C Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Susan M Laborde
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Bratati Mukherjee
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Steve V Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Correspondence:
| |
Collapse
|
16
|
Berg GM, Driscoll S, Hayashi K, Ross M, Kudela R. Variation in growth rate, carbon assimilation, and photosynthetic efficiency in response to nitrogen source and concentration in phytoplankton isolated from upper San Francisco Bay. JOURNAL OF PHYCOLOGY 2017; 53:664-679. [PMID: 28328165 PMCID: PMC5518194 DOI: 10.1111/jpy.12535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/02/2017] [Indexed: 05/15/2023]
Abstract
Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+ ), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv /Fm ) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv /Fm in a dose-dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 μmoles NH4+ · L-1 , followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH4+ · L-1 , followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH4+ · L-1 . At non-inhibiting concentrations of NH4+ , the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3- ), whereas the other grew significantly faster on NH4+ . All four diatoms tested grew faster on NH4+ compared with NO3- . We showed that in cases where growth rates were faster on NH4+ than they were on NO3- , the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3- is dominant, as long as N concentrations are sufficient.
Collapse
Affiliation(s)
- Gry Mine Berg
- Applied Marine Sciences911 Center StreetSanta CruzCalifornia95060USA
| | - Sara Driscoll
- Applied Marine Sciences911 Center StreetSanta CruzCalifornia95060USA
| | - Kendra Hayashi
- Ocean Sciences DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Melissa Ross
- Applied Marine Sciences911 Center StreetSanta CruzCalifornia95060USA
| | - Raphael Kudela
- Ocean Sciences DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| |
Collapse
|
17
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
18
|
Calatrava V, Chamizo-Ampudia A, Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Fernandez E, Galvan A. How Chlamydomonas handles nitrate and the nitric oxide cycle. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2593-2602. [PMID: 28201747 DOI: 10.1093/jxb/erw507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The green alga Chlamydomonas is a valuable model system capable of assimilating different forms of nitrogen (N). Nitrate (NO3-) has a relevant role in plant-like organisms, first as a nitrogen source for growth and second as a signalling molecule. Several modules are necessary for Chlamydomonas to handle nitrate, including transporters, nitrate reductase (NR), nitrite reductase (NiR), GS/GOGAT enzymes for ammonium assimilation, and regulatory protein(s). Transporters provide a first step for influx/efflux, homeostasis, and sensing of nitrate; and NIT2 is the key transcription factor (RWP-RK) for mediating the nitrate-dependent activation of a number of genes. Here, we review how NR participates in the cycle NO3- →NO2- →NO →NO3-. NR uses the partner protein amidoxime-reducing component/nitric oxide-forming nitrite reductase (ARC/NOFNiR) for the conversion of nitrite (NO2-) into nitric oxide (NO). It also uses the truncated haemoglobin THB1 in the conversion of nitric oxide to nitrate. Nitric oxide is a negative signal for nitrate assimilation; it inhibits the activity and expression of high-affinity nitrate/nitrite transporters and NR. During this cycle, the positive signal of nitrate is transformed into the negative signal of nitric oxide, which can then be converted back into nitrate. Thus, NR is back in the spotlight as a strategic regulator of the nitric oxide cycle and the nitrate assimilation pathway.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Alejandro Chamizo-Ampudia
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Francisco Ocaña-Calahorro
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emilio Fernandez
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Aurora Galvan
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| |
Collapse
|
19
|
Anderson MS, Muff TJ, Georgianna DR, Mayfield SP. Towards a synthetic nuclear transcription system in green algae: Characterization of Chlamydomonas reinhardtii nuclear transcription factors and identification of targeted promoters. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
21
|
Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1302-15. [PMID: 26538195 PMCID: PMC5102585 DOI: 10.1111/pbi.12497] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 05/13/2023]
Abstract
Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Doreen Feike
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
22
|
NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
24
|
Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4551-66. [PMID: 26022256 PMCID: PMC4507760 DOI: 10.1093/jxb/erv217] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - F Omar Holguin
- College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, 1780 E. University Ave, Las Cruces, NM 88003, USA
| | - Min-Jeong Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hongxia Wang
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Current address: National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Rahul R Deshpande
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Leslie M Hicks
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27516, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
25
|
Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2015; 112:7315-20. [PMID: 26015566 PMCID: PMC4466737 DOI: 10.1073/pnas.1501659112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The supply of inorganic carbon (Ci; CO2 and HCO3 (-)) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3 (-) uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040-2050]. However, direct evidence of the route of HCO3 (-) uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3 (-) is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3 (-) and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM.
Collapse
|
26
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
27
|
Gao H, Wang Y, Fei X, Wright DA, Spalding MH. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1-11. [PMID: 25660294 DOI: 10.1111/tpj.12788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 05/11/2023]
Abstract
The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.
Collapse
Affiliation(s)
- Han Gao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
28
|
Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Arch Microbiol 2014; 197:79-89. [DOI: 10.1007/s00203-014-1056-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
29
|
Jungnick N, Ma Y, Mukherjee B, Cronan JC, Speed DJ, Laborde SM, Longstreth DJ, Moroney JV. The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. PHOTOSYNTHESIS RESEARCH 2014; 121:159-73. [PMID: 24752527 DOI: 10.1007/s11120-014-0004-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/08/2014] [Indexed: 05/14/2023]
Abstract
The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 (-), the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed.
Collapse
Affiliation(s)
- Nadine Jungnick
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H. Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2014; 121:175-84. [PMID: 24549931 DOI: 10.1007/s11120-014-9983-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/05/2014] [Indexed: 05/11/2023]
Abstract
Aquatic microalgae induce a carbon-concentrating mechanism (CCM) to maintain photosynthetic activity in low-CO2 (LC) conditions. Although the molecular mechanism of the CCM has been investigated using the single-cell green alga Chlamydomonas reinhardtii, and several CCM-related genes have been identified by analyzing high-CO2 (HC)-requiring mutants, many aspects of the CO2-signal transduction pathways remain to be elucidated. In this study, we report the isolation of novel HC-requiring mutants defective in the induction of CCM by DNA tagging. Growth rates of 20,000 transformants grown under HC and LC conditions were compared, and three HC-requiring mutants (H24, H82, and P103) were isolated. The photosynthetic CO2-exchange activities of these mutants were significantly decreased compared with that of wild-type cells, and accumulation of HLA3 and both LCIA and HLA3 were absent in mutants H24 and H82, respectively. Although the insertion of the marker gene and the HC-requiring phenotype were linked in the tetrad progeny of H82, and a calcium-sensing receptor CAS was disrupted by the insertion, exogenous expression of CAS alone could not complement the HC-requiring phenotype.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
31
|
Wang Y, Spalding MH. LCIB in the Chlamydomonas CO2-concentrating mechanism. PHOTOSYNTHESIS RESEARCH 2014; 121:185-92. [PMID: 24307449 DOI: 10.1007/s11120-013-9956-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/22/2013] [Indexed: 05/19/2023]
Abstract
The CO2-concentrating mechanism confers microalgae a versatile and efficient strategy for adapting to a wide range of environmental CO2 concentrations. LCIB, which has been demonstrated as a key player in the eukaryotic algal CO2-concentrating mechanism (CCM), is a novel protein in Chlamydomonas lacking any recognizable domain or motif, and its exact function in the CCM has not been clearly defined. The unique air-dier growth phenotype and photosynthetic characteristics in the LCIB mutants, and re-localization of LCIB between different subcellular locations in response to different levels of CO2, have indicated that the function of LCIB is closely associated with a distinct low CO2 acclimation state. Here, we review physiological and molecular evidence linking LCIB with inorganic carbon accumulation in the CCM and discuss the proposed function of LCIB in several inorganic carbon uptake/accumulation pathways. Several new molecular characteristics of LCIB also are presented.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA,
| | | |
Collapse
|
32
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
33
|
|
34
|
Abstract
Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation.
Collapse
|
35
|
Winck FV, Páez Melo DO, González Barrios AF. Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from "omics" approaches. J Proteomics 2013; 94:207-18. [PMID: 24120529 DOI: 10.1016/j.jprot.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Understanding the processes and mechanisms of carbon acquisition and accumulation in microalgae is fundamental to enhance the cellular capabilities aimed to environmental and industrial applications. The "omics" approaches have greatly contributed to expanding the knowledge on these carbon-related cellular responses, reporting large data sets on microalgae transcriptome, proteome and metabolome. This review emphasizes the advances made on Chlamydomonas exploration; however, some knowledge acquired from studying this model organism, may be extrapolated to close algae species. The large data sets available for this organism revealed the identity of a vast range of genes and proteins which are integrating carbon-related mechanisms. Nevertheless, these data sets have also highlighted the need for integrative analysis in order to fully explore the information enclosed. Here, some of the main results from "omics" approaches which may contribute to the understanding of carbon acquisition and accumulation in Chlamydomonas were reviewed and possible applications were discussed. BIOLOGICAL SIGNIFICANCE A number of important publications in the field of "omics" technologies have been published reporting studies of the model green microalga Chlamydomonas reinhardtii and related to microalgal biomass production. However, there are only few attempts to integrate these data. Publications showing the results from "omics" approaches, such as transcriptome, metabolome and proteome, focused in the study of mechanisms of carbon acquisition and accumulation in microalgae were reviewed. This review contributes to highlight the knowledge recently generated on such "omics" studies and it discusses how these results may be important for the advance of applied sciences, such as microalgae biotechnology.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- Department of Chemical Engineering, Universidad de los Andes, Grupo de Diseño de Productos y Procesos, Bogotá 111711, Colombia.
| | | | | |
Collapse
|
36
|
Meyer M, Griffiths H. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:769-86. [PMID: 23345319 DOI: 10.1093/jxb/ers390] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The importance of the eukaryotic algal CO(2)-concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are set against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, S(rel), and affinity for CO(2), K(c)) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Moritz Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
37
|
Rycovska A, Hatahet L, Fendler K, Michel H. The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1342-50. [DOI: 10.1016/j.bbamem.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
38
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Unkles SE, Symington VF, Kotur Z, Wang Y, Siddiqi MY, Kinghorn JR, Glass ADM. Physiological and biochemical characterization of AnNitA, the Aspergillus nidulans high-affinity nitrite transporter. EUKARYOTIC CELL 2011; 10:1724-32. [PMID: 22021238 PMCID: PMC3232726 DOI: 10.1128/ec.05199-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022]
Abstract
High-affinity nitrite influx into mycelia of Aspergillus nidulans has been characterized by use of (13)NO(2)(-), giving average K(m) and V(max) values of 48 ± 8 μM and 228 ± 49 nmol mg(-1) dry weight (DW) h(-1), respectively. Kinetic analysis of a plot that included an additional large number of low-concentration fluxes gave an excellent monophasic fit (r(2) = 0.96), with no indication of sigmoidal kinetics. Two-dimensional (2D) and three-dimensional (3D) models of AnNitA are presented, and the possible roles of conserved asparagine residues N122 (transmembrane domain 3 ]Tm 3]), N173 (Tm 4), N214 (Tm 5), and N246 (Tm 6) are discussed.
Collapse
Affiliation(s)
- Shiela E. Unkles
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, United Kingdom
| | - Vicki F. Symington
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, United Kingdom
| | - Zorica Kotur
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ye Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - M. Yaeesh Siddiqi
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - James R. Kinghorn
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, United Kingdom
| | - Anthony D. M. Glass
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
40
|
Duanmu D, Spalding MH. Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2. PHOTOSYNTHESIS RESEARCH 2011; 109:123-132. [PMID: 21409559 DOI: 10.1007/s11120-011-9642-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Chlamydomonas reinhardtii and other microalgae show adaptive changes to limiting CO(2) conditions by induction of CO(2)-concentrating mechanisms. The limiting-CO(2)-inducible gene, LCIB, encodes a soluble plastid protein and is proposed to play a role in trapping CO(2) released by CAH3 (thylakoid lumen carbonic anhydrase) catalyzed dehydration of accumulated Ci, especially in low CO(2) (L-CO(2); ~0.04% CO(2)) conditions. To gain further insight into the mechanisms of Ci uptake and accumulation in L-CO(2) acclimated C. reinhardtii, we performed an insertional mutagenesis screen to isolate extragenic suppressors that restore the growth of lcib mutants (pmp1 and ad1) in L-CO(2). Four independent suppressors are described here and classified by their photosynthetic affinities for Ci and expression patterns of known limiting-CO(2)-inducible transcripts. Genetic analysis of the four suppressors identified two allelic, dominant suppressors (su4 and su5), and two recessive suppressors (su1 and su8). Consistent with the suppression phenotype, both the relative affinities of photosynthetic O(2) evolution and internal Ci accumulation in all four suppressors were substantially increased relative to pmp1/ad1 in L-CO(2) acclimated cells. The relative affinities of pmp-su1 and ad-su8 for Ci were nearly the same as wild type, but that of pmp-su4/su5 was intermediate between pmp-su1 and pmp1. Also, the interactions between lcib mutations and each of the three suppressors varied over the range of CO(2) acclimation states. Our results suggest complex contributions of LCIB-dependent and independent active Ci uptake/accumulation systems in various CO(2) acclimation states and therefore provide new clues about the roles played by LCIB in limiting Ci acclimation.
Collapse
Affiliation(s)
- Deqiang Duanmu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Wang Y, Duanmu D, Spalding MH. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. PHOTOSYNTHESIS RESEARCH 2011; 109:115-22. [PMID: 21409558 DOI: 10.1007/s11120-011-9643-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/28/2011] [Indexed: 05/04/2023]
Abstract
Many microalgae are capable of acclimating to CO(2) limited environments by operating a CO(2) concentrating mechanism (CCM), which is driven by various energy-coupled inorganic carbon (Ci; CO(2) and HCO(3)(-)) uptake systems. Chlamydomonas reinhardtii (hereafter, Chlamydomonas), a versatile genetic model organism, has been used for several decades to exemplify the active Ci transport in eukaryotic algae, but only recently have many molecular details behind these Ci uptake systems emerged. Recent advances in genetic and molecular approaches, combined with the genome sequencing of Chlamydomonas and several other eukaryotic algae have unraveled some unique characteristics associated with the Ci uptake mechanism and the Ci-recapture system in eukaryotic microalgae. Several good candidate genes for Ci transporters in Chlamydomonas have been identified, and a few specific gene products have been linked with the Ci uptake systems associated with the different acclimation states. This review will focus on the latest studies on characterization of functional components involved in the Ci uptake and the Ci-recapture in Chlamydomonas.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
42
|
Baba M, Suzuki I, Shiraiwa Y. Proteomic Analysis of High-CO2-Inducible Extracellular Proteins in the Unicellular Green Alga, Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2011; 52:1302-14. [DOI: 10.1093/pcp/pcr078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H. Expression of a low CO₂-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. THE PLANT CELL 2010; 22:3105-17. [PMID: 20870960 PMCID: PMC2965534 DOI: 10.1105/tpc.109.071811] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms can modulate their photosynthesis to acclimate to CO₂-limiting stress by inducing a carbon-concentrating mechanism (CCM) that includes carbonic anhydrases and inorganic carbon (Ci) transporters. However, to date, Ci-specific transporters have not been well characterized in eukaryotic algae. Previously, a Chlamydomonas reinhardtii mutant (lcr1) was identified that was missing a Myb transcription factor. This mutant had reduced light-dependent CO₂ gas exchange (LCE) activity when grown under CO₂-limiting conditions and did not induce the CAH1 gene encoding a periplasmic carbonic anhydrase, as well as two as yet uncharacterized genes, LCI1 and LCI6. In this study, LCI1 was placed under the control of the nitrate reductase promoter, allowing for the induction of LCI1 expression by nitrate in the absence of other CCM components. When the expression of LCI1 was induced in the lcr1 mutant under CO₂-enriched conditions, the cells showed an increase in LCE activity, internal Ci accumulation, and photosynthetic affinity for Ci. From experiments using indirect immunofluorescence, LCI1-green fluorescent protein fusions, and cell fractionation procedures, it appears that LCI1 is mainly localized to the plasma membrane. These results provide strong evidence that LCI1 may contribute to the CCM as a component of the Ci transport machinery in the plasma membrane.
Collapse
Affiliation(s)
- Norikazu Ohnishi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bratati Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Tomoki Tsujikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mari Yanase
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirobumi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
44
|
Formate–nitrite transporters: Optimisation of expression, purification and analysis of prokaryotic and eukaryotic representatives. Protein Expr Purif 2010; 71:184-9. [DOI: 10.1016/j.pep.2009.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022]
|
45
|
González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. THE PLANT CELL 2010; 22:2058-84. [PMID: 20587772 PMCID: PMC2910963 DOI: 10.1105/tpc.109.071167] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 04/01/2010] [Accepted: 05/18/2010] [Indexed: 05/18/2023]
Abstract
The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the results obtained by these techniques showed that RNA-seq reports a larger dynamic range of expression levels than do microarray hybridizations. Transcripts responsive to sulfur deprivation included those encoding proteins involved in sulfur acquisition and assimilation, synthesis of sulfur-containing metabolites, Cys degradation, and sulfur recycling. Furthermore, we noted potential modifications of cellular structures during sulfur deprivation, including the cell wall and complexes associated with the photosynthetic apparatus. Moreover, the data suggest that sulfur-deprived cells accumulate proteins with fewer sulfur-containing amino acids. Most of the sulfur deprivation responses are controlled by the SNRK2.1 protein kinase. The snrk2.1 mutant exhibits a set of unique responses during both sulfur-replete and sulfur-depleted conditions that are not observed in wild-type cells; the inability of this mutant to acclimate to S deprivation probably leads to elevated levels of singlet oxygen and severe oxidative stress, which ultimately causes cell death. The transcriptome results for wild-type and mutant cells strongly suggest the occurrence of massive changes in cellular physiology and metabolism as cells become depleted for sulfur and reveal aspects of acclimation that are likely critical for cell survival.
Collapse
|
46
|
Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 2010; 328:899-903. [PMID: 20466933 DOI: 10.1126/science.1186440] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
47
|
Miller AJ, Shen Q, Xu G. Freeways in the plant: transporters for N, P and S and their regulation. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:284-90. [PMID: 19481499 DOI: 10.1016/j.pbi.2009.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 05/13/2023]
Abstract
This review focuses on plant acquisition and transport of the inorganic forms of nitrogen, phosphorus and sulfur. Families of membrane transporters have been identified and several members are well characterised. Although some families are large, specific members may be expressed in a particular membrane or cell type, or at certain times during development. Therefore, each transporter can have specific activities and the concept of functional redundancy is questionable. Structurally related proteins can mediate all transport steps within the plant, including uptake from the soil. Although transport mechanisms and membrane locations may be different, a picture is emerging that suggests sequence homology can be a reasonable indicator of the nutrient that is transported by each protein.
Collapse
Affiliation(s)
- Anthony J Miller
- Centre for Soils and Ecosystem Function, Rothamsted Research, Hertfordshire, UK.
| | | | | |
Collapse
|
48
|
Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2009; 106:5990-5. [PMID: 19321421 PMCID: PMC2667020 DOI: 10.1073/pnas.0812885106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
The CO(2)-concentrating mechanism (CCM) of Chlamydomonas reinhardtii and other microalgal species is essential for photosynthetic growth in most natural settings. A great deal has been learned regarding the CCM in cyanobacteria, including identification of inorganic carbon (Ci; CO(2) and HCO(3)(-)) transporters; however, specific knowledge of analogous transporters has remained elusive in eukaryotic microalgae such as C. reinhardtii. Here we investigated whether the limiting-CO(2)-inducible, putative ABC-type transporter HLA3 might function as a HCO(3)(-) transporter by evaluating the effect of pH on growth, photosynthetic Ci affinity, and [(14)C]-Ci uptake in very low CO(2) conditions following RNA interference (RNAi) knockdown of HLA3 mRNA levels in wild-type and mutant cells. Although knockdown of HLA3 mRNA alone resulted in only modest but high-pH-dependent decreases in photosynthetic Ci affinity and Ci uptake, the combination of nearly complete knockdown of HLA3 mRNA with mutations in LCIB (which encodes limiting-Ci-inducible plastid-localized protein required for normal Ci uptake or accumulation in low-CO(2) conditions) and/or simultaneous, apparently off-target knockdown of LCIA mRNA (which encodes limiting-Ci-inducible plastid envelope protein reported to transport HCO(3)(-)) resulted in dramatic decreases in growth, Ci uptake, and photosynthetic Ci affinity, especially at pH 9, at which HCO(3)(-) is the predominant form of available Ci. Collectively, the data presented here provide compelling evidence that HLA3 is directly or indirectly involved in HCO(3)(-) transport, along with additional evidence supporting a role for LCIA in chloroplast envelope HCO(3)(-) transport and a role for LCIB in chloroplast Ci accumulation.
Collapse
Affiliation(s)
- Deqiang Duanmu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011 and
| | - Amy R. Miller
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Kempton M. Horken
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Donald P. Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Martin H. Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011 and
| |
Collapse
|
49
|
Yamano T, Fukuzawa H. Carbon-concentrating mechanism in a green alga,Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 2009; 49:42-51. [DOI: 10.1002/jobm.200800352] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Galván A, González-Ballester D, Fernández E. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:77-89. [PMID: 18161492 DOI: 10.1007/978-0-387-75532-8_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii has emerged during the last decades as a model system to understand gene functions, many of them shared by bacteria, fungi, plants, animals and humans. A powerful resource for the research community is the availability of complete collections of stable mutants for studying whole genome function. In the meantime other strategies might be developed; insertional mutagenesis has become currently the best strategy to disrupt and tag nuclear genes in Chlamydomonas allowing forward and reverse genetic approaches. Here, we outline the mutagenesis technique stressing the idea of generating databases for ordered mutant libraries, and also of improving efficient methods for reverse genetics to identify mutants defective in a particular gene.
Collapse
Affiliation(s)
- Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba. Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain.
| | | | | |
Collapse
|