1
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2025; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Yang KC, Chou YH. Molecular imaging findings for treatment resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 278:79-116. [PMID: 37414495 DOI: 10.1016/bs.pbr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
Austelle CW, O'Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, Short B, Badran BW. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation 2022; 25:309-315. [PMID: 35396067 PMCID: PMC8898319 DOI: 10.1111/ner.13528] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Vagus nerve stimulation (VNS) is reemerging as an exciting form of brain stimulation, due in part to the development of its noninvasive counterpart transcutaneous auricular VNS. As the field grows, it is important to understand where VNS emerged from, including its history and the studies that were conducted over the past four decades. Here, we offer a comprehensive review of the history of VNS in the treatment of major depression. MATERIALS AND METHODS Using PubMed, we reviewed the history of VNS and aggregated the literature into a narrative review of four key VNS epochs: 1) early invention and development of VNS, 2) path to Food and Drug Administration (FDA) approval for depression, 3) refinement of VNS treatment parameters, and 4) neuroimaging of VNS. RESULTS VNS was described in the literature in the early 1900s; however, gained traction in the 1980s as Zabara and colleagues developed an implantable neurocybernetic prosthesis to treat epilepsy. As epilepsy trials proceed in the 1990s, promising mood effects emerged and were studied, ultimately leading to the approval of VNS for depression in 2005. Since then, there have been advances in understanding the mechanism of action. Imaging techniques like functional magnetic resonance imaging and positron emission tomography further aid in understanding direct brain effects of VNS. CONCLUSIONS The mood effects of VNS were discovered from clinical trials investigating the use of VNS for reducing seizures in epileptic patients. Since then, VNS has gone on to be FDA approved for depression. The field of VNS is growing, and as noninvasive VNS quickly advances, it is important to consider a historical perspective to develop future brain stimulation therapies.
Collapse
Affiliation(s)
| | - Georgia H O'Leary
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Sean Thompson
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Elise Gruber
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Alex Kahn
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew J Manett
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Baron Short
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Kamel LY, Xiong W, Gott BM, Kumar A, Conway CR. Vagus nerve stimulation: An update on a novel treatment for treatment-resistant depression. J Neurol Sci 2022; 434:120171. [DOI: 10.1016/j.jns.2022.120171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
6
|
Chen C, Mao Y, Falahpour M, MacNiven KH, Heit G, Sharma V, Alataris K, Liu TT. Effects of sub-threshold transcutaneous auricular vagus nerve stimulation on cerebral blood flow. Sci Rep 2021; 11:24018. [PMID: 34912017 PMCID: PMC8674256 DOI: 10.1038/s41598-021-03401-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has shown promise as a non-invasive alternative to vagus nerve stimulation (VNS) with implantable devices, which has been used to treat drug-resistant epilepsy and treatment-resistant depression. Prior work has used functional MRI to investigate the brain response to taVNS, and more recent work has also demonstrated potential therapeutic effects of high-frequency sub-threshold taVNS in rheumatoid arthritis. However, no studies to date have measured the effects of high-frequency sub-threshold taVNS on cerebral blood flow (CBF). The objective of this study was to determine whether high-frequency (20 kHz) sub-threshold taVNS induces significant changes in CBF, a promising metric for the assessment of the sustained effects of taVNS. Arterial spin labeling (ASL) MRI scans were performed on 20 healthy subjects in a single-blind placebo-controlled repeated measures experimental design. The ASL scans were performed before and after 15 min of either sub-threshold taVNS treatment or a sham control. taVNS induced significant changes in CBF in the superior posterior cerebellum that were largely localized to bilateral Crus I and Crus II. Post hoc analyses showed that the changes were driven by a treatment-related decrease in CBF. Fifteen minutes of high-frequency sub-threshold taVNS can induce sustained CBF decreases in the bilateral posterior cerebellum in a cohort of healthy subjects. This study lays the foundation for future studies in clinical populations, and also supports the use of ASL measures of CBF for the assessment of the sustained effects of taVNS.
Collapse
Affiliation(s)
- Conan Chen
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA.
| | - Yixiang Mao
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA
| | - Maryam Falahpour
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA
| | - Kelly H MacNiven
- Department of Psychology, Stanford University, Stanford, CA, USA
- Nēsos Corporation, Redwood City, CA, USA
| | - Gary Heit
- Nēsos Corporation, Redwood City, CA, USA
- Department of Neurosurgery, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | | | | | - Thomas T Liu
- Center for Functional MRI, Department of Radiology, University of California San Diego, 9500 Gilman Drive #0677, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Hasegawa H, Van Gompel JJ, Marsh WR, Wharen RE, Zimmerman RS, Burkholder DB, Lundstrom BN, Britton JW, Meyer FB. Outcomes following surgical management of vagus nerve stimulator-related infection: a retrospective multi-institutional study. J Neurosurg 2021; 135:783-791. [PMID: 33339002 DOI: 10.3171/2020.7.jns201385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgical site infection (SSI) is a rare but significant complication after vagus nerve stimulator (VNS) placement. Treatment options range from antibiotic therapy alone to hardware removal. The optimal therapeutic strategy remains open to debate. Therefore, the authors conducted this retrospective multicenter analysis to provide insight into the optimal management of VNS-related SSI (VNS-SSI). METHODS Under institutional review board approval and utilizing an institutional database with 641 patients who had undergone 808 VNS-related placement surgeries and 31 patients who had undergone VNS-related hardware removal surgeries, the authors retrospectively analyzed VNS-SSI. RESULTS Sixteen cases of VNS-SSI were identified; 12 of them had undergone the original VNS placement procedure at the authors' institutions. Thus, the incidence of VNS-SSI was calculated as 1.5%. The mean (± standard deviation) time from the most recent VNS-related surgeries to infection was 42 (± 27) days. Methicillin-sensitive staphylococcus was the usual causative bacteria (58%). Initial treatments included antibiotics with or without nonsurgical procedures (n = 6), nonremoval open surgeries for irrigation (n = 3), generator removal (n = 3), and total or near-total removal of hardware (n = 4). Although 2 patients were successfully treated with antibiotics alone or combined with generator removal, removal of both the generator and leads was eventually required in 14 patients. Mild swallowing difficulties and hoarseness occurred in 2 patients with eventual resolution. CONCLUSIONS Removal of the VNS including electrode leads combined with antibiotic administration is the definitive treatment but has a risk of causing dysphagia. If the surgeon finds dense scarring around the vagus nerve, the prudent approach is to snip the electrode close to the nerve as opposed to attempting to unwind the lead completely.
Collapse
Affiliation(s)
- Hirotaka Hasegawa
- Departments of1Neurologic Surgery and
- 2Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | - Robert E Wharen
- 3Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida; and
| | | | | | | | | | | |
Collapse
|
8
|
Thompson SL, O'Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front Neurosci 2021; 15:709436. [PMID: 34326720 PMCID: PMC8313807 DOI: 10.3389/fnins.2021.709436] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an established form of neuromodulation with a long history of promising applications. Earliest reports of VNS in the literature date to the late 1800’s in experiments conducted by Dr. James Corning. Over the past century, both invasive and non-invasive VNS have demonstrated promise in treating a variety of disorders, including epilepsy, depression, and post-stroke motor rehabilitation. As VNS continues to rapidly grow in popularity and application, the field generally lacks a consensus on optimum stimulation parameters. Stimulation parameters have a significant impact on the efficacy of neuromodulation, and here we will describe the longitudinal evolution of VNS parameters in the following categorical progression: (1) animal models, (2) epilepsy, (3) treatment resistant depression, (4) neuroplasticity and rehabilitation, and (5) transcutaneous auricular VNS (taVNS). We additionally offer a historical perspective of the various applications and summarize the range and most commonly used parameters in over 130 implanted and non-invasive VNS studies over five applications.
Collapse
Affiliation(s)
- Sean L Thompson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W Austelle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Elise Gruber
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Alex T Kahn
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J Manett
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Baron Short
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
9
|
Yakunina N, Nam EC. Direct and Transcutaneous Vagus Nerve Stimulation for Treatment of Tinnitus: A Scoping Review. Front Neurosci 2021; 15:680590. [PMID: 34122002 PMCID: PMC8193498 DOI: 10.3389/fnins.2021.680590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Recent animal research has shown that vagus nerve stimulation (VNS) paired with sound stimuli can induce neural plasticity in the auditory cortex in a controlled manner. VNS paired with tones excluding the tinnitus frequency eliminated physiological and behavioral characteristics of tinnitus in noise-exposed rats. Several clinical trials followed and explored the effectiveness of VNS paired with sound stimuli for alleviating tinnitus in human subjects. Transcutaneous VNS (tVNS) has received increasing attention as a non-invasive alternative approach to tinnitus treatment. Several studies have also explored tVNS alone (not paired with sound stimuli) as a potential therapy for tinnitus. In this review, we discuss existing knowledge about direct and tVNS in terms of applicability, safety, and effectiveness in diminishing tinnitus symptoms in human subjects. This review includes all existing clinical and neuroimaging studies of tVNS alone or paired with acoustic stimulation in tinnitus patients and outlines the present limitations that must be overcome to maximize the potential of (t)VNS as a therapy for tinnitus.
Collapse
Affiliation(s)
- Natalia Yakunina
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eui-Cheol Nam
- Department of Otolaryngology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
10
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Wu Q, Hu H, Chen W, Chen HH, Chen L, Zhou J, Liu H, Wu FY, Xu XQ. Disrupted Topological Organization of the Brain Structural Network in Patients With Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33821882 PMCID: PMC8039468 DOI: 10.1167/iovs.62.4.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Increasing evidence indicated that thyroid-associated ophthalmopathy (TAO) might be a neural related disease more than an ocular disease. In this study, we aimed to investigate the alterations of structural brain connectome in patients with TAO. Methods Twenty-seven patients with TAO and 27 well-matched healthy controls underwent diffusion tensor imaging. Graph theoretical analyses, including global (shortest path length, clustering coefficient, small-worldness, global efficiency, and local efficiency) and nodal (nodal betweenness, nodal degree, and nodal efficiency) topological properties and network-based statistics were performed to evaluate TAO-related changes in brain network pattern. Correlations were assessed between the network properties and clinical variables, including disease duration, visual acuity, neuropsychiatric measurements, and serum thyroid function indexes. Results Compared with healthy controls, patients with TAO exhibited preserved global network parameters but altered nodal properties. We found decreased nodal betweenness and nodal degree in right anterior cingulate and paracingulate gyri, decreased nodal degree and nodal efficiency in the right orbital part of middle frontal gyrus (ORBmid), whereas increased nodal degree and nodal efficiency in the left cuneus. Decrease of structural connectivity strength was found involving the right ORBmid, right putamen, left caudate nucleus, and left medial superior frontal gyrus. Significant correlations were also found between nodal properties and neuropsychological performances as well as visual acuity. Conclusions Patients with TAO developed disruption of structural brain network connectome. Disrupted topological organization of the brain structural network may be associated with the clinical-psychiatric dysfunction of patients with TAO.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. The changes in the topological properties of brain structural network based on diffusion tensor imaging in pediatric epilepsy patients with vagus nerve stimulators: A graph theoretical analysis. Brain Dev 2021; 43:97-105. [PMID: 32713660 DOI: 10.1016/j.braindev.2020.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to analyze the topological characteristics of brain structural network in pediatric epilepsy patients with vagus nerve stimulation (VNS) by applying graph theoretical approaches. METHODS Nine patients with generalized seizures and eight normal controls (NC) were enrolled. Based on diffusion tensor imaging, graph theory analysis was used to characterize the topological properties in preoperative patients (EP-pre), postoperative patients (EP-post) and NC. The global properties included clustering coefficient (Cp), shortest path length (Lp), small-worldness (γ, λ, δ), global network efficiency (Eg) and local network efficiency (Eloc). The regional properties included degree centrality (DC), nodal efficiency (NE), nodal local efficiency (NLE) and nodal shortest path length (Np). Two sample t-test and paired sample t-test were utilized to compare properties difference. RESULTS All three groups followed small-world characteristics. There was no significant difference in small-worldness, Cp, Lp, Eg or Eloc between EP-pre and EP-post. Compared with EP-pre: DC in EP-post decreased in the right cuneus and right temporal gyri, while increased in the right paracentral lobule; NE in EP-post decreased in the left dorsolateral superior frontal gyrus, right cuneus, right supramarginal gyrus, and right rolandic operculum, while increased in the right paracentral lobule; NLE in EP-post decreased in the left posterior cingulate gyrus and right supramarginal gyrus, while increased in the left parahippocampal gyrus; NP in EP-post decreased in the right paracentral lobule, while increased in the right cuneus. CONCLUSION VNS causes topological characteristics changes in pediatric patients with generalized seizures through regulating regional properties in some brain structures.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Ibañez C, Vicencio S, Quintanilla ME, Maldonado P. Interoception and alcohol addiction: Vagotomy induces long-lasting suppression of relapse-type behavior. Addict Biol 2021; 26:e12836. [PMID: 31846188 DOI: 10.1111/adb.12836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Drug addictions are chronic mental disorders characterized by compulsive drug seeking and drug use, despite their negative consequences. It is a priority to find therapeutic alternatives to prevent relapse, as there are still no treatments that can ensure abstinence. One of the neural systems implicated in the appearance of the states of discomfort that motivate relapse is the interoceptive system, which oversees our internal body states. However, less attention has been given to the peripheral components of the interoceptive system and their role in addictions. Within these pathways, the vagus nerve represents one of the main visceral afferents of the interoceptive system. We hypothesized that the interruption of visceral afferent pathways would decrease the motivational effects of the drug, thereby either decreasing or preventing drug cravings. To test this idea, we used rats of a high-alcohol-drinking line and measured the effect that vagus nerve resection had on the relapse-like alcohol drinking, expressed as the alcohol deprivation effect, a phenomenon that has been linked to addiction-related events such as alcohol cravings. We found that even though vagotomy completely eliminates the effect of alcohol deprivation, it has no impact on water consumption or animal weight. These results give us valuable information about the relationship between the autonomic nervous system and alcohol use disorders and allow us to propose new clinical research that might have translational options.
Collapse
Affiliation(s)
- Carlos Ibañez
- Department of Psychiatry Clinical Hospital of the Universidad de Chile Santiago Chile
| | - Sergio Vicencio
- Biomedical Neuroscience Institute, Faculty of Medicine Universidad de Chile Santiago Chile
- Department of Neuroscience, Faculty of Medicine Universidad de Chile Santiago Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences Universidad de Chile Santiago Chile
| | - Pedro Maldonado
- Biomedical Neuroscience Institute, Faculty of Medicine Universidad de Chile Santiago Chile
- Department of Neuroscience, Faculty of Medicine Universidad de Chile Santiago Chile
| |
Collapse
|
14
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Yan X, Ni D, Yu T, Zhang G, Li Y. The effect of vagal nerve stimulation on hippocampal-thalamic functional connectivity in epilepsy patients. Brain Res Bull 2020; 163:143-149. [PMID: 32745494 DOI: 10.1016/j.brainresbull.2020.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) is widely used as an auxiliary treatment for patients with intractable epilepsy. Up to now, the therapeutic mechanisms remain elusive, and no surgical prediction criteria has been proposed. METHODS In this study, the resting-state functional magnetic resonance imaging (rs-fMRI) was chosen to explore aberrant intrinsic brain activity and functional connections in 14 epilepsy patients with VNS stimulators between March 2019 and April 2019. Seven patients who ≥ 50 % seizure reduction was defined as responders, and seven non-responders. All patients had got rs-fMRI scan before and after operation. The hippocampal - thalamic connections (hippocampal and thalamus as regions of interest) were detected to evaluate the diversity in all 14 patients and seven responders with stimulation at 0, 0.5, 1.0, and 1.5 mA. The hippocampal-thalamic connections before operation were also examined between responders and non-responders. RESULTS The preoperative left hippocampal - left thalamic connections and left hippocampal - right thalamic connections in responders were lower than those in non-responders (p < 0.05). While, there was no significant difference in hippocampal - thalamic connections in all epilepsy patients or responders with different current intensities (p > 0.05). CONCLUSIONS VNS may be more suitable for patients with lower left hippocampal - left thalamic connections and/or left hippocampal - right thalamic connections. The current intensity ≤ 1.5 mA and stimulation time ≤ 3 months may not cause significant changes in hippocampal-thalamic functional connectivity.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Xiao X, Hou X, Zhang Z, Li Y, Yu X, Wang Y, Tian J, Xu K. Efficacy and brain mechanism of transcutaneous auricular vagus nerve stimulation for adolescents with mild to moderate depression: Study protocol for a randomized controlled trial. Pediatr Investig 2020; 4:109-117. [PMID: 32851354 PMCID: PMC7331436 DOI: 10.1002/ped4.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Depression is a common mental illness in childhood and adolescence, with an incidence of 4%-5%; it can lead to impairments in learning and social functioning. Transcutaneous auricular vagus nerve stimulation (taVNS) is a commonly used method of auricular acupuncture point stimulation, which is regarded as an effective treatment for adults with depression. The aim of this study was to investigate the efficacy and mechanism of taVNS for adolescents with mild to moderate depression. METHODS This randomized controlled clinical trial will include 120 patients aged 12-16 years, all of whom are diagnosed with mild to moderate depression. Patients will be randomly assigned to a taVNS group and a drug control group (sertraline hydrochloride) at a ratio of 1:1. Patients will be evaluated using the 17-item Hamilton Depression Scale, Hamilton Anxiety Rating Scale, Self-Rating Depression Scale, Self-Rating Anxiety Scale, and Pittsburgh Sleep Quality Index scores at baseline, as well as at the 2nd, 4th, 6th, 8th, and 12th weeks. To investigate the underlying neural mechanisms of taVNS treatment from the perspective of the default mode network, multimodal magnetic resonance imaging (MRI; i.e., structural MRI [sMRI], resting state MRI [rsMRI], and pseudocontinuous arterial spin-labeled [pcASL] MRI) will be used to compare cerebral images among groups. MRI data will also be collected from 40 healthy volunteers to assess whether the participants exhibit normal development of structural and functional components. DISCUSSION Depression is the most common mental disorder in adolescence. Drug treatment can improve depression symptoms; however, the side effects of drug treatments are often severe. This study proposes a simple physiotherapy that aims to treat adolescents with mild to moderate depression. The mechanism of taVNS in the treatment of depression will also be investigated. The results of this study will provide evidence to guide the application of taVNS in adolescents with depression.
Collapse
Affiliation(s)
- Xue Xiao
- Department of PsychiatryBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Xiaobing Hou
- Department of Acupuncture and MoxibustionBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Zhangjing Zhang
- Department of Chinese MedicineUniversity of Hong Kong Shenzhen Hospital (HKU‐SZH)ShenzhenGuangdongChina
| | - Ying Li
- Department of PsychiatryBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| | - Xue Yu
- Department of PsychiatryBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Yanhui Wang
- Department of CardiologyBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Jing Tian
- Department of PsychiatryBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Ke Xu
- Department of Medical imagingGuang’anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
16
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
17
|
Rosso P, Iannitelli A, Pacitti F, Quartini A, Fico E, Fiore M, Greco A, Ralli M, Tirassa P. Vagus nerve stimulation and Neurotrophins: a biological psychiatric perspective. Neurosci Biobehav Rev 2020; 113:338-353. [PMID: 32278791 DOI: 10.1016/j.neubiorev.2020.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Since 2004, vagus nerve stimulation (VNS) has been used in treatment-resistant or treatment-intolerant depressive episodes. Today, VNS is suggested as possible therapy for a larger spectrum of psychiatric disorders, including schizophrenia, obsessive compulsive disorders, and panic disorders. Despite a large body of literature supports the application of VNS in patients' treatment, the exact mechanism of action of VNS remains not fully understood. In the present study, the major knowledges on the brain areas and neuronal pathways regulating neuroimmune and autonomic response subserving VNS effects are reviewed. Furthermore, the involvement of the neurotrophins (NTs) Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in vagus nerve (VN) physiology and stimulation is revised. The data on brain NGF/BDNF synthesis and in turn on the activity-dependent plasticity, connectivity rearrangement and neurogenesis, are presented and discussed as potential biomarkers for optimizing stimulatory parameters for VNS. A vagus nerve-neurotrophin interaction model in the brain is finally proposed as a working hypothesis for future studies addressed to understand pathophysiology of psychiatric disturbance.
Collapse
Affiliation(s)
- Pamela Rosso
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Psychiatry Unit San Salvatore Hospital, L'Aquila, Italy
| | - Adele Quartini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Marco Fiore
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy.
| |
Collapse
|
18
|
Kim B, Park I, Lee JH, Kim S, Lee MJ, Jo YH. Effect of Electrical Vagus Nerve Stimulation on Cerebral Blood Flow and Neurological Outcome in Asphyxial Cardiac Arrest Model of Rats. Neurocrit Care 2020; 30:572-580. [PMID: 30382532 DOI: 10.1007/s12028-018-0640-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) during post-resuscitation may increase recovery of cerebral blood flow (CBF) and reduce neurological injury. OBJECTIVE This study was designed to investigate the effect of electrical VNS on neurological outcomes following cardiac arrest (CA). METHODS Male Sprague-Dawley rats (n = 48) were subjected to the asphyxial CA model and blindly allocated to the VN isolation (CA + VN isolation) or VNS group (CA + VNS group). Cardiopulmonary resuscitation was initiated 450 s after pulseless electrical arrest, and the left cervical vagus nerve was electrically stimulated (0.05 mA, 1 Hz) for 3 h in the CA + VNS group. The neurological deficit score (NDS) and overall performance category (OPC) were assessed at 24 h after resuscitation, and histological injury of the hippocampus was evaluated. Independent experiments were performed to evaluate the effect of VNS on global cortical CBF after resuscitation using laser speckle Doppler imaging through a thinned skull window from pre-arrest to 6 h after resuscitation. RESULTS The baseline characteristics were not significantly different between the two groups. The NDS was significantly higher, and the OPC was substantially lower in the CA + VNS group (p = 0.022 and p = 0.049, respectively) supported by decrease in histological injury of the hippocampal CA1 region. CBF in the early period of post-return of spontaneous circulation (ROSC) was significantly higher in the CA + VNS group (p < 0.05 at post-ROSC 2 h and 4 h), and 4-hydroxynonenal was significantly lower in the CA + VNS group (p = 0.026). CONCLUSIONS VNS improved cerebral perfusion and neurological outcomes at 24 h after ROSC in an asphyxial CA model of rats.
Collapse
Affiliation(s)
- Byunghyun Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| | - Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Min Ji Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| |
Collapse
|
19
|
Yu Z, Qin J, Xiong X, Xu F, Wang J, Hou F, Yang A. Abnormal topology of brain functional networks in unipolar depression and bipolar disorder using optimal graph thresholding. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109758. [PMID: 31493423 DOI: 10.1016/j.pnpbp.2019.109758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
Two popular debilitating illness, unipolar depression (UD) and bipolar disorder (BD), have the similar symptoms and tight association on the psychopathological level, leading to a clinical challenge to distinguish them. In order to figure out the underlying common and different mechanism of both mood disorders, resting-state functional magnetic resonance imaging (rs-fMRI) data derived from 36 UD patients, 42 BD patients (specially type I, BD-I) and 45 healthy controls (HC) were analyzed retrospectively in this study. Functional brain networks were firstly constructed on both group and individual levels with a density 0.2, which was determined by a network thresholding approach based on modular similarity. Then we investigated the alterations of modular structure and other topological properties of the functional brain network, including global network characteristics and nodal network measures. The results demonstrated that the functional brain networks of UD and BD-I groups preserved the modularity and small-worldness property. However, compared with HC, reduced number of modules was observed in both patients' groups with shared alterations occurring in hippocampus, para hippocampal gyrus, amygdala and superior parietal gyrus and distinct changes of modular composition mainly in the caudate regions of basal ganglia. Additionally, for the network characteristics, compared to HC, significantly decreased global efficiency and small-worldness were observed in BD-I. For the nodal metrics, significant decrease of local efficiency was found in several regions in both UD and BD-I, while a UD-specified increase of participant coefficient was found in the right paracentral lobule and the right thalamus. These findings may contribute to throw light on the neuropathological mechanisms underlying the two disorders and further help to explore objective biomarkers for the correct diagnosis of UD and BD.
Collapse
Affiliation(s)
- Zhinan Yu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaolong Qin
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyuan Xiong
- School of Software Institute, Nanjing University, Nanjing 210093, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control & Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Fengzhen Hou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, China.
| | - Albert Yang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Senova S, Rabu C, Beaumont S, Michel V, Palfi S, Mallet L, Domenech P. Stimulation du nerf vague dans le traitement de la dépression. Presse Med 2019; 48:1507-1519. [DOI: 10.1016/j.lpm.2019.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
|
21
|
Fan J, Shan W, Wu J, Wang Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci Ther 2019; 25:1222-1228. [PMID: 31429206 PMCID: PMC6834923 DOI: 10.1111/cns.13209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
The International League Against Epilepsy (ILAE) defined drug-resistant epilepsy (DRE) that epilepsy seizure symptoms cannot be controlled with two well-tolerated and appropriately chosen antiepileptic drugs, whether they are given as monotherapy or in combination. According to the WHO reports, there is about 30%-40% of epilepsy patients belong to DRE. These patients need some treatments other than drugs, such as epilepsy surgery, and neuromodulation treatment. Traditional surgical approaches may be limited by the patient's clinical status, pathological tissue location, or overall prognosis. Thus, neuromodulation is an alternative choice to control their symptoms. Vagus nerve stimulation (VNS) is one of the neuromodulation methods clinically, which have been approved by the Food and Drug Administration (FDA). In this review, we systematically describe the clinical application, clinical effects, possible antiepileptic mechanisms, and future research directions of VNS for epilepsy.
Collapse
Affiliation(s)
- Jing‐Jing Fan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Wei Shan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Jian‐Ping Wu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Medicine of Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Qun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
22
|
Ma X, Liu J, Liu T, Ma L, Wang W, Shi S, Wang Y, Gong Q, Wang M. Altered Resting-State Functional Activity in Medication-Naive Patients With First-Episode Major Depression Disorder vs. Healthy Control: A Quantitative Meta-Analysis. Front Behav Neurosci 2019; 13:89. [PMID: 31133831 PMCID: PMC6524692 DOI: 10.3389/fnbeh.2019.00089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
Background: There is an urgent need for a meta-analysis that characterizes the brain states of major depression disorder (MDD) patients and potentially provides reliable biomarkers, because heterogeneity in the results of resting-state functional neuroimaging has been observed between studies, with some patients not showing the consistent changes, or even opposite patterns. Thus, we evaluated consistent regional brain activity alterations in medication-naive patients with first-episode unipolar MDD and compared the results with those in healthy controls (HCs). Methods: A systematic database search was conducted (in PubMed, Ovid, and Web of Knowledge) between January 1984 and July 2016 to select resting-state functional activity studies with a voxel-wise analysis in MDD. We used anisotropic effect size-signed differential mapping to perform a whole-brain meta-analysis, comparing functional alterations between first-episode medication-naive unipolar MDD patients and HCs by integrating the studies. In addition, subgroup meta-analysis was conducted to control for the MRI analysis method. Moreover, the meta-regression analyses were performed to examine the potential effects of mean age, education duration, illness duration, and severity of depressive symptoms. Results: A total of 12 studies were included, comparing 313 MDD patients with 283 HCs. The pooled and subgroup meta-analysis found that the MDD patients showed hyperactivity in the left parahippocampal gyrus, left supplementary motor area, left amygdala, left hippocampus, and left middle frontal gyrus (MFG; orbital part), and hypoactivity in the left lingual gyrus, left middle occipital gyrus, right cuneus cortex, right MFG (orbital part), and left cerebellum. In the meta-regression analyses, the mean illness duration was positively associated with hyper-activation in the left parahippocampal gyrus and hypoactivation in the hemispheric lobule IV/V of the left cerebellum. Conclusions: This meta-analysis indicated that MDD patients had significant and robust resting-state brain activity alteration in amygdala, left hippocampus and other regions, which implicated this finding in the pathophysiology of cognitive and emotional impairment in MDD patients.
Collapse
Affiliation(s)
- Xiaoyue Ma
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Jia Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taiyuan Liu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Lun Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Wenhui Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Shaojie Shi
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Yan Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Medical School, Henan University, Zhengzhou, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Huaxi MR Research Center (HMRRC), Chengdu, China
| | - Meiyun Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China.,Medical School, Henan University, Zhengzhou, China.,Henan Provincial Clinical Big Data Analysis and Service Engineering Research Center, Zhengzhou, China
| |
Collapse
|
23
|
Lerman I, Davis B, Huang M, Huang C, Sorkin L, Proudfoot J, Zhong E, Kimball D, Rao R, Simon B, Spadoni A, Strigo I, Baker DG, Simmons AN. Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PLoS One 2019; 14:e0201212. [PMID: 30759089 PMCID: PMC6373934 DOI: 10.1371/journal.pone.0201212] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.
Collapse
Affiliation(s)
- Imanuel Lerman
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Bryan Davis
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Charles Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Linda Sorkin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - James Proudfoot
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Edward Zhong
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bruce Simon
- electroCore LLC, Basking Ridge NJ, United States of America
| | - Andrea Spadoni
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Irina Strigo
- Department of Psychiatry, VA San Francisco Healthcare System, San Francisco, CA, United States of America
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Alan N. Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| |
Collapse
|
24
|
Hansen N. Memory Reinforcement and Attenuation by Activating the Human Locus Coeruleus via Transcutaneous Vagus Nerve Stimulation. Front Neurosci 2019; 12:955. [PMID: 30686963 PMCID: PMC6333671 DOI: 10.3389/fnins.2018.00955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Niels Hansen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
25
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
26
|
The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression: Current Conceptualizations. Psychiatr Clin North Am 2018; 41:395-407. [PMID: 30098653 DOI: 10.1016/j.psc.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of the left cervical vagus nerve, or vagus nerve stimulation (VNS), brings about an antidepressant response in a subset of treatment-resistant depression (TRD) patients. How this occurs is poorly understood; however, knowledge of the neuroanatomic vagal pathways, in conjunction with functional brain imaging studies, suggests several brain regions associated with mood regulation are critical: brainstem nuclei (locus coeruleus, dorsal raphe, and ventral tegmental area), thalamus, and insular and prefrontal cortex. Furthermore, animal studies suggest that VNS enhances neuroplasticity and changes in neuronal firing patterns. Continued study to better understand the mechanism of action of VNS in TRD is warranted.
Collapse
|
27
|
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 2018; 9:44. [PMID: 29593576 PMCID: PMC5859128 DOI: 10.3389/fpsyt.2018.00044] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Collapse
Affiliation(s)
- Sigrid Breit
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Cao J, Lu KH, Powley TL, Liu Z. Vagal nerve stimulation triggers widespread responses and alters large-scale functional connectivity in the rat brain. PLoS One 2017; 12:e0189518. [PMID: 29240833 PMCID: PMC5730194 DOI: 10.1371/journal.pone.0189518] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Vagus nerve stimulation (VNS) is a therapy for epilepsy and depression. However, its efficacy varies and its mechanism remains unclear. Prior studies have used functional magnetic resonance imaging (fMRI) to map brain activations with VNS in human brains, but have reported inconsistent findings. The source of inconsistency is likely attributable to the complex temporal characteristics of VNS-evoked fMRI responses that cannot be fully explained by simplified response models in the conventional model-based analysis for activation mapping. To address this issue, we acquired 7-Tesla blood oxygenation level dependent fMRI data from anesthetized Sprague-Dawley rats receiving electrical stimulation at the left cervical vagus nerve. Using spatially independent component analysis, we identified 20 functional brain networks and detected the network-wise activations with VNS in a data-driven manner. Our results showed that VNS activated 15 out of 20 brain networks, and the activated regions covered >76% of the brain volume. The time course of the evoked response was complex and distinct across regions and networks. In addition, VNS altered the strengths and patterns of correlations among brain networks relative to those in the resting state. The most notable changes in network-network interactions were related to the limbic system. Together, such profound and widespread effects of VNS may underlie its unique potential for a wide range of therapeutics to relieve central or peripheral conditions.
Collapse
Affiliation(s)
- Jiayue Cao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States
| | - Kun-Han Lu
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States
| | - Terry L Powley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States
- Department of Psychological Science, Purdue University, West Lafayette, Indiana, United States
| | - Zhongming Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States
- * E-mail:
| |
Collapse
|
29
|
Yakunina N, Kim SS, Nam EC. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodulation 2016; 20:290-300. [PMID: 27898202 DOI: 10.1111/ner.12541] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/11/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE/HYPOTHESIS Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy, depression, and a number of other disorders. Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) has been considered as a non-invasive alternative. Several functional magnetic resonance imaging (fMRI) studies on the effects of tVNS used different stimulation parameters and locations in the ear, which makes it difficult to determine the optimal tVNS methodology. The present study used fMRI to determine the most effective location for tVNS. MATERIALS AND METHODS Four stimulation locations in the ear were compared: the inner tragus, inferoposterior wall of the ear canal, cymba conchae, and earlobe (sham). Thirty-seven healthy subjects underwent two 6-min tVNS stimulation runs per electrode location (monophasic rectangular 500 μs pulses, 25 Hz). General linear model was performed using SPM; region-of-interest analyses were performed for the brainstem areas. RESULTS Stimulation at the ear canal resulted in the weakest activation of the nucleus of solitary tract (NTS), the recipient of most afferent vagal projections, and of the locus coeruleus (LC), a brainstem nucleus that receives direct input from the NTS. Stimulation of the inner tragus and cymba conchae activated these two nuclei as compared to sham. However, ROI analysis showed that only stimulation of the cymba conchae produced a significantly stronger activation in both the NTS and LC than did the sham stimulation. CONCLUSIONS These findings suggest that tVNS at the cymba conchae properly activates the vagal pathway and results in its strongest activation, and thus may be the optimal location for tVNS therapies applied to the auricle.
Collapse
Affiliation(s)
- Natalia Yakunina
- Institute of Medical Science, School of Medicine, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, Republic of Korea.,Neuroscience Research Institute, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon, Republic of Korea
| | - Sam Soo Kim
- Neuroscience Research Institute, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon, Republic of Korea.,Department of Radiology, School of Medicine, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, Republic of Korea
| | - Eui-Cheol Nam
- Neuroscience Research Institute, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon, Republic of Korea.,Department of Otolaryngology, School of Medicine, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, Republic of Korea
| |
Collapse
|
30
|
Sternat T, Katzman MA. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse. Neuropsychiatr Dis Treat 2016; 12:2149-64. [PMID: 27601909 PMCID: PMC5003599 DOI: 10.2147/ndt.s111818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one's characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic-cortical-striatal-pallidal-thalamic circuits. The activity of various components of the limbic-cortical-striatal-pallidal-thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders.
Collapse
Affiliation(s)
- Tia Sternat
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
| | - Martin A Katzman
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
- Division of Clinical Sciences, The Northern Ontario School of Medicine
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
31
|
Desbeaumes Jodoin V, Lespérance P, Nguyen DK, Fournier-Gosselin MP, Richer F. Effects of vagus nerve stimulation on pupillary function. Int J Psychophysiol 2015; 98:455-9. [DOI: 10.1016/j.ijpsycho.2015.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023]
|
32
|
Xiang YX, Wang WX, Xue Z, Zhu L, Wang SB, Sun ZH. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism. Neural Regen Res 2015; 10:576-82. [PMID: 26170817 PMCID: PMC4424749 DOI: 10.4103/1673-5374.155430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 11/17/2022] Open
Abstract
Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and interleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.
Collapse
Affiliation(s)
- Yao-Xian Xiang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Wen-Xin Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhe Xue
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Lei Zhu
- Department of Radiology, Beijing Electric Power Hospit, Beijng, China
| | - Sheng-Bao Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zheng-Hui Sun
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Conway CR, Colijn MA, Schachter SC. Vagus Nerve Stimulation for Epilepsy and Depression. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Smucny J, Visani A, Tregellas JR. Could vagus nerve stimulation target hippocampal hyperactivity to improve cognition in schizophrenia? Front Psychiatry 2015; 6:43. [PMID: 25852579 PMCID: PMC4371554 DOI: 10.3389/fpsyt.2015.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jason Smucny
- Neuroscience Program, University of Colorado Anschutz Medical Campus , Aurora, CO , USA ; Research Service, Denver Veterans Affairs Medical Center , Denver, CO , USA ; Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Adrienne Visani
- Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Jason R Tregellas
- Neuroscience Program, University of Colorado Anschutz Medical Campus , Aurora, CO , USA ; Research Service, Denver Veterans Affairs Medical Center , Denver, CO , USA ; Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
35
|
Peng D, Shi F, Shen T, Peng Z, Zhang C, Liu X, Qiu M, Liu J, Jiang K, Fang Y, Shen D. Altered brain network modules induce helplessness in major depressive disorder. J Affect Disord 2014; 168:21-9. [PMID: 25033474 PMCID: PMC5321069 DOI: 10.1016/j.jad.2014.05.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. METHODS Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. RESULTS Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. LIMITATION The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. CONCLUSIONS The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness.
Collapse
Affiliation(s)
- Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China; Department of Radiology and BRIC, University of North Carolina, 130 Mason Farm Road, Chapel Hill, NC 27599-7513, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina, 130 Mason Farm Road, Chapel Hill, NC 27599-7513, USA
| | - Ting Shen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China
| | - Ziwen Peng
- Department of Radiology and BRIC, University of North Carolina, 130 Mason Farm Road, Chapel Hill, NC 27599-7513, USA
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China
| | - Xiaohua Liu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China
| | - Meihui Qiu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China
| | - Jun Liu
- Department of Medical Imaging, the Fifth People׳s Hospital of Shanghai, Shanghai, PR China
| | - Kaida Jiang
- Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, PR China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina, 130 Mason Farm Road, Chapel Hill, NC 27599-7513, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea.
| |
Collapse
|
36
|
Shah A, Carreno FR, Frazer A. Therapeutic modalities for treatment resistant depression: focus on vagal nerve stimulation and ketamine. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:83-93. [PMID: 25191499 PMCID: PMC4153868 DOI: 10.9758/cpn.2014.12.2.83] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/24/2014] [Indexed: 01/11/2023]
Abstract
Treatment resistant depression (TRD) is a global health concern affecting a large proportion of depressed patients who then require novel therapeutic options. One such treatment option that has received some attention in the past several years is vagal nerve stimulation (VNS). The present review briefly describes the relevance of this treatment in the light of other existing pharmacological and non-pharmacological options. It then summarizes clinical findings with respect to the efficacy of VNS. The anatomical rationale for its efficacy and other potential mechanisms of its antidepressant effects as compared to those employed by classical antidepressant drugs are discussed. VNS has been approved in some countries and has been used for patients with TRD for quite some time. A newer, fast-acting, non-invasive pharmacological option called ketamine is currently in the limelight with reference to TRD. This drug is currently in the investigational phase but shows promise. The clinical and preclinical findings related to ketamine have also been summarized and compared with those for VNS. The role of neurotrophin factors, specifically brain derived neurotrophic factor and its receptor, in the beneficial effects of both VNS and ketamine have been highlighted. It can be concluded that both these therapeutic modalities, while effective, need further research that can reveal specific targets for intervention by novel drugs and address concerns related to side-effects, especially those seen with ketamine.
Collapse
Affiliation(s)
- Aparna Shah
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| | - Flavia Regina Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA. ; South Texas Veterans Health Care System (STVHCS), Audie L. Murphy Division, San Antonio, TX, USA
| |
Collapse
|
37
|
Baeken C, Marinazzo D, Wu GR, Van Schuerbeek P, De Mey J, Marchetti I, Vanderhasselt MA, Remue J, Luypaert R, De Raedt R. Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. World J Biol Psychiatry 2014; 15:286-97. [PMID: 24447053 DOI: 10.3109/15622975.2013.872295] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Intensified repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (DLPFC) may result in fast clinical responses in treatment resistant depression (TRD). In these kinds of patients, subgenual anterior cingulate cortex (sgACC) functional connectivity (FC) seems to be consistently disturbed. So far, no de novo data on the relationship between sgACC FC changes and clinical efficacy of accelerated rTMS were available. METHODS Twenty unipolar TRD patients, all at least stage III treatment resistant, were recruited in a randomized sham-controlled crossover high-frequency (HF)-rTMS treatment study. Resting-state (rs) functional MRI scans were collected at baseline and at the end of treatment. RESULTS HF-rTMS responders showed significantly stronger resting-state functional connectivity (rsFC) anti-correlation between the sgACC and parts of the left superior medial prefrontal cortex. After successful treatment an inverted relative strength of the anti-correlations was observed in the perigenual prefrontal cortex (pgPFC). No effects on sgACC rsFC were observed in non-responders. CONCLUSIONS Strong rsFC anti-correlation between the sgACC and parts of the left prefrontal cortex could be indicative of a beneficial outcome. Accelerated HF-rTMS treatment designs have the potential to acutely adjust deregulated sgACC neuronal networks in TRD patients.
Collapse
Affiliation(s)
- Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University , Ghent , Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Song YJC, Korgaonkar MS, Armstrong LV, Eagles S, Williams LM, Grieve SM. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging. PLoS One 2014; 9:e84825. [PMID: 24465436 PMCID: PMC3897382 DOI: 10.1371/journal.pone.0084825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/21/2013] [Indexed: 12/29/2022] Open
Abstract
Background The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA) axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD). However, the brainstem’s role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI), we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. Methods MDD patients (n = 95) and age- and gender-matched controls (n = 34) were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum), solitary tract (connecting brainstem to amygdala) and corticospinal tract (connecting brainstem to precentral cortex). Fractional anisotropy (FA) was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. Results MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test), which is a “bottom up” afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. Conclusions The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.
Collapse
Affiliation(s)
- Yun Ju C. Song
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
- Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia
| | - Mayuresh S. Korgaonkar
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
- Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia
| | - Lucy V. Armstrong
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
| | - Sarah Eagles
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
| | - Leanne M. Williams
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
- Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Stuart M. Grieve
- The Brain Dynamics Center, Sydney Medical School, The University of Sydney and Westmead Millennium Institute, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
39
|
El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol 2013; 4:146. [PMID: 24319431 PMCID: PMC3837246 DOI: 10.3389/fphar.2013.00146] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/05/2013] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequent and severe mental disorder. Since the discovery of antidepressant (AD) properties of the imipramine and then after of other tricyclic compounds, several classes of psychotropic drugs have shown be effective in treating major depressive disorder (MDD). However, there is a wide range of variability in response to ADs that might lead to non response or partial response or in increased rate of relapse or recurrence. The mechanisms of response to AD therapy are poorly understood, and few biomarkers are available than can predict response to pharmacotherapy. Here, we will first review markers that can be used to predict response to pharmacotherapy, such as markers of drug metabolism or blood-brain barrier (BBB) function, the activity of specific brain areas or neurotransmitter systems, hormonal dysregulations or plasticity, and related molecular targets. We will describe both clinical and preclinical studies and describe factors that might affect the expression of these markers, including environmental or genetic factors and comorbidities. This information will permit us to suggest practical recommendations and innovative treatment strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wissam El-Hage
- INSERM 930, Faculté de Sciences et Techniques, Université François Rabelais Tours, France ; Centre Hospitalier Régional Universitaire de Tours, Centre Expert Dépression Résistante, Fondation FondaMental Tours, France
| | | | | | | |
Collapse
|
40
|
Volpato C, Piccione F, Cavinato M, Duzzi D, Schiff S, Foscolo L, Venneri A. Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive-compulsive disorder. Neurocase 2013; 19:360-70. [PMID: 22554168 DOI: 10.1080/13554794.2012.667131] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) on psychopathological symptoms and resting state brain activity was assessed in a patient with obsessive-compulsive disorder (OCD). tDCS and rTMS had no effect on OC symptoms. tDCS, however, improved depression and anxiety. Functional magnetic resonance imaging at baseline showed an interhemispheric asymmetry with hyperactivation of the left and hypoactivation of the right anterior neural circuits. A reduction of interhemispheric imbalance was detected after tDCS but not after rTMS. tDCS seems to be more effective than rTMS in restoring interhemispheric imbalance and improving anxiety and depression in OCD.
Collapse
|
41
|
Kraus T, Kiess O, Hösl K, Terekhin P, Kornhuber J, Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul 2013; 6:798-804. [PMID: 23453934 DOI: 10.1016/j.brs.2013.01.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. METHODOLOGY 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. RESULTS In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. CONCLUSIONS The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients.
Collapse
Affiliation(s)
- Thomas Kraus
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany; Frankenalb-Klinik Engelthal, Clinic for Psychiatry, Psychotherapy, Psychosomatic Medicine, and Addiction Rehabilitation, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Conway CR, Chibnall JT, Gebara MA, Price JL, Snyder AZ, Mintun MA, Craig ADB, Cornell ME, Perantie DC, Giuffra LA, Bucholz RD, Sheline YI. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression. Brain Stimul 2013; 6:788-97. [PMID: 23485649 DOI: 10.1016/j.brs.2012.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/09/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) has antidepressant effects in treatment resistant major depression (TRMD); these effects are poorly understood. This trial examines associations of subacute (3 months) and chronic (12 months) VNS with cerebral metabolism in TRMD. OBJECTIVE (17)Fluorodeoxyglucose positron emission tomography was used to examine associations between 12-month antidepressant VNS response and cerebral metabolic rate for glucose (CMRGlu) changes at 3 and 12 months. METHODS Thirteen TRMD patients received 12 months of VNS. Depression assessments (Hamilton Depression Rating Scale [HDRS]) and PET scans were obtained at baseline (pre-VNS) and 3/12 months. CMRGlu was assessed in eight a priori selected brain regions (bilateral anterior insular [AIC], orbitofrontal [OFC], dorsolateral prefrontal [DLPFC], and anterior cingulate cortices [ACC]). Regional CMRGlu changes over time were studied in VNS responders (decreased 12 month HDRS by ≥50%) and nonresponders. RESULTS A significant trend (decreased 3 month CMRGlu) in the right DLPFC was observed over time in VNS responders (n = 9; P = 0.006). An exploratory whole brain analysis (P(uncorrected) = 0.005) demonstrated decreased 3 month right rostral cingulate and DLPFC CMRGlu, and increased 12 month left ventral tegmental CMRGlu in responders. CONCLUSIONS/LIMITATIONS VNS response may involve gradual (months in duration) brain adaptations. Early on, this process may involve decreased right-sided DLPFC/cingulate cortical activity; longer term effects (12 months) may lead to brainstem dopaminergic activation. Study limitations included: a) a small VNS nonresponders sample (N = 4), which limited conclusions about nonresponder CMRGlu changes; b) no control group; and, c) patients maintained their psychotropic medications.
Collapse
Affiliation(s)
- Charles R Conway
- Department of Psychiatry, Washington University, St. Louis, MO, USA; Department of Neurology and Psychiatry, Saint Louis University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rong PJ, Fang JL, Wang LP, Meng H, Liu J, Ma YG, Ben H, Li L, Liu RP, Huang ZX, Zhao YF, Li X, Zhu B, Kong J. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial. Altern Ther Health Med 2012; 12:255. [PMID: 23241431 PMCID: PMC3537743 DOI: 10.1186/1472-6882-12-255] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/23/2012] [Indexed: 01/24/2023]
Abstract
Background Depressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD) is far from satisfactory. Vagus nerve stimulation (VNS) is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response. This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention. Design One hundred twenty cases (60 males) of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS) and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period. Discussion This study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity), resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of methodologies in clinical trials of acupuncture treatment. Trials registration Clinical Trials. ChiCTR-TRC-11001201 http://www.chictr.org/cn/
Collapse
|
44
|
Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna) 2012; 120:821-7. [PMID: 23117749 DOI: 10.1007/s00702-012-0908-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Invasive vagus nerve stimulation has been demonstrated to be an effective treatment in major depressive episodes. Recently, a novel non-invasive method of stimulating the vagus nerve on the outer canal of the ear has been proposed. In healthy subjects, a prominent fMRI BOLD signal deactivation in the limbic system was found. The present pilot study investigates the effects of this novel technique of auricular transcutaneous electric nerve stimulation in depressed patients for the first time. A total of 37 patients suffering from major depression were included in two randomized sham controlled add-on studies. Patients were stimulated five times a week on a daily basis for the duration of 2 weeks. On days 0 and 14, the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI) were assessed. In contrast to sham-treated patients, electrically stimulated persons showed a significantly better outcome in the BDI. Mean decrease in the active treatment group was 12.6 (SD 6.0) points compared to 4.4 (SD 9.9) points in the sham group. HAMD score did not change significantly in the two groups. An antidepressant effect of a new transcutaneous auricular nerve stimulation technique has been shown for the first time in this controlled pilot study. Regarding the limitations of psychometric testing, the risk of unblinding for technical reasons, and the small sample size, further studies are necessary to confirm the present results and verify the practicability of tVNS in clinical fields.
Collapse
|
45
|
Bari AA, Pouratian N. Brain imaging correlates of peripheral nerve stimulation. Surg Neurol Int 2012; 3:S260-8. [PMID: 23230531 PMCID: PMC3514912 DOI: 10.4103/2152-7806.103016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/04/2022] Open
Abstract
Direct peripheral nerve stimulation is an effective treatment for a number of disorders including epilepsy, depression, neuropathic pain, cluster headache, and urological dysfunction. The efficacy of this stimulation is ultimately due to modulation of activity in the central nervous system. However, the exact brain regions involved in each disorder and how they are modulated by peripheral nerve stimulation is not fully understood. The use of functional neuroimaging such as SPECT, PET and fMRI in patients undergoing peripheral nerve stimulation can help us to understand these mechanisms. We review the literature for functional neuroimaging performed in patients implanted with peripheral nerve stimulators for the above-mentioned disorders. These studies suggest that brain activity in response to peripheral nerve stimulation is a complex interaction between the stimulation parameters, disease type and severity, chronicity of stimulation, as well as nonspecific effects. From this information we may be able to understand which brain structures are involved in the mechanism of peripheral nerve stimulation as well as define the neural substrates underlying these disorders.
Collapse
Affiliation(s)
- Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
46
|
Conway CR, Chibnall JT, Gangwani S, Mintun MA, Price JL, Hershey T, Giuffra LA, Bucholz RD, Christensen JJ, Sheline YI. Pretreatment cerebral metabolic activity correlates with antidepressant efficacy of vagus nerve stimulation in treatment-resistant major depression: a potential marker for response? J Affect Disord 2012; 139:283-90. [PMID: 22397889 PMCID: PMC3598572 DOI: 10.1016/j.jad.2012.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/05/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pretreatment brain activity in major depressive disorder correlates with response to antidepressant therapies, including pharmacotherapies and transcranial magnetic stimulation. The purpose of this trial was to examine whether pretreatment regional metabolic activity in selected regions of interest (ROIs) predicts antidepressant response following 12 months of vagus nerve stimulation (VNS) in 15 patients with treatment-resistant major depression (TRMD). METHODS Fluorodeoxyglucose positron emission tomography (FDG PET) was used to assess regional mean relative cerebral metabolic rate for glucose (CMRGlu) in four ROIs (anterior insular, orbitofrontal, anterior cingulate, and dorsolateral prefrontal cortices) at baseline (prior to VNS activation). Depression severity was assessed at baseline and after 12 months of VNS using the Hamilton Depression Rating Scale (HDRS), with response defined as ≥ 50% reduction in HDRS from baseline. RESULTS Baseline CMRGlu in the anterior insular cortex differentiated VNS responders (n=11) from nonresponders (n=4) and correlated with HDRS change (r=.64, p=.01). In a regression analysis, lower anterior insular cortex CMRGlu (p=.004) and higher orbitofrontal cortex CMRGlu (p=.047) together predicted HDRS change (R(2)=.58, p=.005). In a whole brain, voxel-wise analysis, baseline CMRGlu in the right anterior insular cortex correlated with HDRS change (r=.78, p=.001). LIMITATIONS Sample size was small, limiting statistical power; patients remained on their psychiatric medications; study was open-label and uncontrolled. CONCLUSIONS This preliminary study suggests that pretreatment regional CMRGlu may be useful in predicting response to VNS in TRMD patients.
Collapse
Affiliation(s)
- Charles R Conway
- Department of Psychiatry, Washington University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Furmaga H, Sadhu M, Frazer A. Comparison of ΔFosB immunoreactivity induced by vagal nerve stimulation with that caused by pharmacologically diverse antidepressants. J Pharmacol Exp Ther 2012; 341:317-25. [PMID: 22286499 PMCID: PMC3336814 DOI: 10.1124/jpet.111.188953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/26/2012] [Indexed: 01/12/2023] Open
Abstract
Vagal nerve stimulation (VNS) has been approved for treatment of refractory depression. However, there have been few, if any, studies directly comparing the effects produced by VNS in animals with those caused by antidepressants, particularly using clinically relevant stimulation parameters in nonanesthetized animals. In this study, ΔFosB immunohistochemistry was used to evaluate different brain regions activated by long-term administration of VNS. Effects of VNS were compared with those caused by sertraline or desipramine (DMI). Double-labeling of ΔFosB and serotonin was used to determine whether serotonergic neurons in the dorsal raphe nucleus (DRN) were activated by long-term VNS. VNS significantly increased ΔFosB staining in the nucleus tractus solitarius (NTS), parabrachial nucleus (PBN), locus ceruleus (LC), and DRN, as well as in many cortical and limbic areas of brain including those involved in mood and cognition. Most, but not all, of these effects were seen also upon long-term treatments of rats with sertraline or DMI. Some areas where VNS increased ΔFosB (e.g., the NTS, PBN, LC, and peripeduncular nucleus) were not affected significantly by either drug. Sertraline was similar to VNS in causing an increase in the DRN whereas DMI did not. Double-labeling of the DRN with ΔFosB and an antibody for serotonin revealed that only a small percentage of ΔFosB staining in the DRN colocalized with serotonergic neurons. The effects of VNS were somewhat more widespread than those caused by the antidepressants. The increases in ΔFosB produced by VNS were either equivalent to and/or more robust than those seen with antidepressants.
Collapse
Affiliation(s)
- Havan Furmaga
- Department of Pharmacology, the University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
48
|
Mohr P, Rodriguez M, Slavíčková A, Hanka J. The application of vagus nerve stimulation and deep brain stimulation in depression. Neuropsychobiology 2011; 64:170-81. [PMID: 21811087 DOI: 10.1159/000325225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/23/2011] [Indexed: 01/24/2023]
Abstract
Despite the progress in the pharmacotherapy of depression, there is a substantial proportion of treatment-resistant patients. Recently, reversible invasive stimulation methods, i.e. vagus nerve stimulation (VNS) and deep brain stimulation (DBS), have been introduced into the management of treatment-resistant depression (TRD). VNS has already received regulatory approval for TRD. This paper reviews the available clinical evidence and neurobiology of VNS and DBS in TRD. The principle of VNS is a stimulation of the left cervical vagus nerve with a programmable neurostimulator. VNS was examined in 4 clinical trials with 355 patients. VNS demonstrated steadily increasing improvement with full benefit after 6-12 months, sustained up to 2 years. Patients who responded best had a low-to-moderate antidepressant resistance. However, the primary results of the only controlled trial were negative. DBS involves stereotactical implantation of electrodes powered by a pulse generator into the specific brain regions. For depression, the targeted areas are the subthalamic nucleus, internal globus pallidus, ventral internal capsule/ventral striatum, the subgenual cingulated region, and the nucleus accumbens. Antidepressant effects of DBS were examined in case series with a total number of 50 TRD patients. Stimulation of different brain regions resulted in a reduction of depressive symptoms. The clinical data on the use of VNS and DBS in TRD are encouraging. The major contribution of the methods is a novel approach that allows for precise targeting of the specific brain areas, nuclei and circuits implicated in the etiopathogenesis of neuropsychiatric disorders. For clinical practice, it is necessary to identify patients who may best benefit from VNS or DBS.
Collapse
Affiliation(s)
- Pavel Mohr
- Prague Psychiatric Center, Charles University Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
49
|
Rizvi SJ, Donovan M, Giacobbe P, Placenza F, Rotzinger S, Kennedy SH. Neurostimulation therapies for treatment resistant depression: a focus on vagus nerve stimulation and deep brain stimulation. Int Rev Psychiatry 2011; 23:424-36. [PMID: 22200132 DOI: 10.3109/09540261.2011.630993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antidepressant treatments, including pharmacotherapy and psychotherapy, do not result in remission for the majority of patients with major depressive disorder. The high prevalence of treatment resistant depression (TRD) poses a significant issue for patients as well as both societal and economic costs. Due to the limited efficacy of existing therapies in this sub-population, alternative somatic treatments are being explored. Both vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are neurostimulation treatments for TRD. While VNS has Food Drug Administration approval as an adjunctive therapy for MDD, DBS is still in the experimental stages. This article will review the evidence supporting the clinical utility of these therapies.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Department of Psychiatry, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
50
|
A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011; 12:585-601. [PMID: 21897434 DOI: 10.1038/nrn3085] [Citation(s) in RCA: 699] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampal formation has been implicated in a growing number of disorders, from Alzheimer's disease and cognitive ageing to schizophrenia and depression. How can the hippocampal formation, a complex circuit that spans the temporal lobes, be involved in a range of such phenotypically diverse and mechanistically distinct disorders? Recent neuroimaging findings indicate that these disorders differentially target distinct subregions of the hippocampal circuit. In addition, some disorders are associated with hippocampal hypometabolism, whereas others show evidence of hypermetabolism. Interpreted in the context of the functional and molecular organization of the hippocampal circuit, these observations give rise to a unified pathophysiological framework of hippocampal dysfunction.
Collapse
|