1
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
2
|
Barreto C, Curtin A, Topoglu Y, Day-Watkins J, Garvin B, Foster G, Ormanoglu Z, Sheridan E, Connell J, Bennett D, Heffler K, Ayaz H. Prefrontal Cortex Responses to Social Video Stimuli in Young Children with and without Autism Spectrum Disorder. Brain Sci 2024; 14:503. [PMID: 38790481 PMCID: PMC11119834 DOI: 10.3390/brainsci14050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting individuals worldwide and characterized by deficits in social interaction along with the presence of restricted interest and repetitive behaviors. Despite decades of behavioral research, little is known about the brain mechanisms that influence social behaviors among children with ASD. This, in part, is due to limitations of traditional imaging techniques specifically targeting pediatric populations. As a portable and scalable optical brain monitoring technology, functional near infrared spectroscopy (fNIRS) provides a measure of cerebral hemodynamics related to sensory, motor, or cognitive function. Here, we utilized fNIRS to investigate the prefrontal cortex (PFC) activity of young children with ASD and with typical development while they watched social and nonsocial video clips. The PFC activity of ASD children was significantly higher for social stimuli at medial PFC, which is implicated in social cognition/processing. Moreover, this activity was also consistently correlated with clinical measures, and higher activation of the same brain area only during social video viewing was associated with more ASD symptoms. This is the first study to implement a neuroergonomics approach to investigate cognitive load in response to realistic, complex, and dynamic audiovisual social stimuli for young children with and without autism. Our results further confirm that new generation of portable fNIRS neuroimaging can be used for ecologically valid measurements of the brain function of toddlers and preschool children with ASD.
Collapse
Affiliation(s)
- Candida Barreto
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Adrian Curtin
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Yigit Topoglu
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | - Brigid Garvin
- St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Grant Foster
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Zuhal Ormanoglu
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | - James Connell
- School of Education, Drexel University, Philadelphia, PA 19104, USA
| | - David Bennett
- Department of Psychiatry, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Karen Heffler
- Department of Psychiatry, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Hasan Ayaz
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Autism Institute, Philadelphia, PA 19104, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA 19104, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
4
|
Folz J, Akdağ R, Nikolić M, van Steenbergen H, Kret ME. Facial mimicry and metacognitive judgments in emotion recognition are distinctly modulated by social anxiety and autistic traits. Sci Rep 2023; 13:9730. [PMID: 37322077 PMCID: PMC10272184 DOI: 10.1038/s41598-023-35773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Facial mimicry as well as the accurate assessment of one's performance when judging others' emotional expressions have been suggested to inform successful emotion recognition. Differences in the integration of these two information sources might explain alterations in the perception of others' emotions in individuals with Social Anxiety Disorder and individuals on the autism spectrum. Using a non-clinical sample (N = 57), we examined the role of social anxiety and autistic traits in the link between facial mimicry, or confidence in one's performance, and emotion recognition. While participants were presented with videos of spontaneous emotional facial expressions, we measured their facial muscle activity, asked them to label the expressions and indicate their confidence in accurately labelling the expressions. Our results showed that confidence in emotion recognition was lower with higher social anxiety traits even though actual recognition was not related to social anxiety traits. Higher autistic traits, in contrast, were associated with worse recognition, and a weakened link between facial mimicry and performance. Consequently, high social anxiety traits might not affect emotion recognition itself, but the top-down evaluation of own abilities in emotion recognition contexts. High autistic traits, in contrast, may be related to lower integration of sensorimotor simulations, which promote emotion recognition.
Collapse
Affiliation(s)
- Julia Folz
- Department of Cognitive Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.
| | - Rüya Akdağ
- Department of Cognitive Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Milica Nikolić
- Department of Cognitive Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk van Steenbergen
- Department of Cognitive Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Mariska E Kret
- Department of Cognitive Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Ramirez-Melendez R, Matamoros E, Hernandez D, Mirabel J, Sanchez E, Escude N. Music-Enhanced Emotion Identification of Facial Emotions in Autistic Spectrum Disorder Children: A Pilot EEG Study. Brain Sci 2022; 12:704. [PMID: 35741590 PMCID: PMC9221118 DOI: 10.3390/brainsci12060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The Autistic Spectrum Disorder (ASD) is characterized by a difficulty in expressing and interpreting others' emotions. In particular, people with ASD have difficulties when interpreting emotions encoded in facial expressions. In the past, music interventions have been shown to improve autistic individuals' emotional and social skills. The present study describes a pilot study to explore the usefulness of music as a tool for improving autistic children's emotion recognition in facial expressions. Twenty-five children (mean age = 8.8 y, SD = 1.24) with high-functioning ASD and normal hearing participated in the study consisting of four weekly sessions of 15 min each. Twenty-five participants were randomly divided into an experimental group (N = 14) and a control group (N = 11). During each session, participants in the experimental group were exposed to images of facial expressions for four emotions (happy, sad, angry, and fear). Images were shown in three conditions, with the second condition consisting of music of congruent emotion with the shown images. Participants in the control group were shown only images in all three conditions. For six participants in each group, EEG data were acquired during the sessions, and instantaneous emotional responses (arousal and valence values) were extracted from the EEG data. Inter- and intra-session emotion identification improvement was measured in terms of verbal response accuracy, and EEG response differences were analyzed. A comparison of the verbal responses of the experimental group pre- and post-intervention showed a significant (p = 0.001) average improvement in emotion identification accuracy responses of 26% (SD = 3.4). Furthermore, emotional responses of the experimental group at the end of the study showed a higher correlation with the emotional stimuli being presented, compared with their emotional responses at the beginning of the study. No similar verbal responses improvement or EEG-stimuli correlation was found in the control group. These results seem to indicate that music can be used to improve both emotion identification in facial expressions and emotion induction through facial stimuli in children with high-functioning ASD.
Collapse
Affiliation(s)
| | - Elisabet Matamoros
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (E.M.); (D.H.)
| | - Davinia Hernandez
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (E.M.); (D.H.)
| | - Julia Mirabel
- Centre Carrilet, 08031 Barcelona, Spain; (J.M.); (E.S.)
| | | | - Nuria Escude
- Institut Catalá de Musicoterapia, 08021 Barcelona, Spain;
| |
Collapse
|
6
|
Sader M, Williams JHG, Waiter GD. A meta-analytic investigation of grey matter differences in anorexia nervosa and autism spectrum disorder. EUROPEAN EATING DISORDERS REVIEW 2022; 30:560-579. [PMID: 35526083 PMCID: PMC9543727 DOI: 10.1002/erv.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Recent research reports Anorexia Nervosa (AN) to be highly dependent upon neurobiological function. Some behaviours, particularly concerning food selectivity are found in populations with both Autism Spectrum Disorder (ASD) and AN, and there is a proportionally elevated number of anorexic patients exhibiting symptoms of ASD. We performed a systematic review of structural MRI literature with the aim of identifying common structural neural correlates common to both AN and ASD. Across 46 ASD publications, a meta‐analysis of volumetric differences between ASD and healthy controls revealed no consistently affected brain regions. Meta‐analysis of 23 AN publications revealed increased volume within the orbitofrontal cortex and medial temporal lobe, and adult‐only AN literature revealed differences within the genu of the anterior cingulate cortex. The changes are consistent with alterations in flexible reward‐related learning and episodic memory reported in neuropsychological studies. There was no structural overlap between ASD and AN. Findings suggest no consistent neuroanatomical abnormality associated with ASD, and evidence is lacking to suggest that reported behavioural similarities between those with AN and ASD are due to neuroanatomical structural similarities. Findings related to neuroanatomical structure in AN/ASD demonstrate overlap and require revisiting. Meta‐analytic findings show structural increase/decrease versus healthy controls (LPFC/MTL/OFC) in AN, but no clusters found in ASD. The neuroanatomy associated with ASD is inconsistent, but findings in AN reflect condition‐related impairment in executive function and sociocognitive behaviours.
Collapse
Affiliation(s)
- Michelle Sader
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justin H G Williams
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Safar K, Vandewouw MM, Pang EW, de Villa K, Crosbie J, Schachar R, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Lerch JP, Anagnostou E, Taylor MJ. Shared and Distinct Patterns of Functional Connectivity to Emotional Faces in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder Children. Front Psychol 2022; 13:826527. [PMID: 35356352 PMCID: PMC8959934 DOI: 10.3389/fpsyg.2022.826527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Impairments in emotional face processing are demonstrated by individuals with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which is associated with altered emotion processing networks. Despite accumulating evidence of high rates of diagnostic overlap and shared symptoms between ASD and ADHD, functional connectivity underpinning emotion processing across these two neurodevelopmental disorders, compared to typical developing peers, has rarely been examined. The current study used magnetoencephalography to investigate whole-brain functional connectivity during the presentation of happy and angry faces in 258 children (5–19 years), including ASD, ADHD and typically developing (TD) groups to determine possible differences in emotion processing. Data-driven clustering was also applied to determine whether the patterns of connectivity differed among diagnostic groups. We found reduced functional connectivity in the beta band in ASD compared to TD, and a further reduction in the ADHD group compared to the ASD and the TD groups, across emotions. A group-by-emotion interaction in the gamma frequency band was also observed. Greater connectivity to happy compared to angry faces was found in the ADHD and TD groups, while the opposite pattern was seen in ASD. Data-driven subgrouping identified two distinct subgroups: NDD-dominant and TD-dominant; these subgroups demonstrated emotion- and frequency-specific differences in connectivity. Atypicalities in specific brain networks were strongly correlated with the severity of diagnosis-specific symptoms. Functional connectivity strength in the beta network was negatively correlated with difficulties in attention; in the gamma network, functional connectivity strength to happy faces was positively correlated with adaptive behavioural functioning, but in contrast, negatively correlated to angry faces. Our findings establish atypical frequency- and emotion-specific patterns of functional connectivity between NDD and TD children. Data-driven clustering further highlights a high degree of comorbidity and symptom overlap between the ASD and ADHD children.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Muhammed Ayub
- Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review. SENSORS 2022; 22:s22041649. [PMID: 35214551 PMCID: PMC8875834 DOI: 10.3390/s22041649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities are used in the analyzed studies, including facial expressions, prosody of speech, and physiological signals. Regarding representation models, the basic emotions are the most frequently recognized, especially happiness, fear, and sadness. Both single-channel and multichannel approaches are applied, with a preference for the first one. For multimodal recognition, early fusion was the most frequently applied. SVM and neural networks were the most popular for building classifiers. Qualitative analysis revealed important clues on participant group construction and the most common combinations of modalities and methods. All channels are reported to be prone to some disturbance, and as a result, information on a specific symptoms of emotions might be temporarily or permanently unavailable. The challenges of proper stimuli, labelling methods, and the creation of open datasets were also identified.
Collapse
|
9
|
Costa C, Cristea IA, Dal Bò E, Melloni C, Gentili C. Brain activity during facial processing in autism spectrum disorder: an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies. J Child Psychol Psychiatry 2021; 62:1412-1424. [PMID: 33723876 DOI: 10.1111/jcpp.13412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Though aberrant face processing is a hallmark of autistic spectrum disorder (ASD), findings on accompanying brain activity are divergent. Therefore, we conducted an activation likelihood estimation (ALE) meta-analysis of studies examining brain activity during face processing. METHODS We searched PubMed and PsycINFO using combinations of terms as 'fMRI', 'Autism Spectrum Disorder', 'Face Perception'. Eligible studies reported on DSM-diagnosed ASD individuals, compared to controls (HC), using face stimuli presented in fMRI and reporting whole-brain analysis coordinates. We compared two approaches: 'convergence of differences' (primary analysis) using study-level coordinates from ASD vs. HC contrasts, and 'differences in convergence' (secondary) pooling coordinates within each group separately, and contrasting the resultant ALE maps. RESULTS Thirty-five studies (655 ASD and 668 HC) were included. Primary analysis identified a cluster in amygdala/parahippocampus where HC showed greater convergence of activation. Secondary analysis yielded no significant results. CONCLUSIONS Results suggest that ASD dysfunction in face processing relies on structures involved in emotional processing rather than perception. We also demonstrate that the two ALE methodologies lead to divergent results.
Collapse
Affiliation(s)
- Cristiano Costa
- Department of General Psychology, University of Padua, Padua, Italy
| | - Ioana Alina Cristea
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Dal Bò
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Caterina Melloni
- Department of General Psychology, University of Padua, Padua, Italy
| | - Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| |
Collapse
|
10
|
Keating CT, Sowden S, Cook JL. Comparing internal representations of facial expression kinematics between autistic and non-autistic adults. Autism Res 2021; 15:493-506. [PMID: 34846102 DOI: 10.1002/aur.2642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
Recent developments suggest that autistic individuals require dynamic angry expressions to have a higher speed in order for them to be successfully identified. Therefore, it is plausible that autistic individuals do not have a 'deficit' in angry expression recognition, but rather their internal representation of these expressions is characterised by very high-speed movement. In this study, matched groups of autistic and non-autistic adults completed a novel emotion-based task which employed dynamic displays of happy, angry and sad point light facial (PLF) expressions. On each trial, participants moved a slider to manipulate the speed of a PLF stimulus until it moved at a speed that, in their 'mind's eye', was typical of happy, angry or sad expressions. Participants were shown three different types of PLFs-those showing the full-face, only the eye region, and only the mouth region, wherein the latter two were included to test whether differences in facial information sampling underpinned any dissimilarities in speed attributions. Across both groups, participants attributed the highest speeds to angry, then happy, then sad, facial motion. Participants increased the speed of angry and happy expressions by 41% and 27% respectively and decreased the speed of sad expressions by 18%. This suggests that participants have 'caricatured' internal representations of emotion, wherein emotion-related kinematic cues are over-emphasised. There were no differences between autistic and non-autistic individuals in the speeds attributed to full-face and partial-face angry, happy and sad expressions respectively. Consequently, we find no evidence that autistic adults possess atypically fast internal representations of anger.
Collapse
Affiliation(s)
| | - Sophie Sowden
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Elucidating the neural correlates of emotion recognition in children with sub-clinical anxiety. J Psychiatr Res 2021; 143:75-83. [PMID: 34461352 DOI: 10.1016/j.jpsychires.2021.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The pervasiveness of subclinical anxiety in children, highlights the need to identify its neurobiological underpinnings to better inform interventions. Given the now well-established link between aberrant emotion processing and anxiety disorders and yet limited neurobiologically-informed research in this area, this study examined the neural correlates of emotion recognition (ER) in children with sub-clinical anxiety. METHOD Ninety children (aged 9-11 years) with sub-clinical anxiety, completed an emotion recognition task whilst undergoing functional magnetic resonance imaging. The ER task required participants to match shapes and match emotional faces in the context of shape distractors. Participants also completed the Spence Children's Anxiety Scale (SCAS). RESULTS Greater blood oxygenation level dependent (BOLD) changes associated with ER were observed in the lateral occipital cortex, middle frontal gyrus, superior middle frontal gyrus, inferior frontal gyrus, superior parietal lobule, inferior parietal lobule, superior temporal gyrus, and middle temporal gyrus symmetrically. The clusters also included posterior cingulate cortex, insula, hippocampus, amygdala and cerebellum during matching emotions than those matching shapes. Females showed greater BOLD changes associated with ER than males in the right middle frontal gyrus. The BOLD changes associated with ER in the right middle frontal gyrus and right insula were greater in children with SCAS subscale (physical injury fear) scores in the normal range than those with elevated scores. DISCUSSION The findings in this study implicate the right middle frontal gyrus and insula as key regions in the neurobiological underpinnings of sub-clinical anxiety as they relate to attention impairments in anxious children. CONCLUSION The results of this study indicate there are gender differences in young participants during emotion processing and provides a neurobiological target for attention impairments in anxious children.
Collapse
|
12
|
Ibrahim K, Soorya LV, Halpern DB, Gorenstein M, Siper PM, Wang AT. Social cognitive skills groups increase medial prefrontal cortex activity in children with autism spectrum disorder. Autism Res 2021; 14:2495-2511. [PMID: 34486810 DOI: 10.1002/aur.2603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Few studies have examined the neural mechanisms of change following social skills interventions for children with autism spectrum disorder (ASD). This study examined the neural effects of social cognitive skills groups during functional MRI (fMRI) tasks of irony comprehension and eye gaze processing in school-aged children with ASD. Verbally fluent children (ages 8-11) were randomized to social cognitive skills groups or facilitated play comparison groups. Behavioral assessments and fMRI scans were obtained at baseline and endpoint (12 weeks). During fMRI, children completed two separate tasks to engage social cognition circuitry: comprehension of potentially ironic scenarios (n = 34) and viewing emotionally expressive faces with direct or averted gaze (n = 24). Whole-brain analyses were conducted to examine neural changes following treatment. Regression analyses were also conducted to explore the relationship between neural and behavioral changes. When comparing the two groups directly, the social cognitive skills group showed greater increases in activity in the medial prefrontal cortex (mPFC), implicated in theory of mind, relative to the comparison group for both irony comprehension and gaze processing tasks. Increased mPFC activity during the irony task was associated with improvement in social functioning on the Social Responsiveness Scale across both groups. Findings indicate that social cognitive skills interventions may increase activity in regions associated with social cognition and mentalizing abilities. LAY SUMMARY: Social skills groups are a common intervention for school-aged children with ASD. However, few studies have examined the neural response to social skills groups in school-aged children with ASD. Here, we report on a study evaluating neural outcomes from an empirically supported social cognitive skills training curriculum using fMRI. This study seeks to understand the effects of targeting emotion recognition and theory of mind on the brain circuitry involved in social cognition in verbally fluent children ages 8-11. Results indicate increased neural activity in the mPFC, a region considered to be a central hub of the "social brain," in children randomized to social cognitive skills groups relative to a comparison group that received a high-quality, child-directed play approach. In addition, increased activation in the mPFC during an irony comprehension task was associated with gains in social functioning across both groups from pre- to post-treatment. This is the first fMRI study of social skills treatment outcomes following a randomized trial with an active treatment condition in school-aged children with ASD.
Collapse
Affiliation(s)
- Karim Ibrahim
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Latha V Soorya
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Danielle B Halpern
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Gorenstein
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paige M Siper
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - A Ting Wang
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Enge A, Abdel Rahman R, Skeide MA. A meta-analysis of fMRI studies of semantic cognition in children. Neuroimage 2021; 241:118436. [PMID: 34329724 DOI: 10.1016/j.neuroimage.2021.118436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Our capacity to derive meaning from things that we see and words that we hear is unparalleled in other animal species and current AI systems. Despite a wealth of functional magnetic resonance imaging (fMRI) studies on where different semantic features are processed in the adult brain, the development of these systems in children is poorly understood. Here we conducted an extensive database search and identified 50 fMRI experiments investigating semantic world knowledge, semantic relatedness judgments, and the differentiation of visual semantic object categories in children (total N = 1,018, mean age = 10.1 years, range 4-15 years). Synthesizing the results of these experiments, we found consistent activation in the bilateral inferior frontal gyri (IFG), fusiform gyri (FG), and supplementary motor areas (SMA), as well as in the left middle and superior temporal gyri (MTG/STG). Within this system, we found little evidence for age-related changes across childhood and high overlap with the adult semantic system. In sum, the identification of these cortical areas provides the starting point for further research on the mechanisms by which the developing brain learns to make sense of its environment.
Collapse
Affiliation(s)
- Alexander Enge
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany.
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Michael A Skeide
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Pearcey S, Gordon K, Chakrabarti B, Dodd H, Halldorsson B, Creswell C. Research Review: The relationship between social anxiety and social cognition in children and adolescents: a systematic review and meta-analysis. J Child Psychol Psychiatry 2021; 62:805-821. [PMID: 32783234 DOI: 10.1111/jcpp.13310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Childhood Social Anxiety Disorder (SAD) is common and impairing. The recommended treatment is a disorder specific form of cognitive behavioural therapy (CBT) that includes social skills training and, whilst they appear to be more effective than more general treatments, it is not clear whether social skills training is the critical component involved in improved outcomes, particularly given that evidence for the relationship between social anxiety and social skills deficits in children is inconsistent. This may be partly due to an overlap in their observable features, and because the nature of the association may vary in different contexts (e.g. according to child age). An alternative approach is to examine the association between social anxiety and the social cognitive capacities that underpin social skills. This paper aims to examine the association between social anxiety and social cognition in children and adolescents, and examine conceptual and methodological moderators of this relationship. METHODS Papers published between 1980 and 2019 were screened systematically. Fifty studies were identified from which an effect size could be calculated for the relationship between social anxiety and social cognition, including 15,411 children and adolescents. RESULTS An overall significant, but moderate effect (r = -.15) was identified, where increased social anxiety was associated with lower social cognitive ability. Moderation analyses revealed specific associations within studies examining social anxiety among participants with and without ASD who were older than 7 years old, and studies assessing the relationship between social anxiety and specific aspects of Theory of Mind (ToM). No significant association was identified between social anxiety and emotion recognition. CONCLUSIONS Significant associations between social anxiety and social cognitive abilities appear to be accounted for by elevated social anxiety among children with ASD, and those with difficulties in specific aspects of ToM but not broader social skills, such as emotion recognition. This reinforces the importance of accurately identifying and treating social anxiety within ASD populations. In addition, treatments for social anxiety among neurotypical populations may benefit from targeting particular aspects of ToM rather than emotion recognition and other broad social skills.
Collapse
Affiliation(s)
- Samantha Pearcey
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Kate Gordon
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.,Berkshire Healthcare NHS Foundation Trust, Berkshire, UK
| | - Bhismadev Chakrabarti
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.,Department of Psychology, Ashoka University, Sonipat, India
| | - Helen Dodd
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Brynjar Halldorsson
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychology, Reykjavik University, Reykjavik, Iceland
| | - Cathy Creswell
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Wong TYQ, Yap MJ, Obana T, Asplund CL, Teh EJ. Brief Report: Emotional Picture and Language Processing in Adults with Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:435-446. [PMID: 33660139 DOI: 10.1007/s10803-021-04920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
There is currently limited research and a lack of consensus on emotional processing impairments among adults with autism spectrum disorder (ASD). The present pilot study sought to characterize the extent to which adults with ASD are impaired in processing emotions in both words and pictures. Ten adults with ASD rated word and picture stimuli on emotional valence and arousal. Their ratings were compared to normative data for both stimuli sets using item-level correlations. Adults with ASD rank-ordered stimuli similarly to typically developing individuals, demonstrating relatively typical understanding of emotional words and pictures. However, they used a narrower range of the scales which suggests more subtle impairments affecting emotion-processing. Future directions arising from the findings of this pilot study are discussed.
Collapse
Affiliation(s)
- Tammy Y Q Wong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Melvin J Yap
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Takashi Obana
- Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Christopher L Asplund
- Department of Psychology, National University of Singapore, Singapore, Singapore.,Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Elizabeth J Teh
- Department of Otolaryngology, Division of Graduate Medical Studies, Yong Loo Lin School of Medicine, National University of Singapore, MD3, Level 2, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
16
|
Zhou T, Kang J, Li Z, Chen H, Li X. Transcranial direct current stimulation modulates brain functional connectivity in autism. NEUROIMAGE-CLINICAL 2021; 28:102500. [PMID: 33395990 PMCID: PMC7695891 DOI: 10.1016/j.nicl.2020.102500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/28/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in social interactions, impairments in language and communication, and highly restricted behavioral interests. Transcranial direct current stimulation (tDCS) is a widely used form of noninvasive stimulation and may have therapeutic potential for ASD. So far, despite the widespread use of this technique in the neuroscience field, its effects on network-level neural activity and the underlying mechanisms of any effects are still unclear. In the present study, we used electroencephalography (EEG) to investigate tDCS induced brain network changes in children with ASD before and after active and sham stimulation. We recorded 5 min of resting state EEG before and after a single session of tDCS (of approximately 20 min) over dorsolateral prefrontal cortex (DLPFC). Two network-based methods were applied to investigate tDCS modulation on brain networks: 1) temporal network dynamics were analyzed by comparing "flexibility" changes before vs after stimulation, and 2) frequency specific network changes were identified using non-negative matrix factorization (NMF). We found 1) an increase in network flexibility following tDCS (rapid network configuration of dynamic network communities), 2) specific increase in interhemispheric connectivity within the alpha frequency band following tDCS. Together, these results demonstrate that tDCS could help modify both local and global brain network dynamics, and highlight stimulation-induced differences in the manifestation of network reconfiguration. Meanwhile, frequency-specific subnetworks, as a way to index local and global information processing, highlight the core modulatory effects of tDCS on the modular architecture of the functional connectivity patterns within higher frequency bands.
Collapse
Affiliation(s)
- Tianyi Zhou
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Zheng Li
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - He Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
Kirchner RM, Walton KM. Symptoms of Autism Spectrum Disorder in Children With Down Syndrome and Williams Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2021; 126:58-74. [PMID: 33370791 DOI: 10.1352/1944-7558-126.1.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/17/2020] [Indexed: 06/12/2023]
Abstract
Research suggests that people with a Williams syndrome (WS) or Down syndrome (DS) diagnosis display an increased prevalence of autism spectrum disorder (ASD) when compared to the general population. This study aimed to examine characteristics of ASD in a group of children with DS or WS. Results suggest that children with DS and WS exhibit higher levels of autism symptoms than the general population, particularly in the area of unusual behaviors, and that these elevations are not solely due to deficits in adaptive behavior. There are many possible explanations for these elevations, such as issues with measurement, etiological overlap, or similar behavioral phenotypes. More research is needed to further our understanding of the overlap of ASD symptoms in these populations.
Collapse
|
18
|
Ammons CJ, Winslett ME, Kana RK. Neural responses to viewing human faces in autism spectrum disorder: A quantitative meta-analysis of two decades of research. Neuropsychologia 2020; 150:107694. [PMID: 33249169 DOI: 10.1016/j.neuropsychologia.2020.107694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/15/2022]
Abstract
The human face communicates a wealth of socially relevant information such as person identity, emotion, and intention. A consistent behavioral finding in autism spectrum disorder (ASD) is reduced attention to or difficulty drawing meaning from faces. However, neuroimaging research into the neural correlates of face processing differences in ASD has returned mixed results. While many studies find hypo-activation or hypo-connectivity of core and extended face network regions, others show hyper-activation, equal activation, or even activation shifted to object-selective fusiform gyrus (FG) regions in ASD during face processing. This study consolidates two decades of literature to reveal common and consistent patterns of brain activation when viewing human faces in ASD. It also addresses whether face processing in ASD is routinely shifted to object-centric regions of the FG. To do so, we conducted an extensive search of the neuroimaging literature according to PRISMA guidelines. Peak activation coordinates from a final set of 23 studies, yielding a sample of 713 participants (338 ASD), were included for quantitative meta-analysis using Activation Likelihood Estimation (ALE). ASD within-group results across studies revealed a single activation cluster in the left FG, which presented laterally to the mid-fusiform sulcus (MFS). Typically developing groups displayed common activations across core and extended face network regions. Exploratory analysis of between group findings from the literature did not yield significant results. Overall, our results suggest that individuals with ASD consistently activate at least one typical face network region, the left FG, when processing faces and this activation is not routinely shifted to object-centric areas of the FG.
Collapse
Affiliation(s)
- Carla J Ammons
- Department of Psychology, University of Alabama at Birmingham, USA; Department of Neuropsychology, Children's Healthcare of Atlanta, USA; Emory University School of Medicine, USA.
| | | | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, USA; Department of Psychology and the Center for Innovative Research in Autism, University of Alabama, USA.
| |
Collapse
|
19
|
Samaey C, Van der Donck S, van Winkel R, Boets B. Facial Expression Processing Across the Autism-Psychosis Spectra: A Review of Neural Findings and Associations With Adverse Childhood Events. Front Psychiatry 2020; 11:592937. [PMID: 33281648 PMCID: PMC7691238 DOI: 10.3389/fpsyt.2020.592937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and primary psychosis are classified as distinct neurodevelopmental disorders, yet they display overlapping epidemiological, environmental, and genetic components as well as endophenotypic similarities. For instance, both disorders are characterized by impairments in facial expression processing, a crucial skill for effective social communication, and both disorders display an increased prevalence of adverse childhood events (ACE). This narrative review provides a brief summary of findings from neuroimaging studies investigating facial expression processing in ASD and primary psychosis with a focus on the commonalities and differences between these disorders. Individuals with ASD and primary psychosis activate the same brain regions as healthy controls during facial expression processing, albeit to a different extent. Overall, both groups display altered activation in the fusiform gyrus and amygdala as well as altered connectivity among the broader face processing network, probably indicating reduced facial expression processing abilities. Furthermore, delayed or reduced N170 responses have been reported in ASD and primary psychosis, but the significance of these findings is questioned, and alternative frequency-tagging electroencephalography (EEG) measures are currently explored to capture facial expression processing impairments more selectively. Face perception is an innate process, but it is also guided by visual learning and social experiences. Extreme environmental factors, such as adverse childhood events, can disrupt normative development and alter facial expression processing. ACE are hypothesized to induce altered neural facial expression processing, in particular a hyperactive amygdala response toward negative expressions. Future studies should account for the comorbidity among ASD, primary psychosis, and ACE when assessing facial expression processing in these clinical groups, as it may explain some of the inconsistencies and confound reported in the field.
Collapse
Affiliation(s)
- Celine Samaey
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
| | - Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Ruud van Winkel
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
- University Psychiatric Center (UPC), KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Blink and You Will Miss It: a Core Role for Fast and Dynamic Visual Processing in Social Impairments in Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00220-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Vandewouw MM, Choi EJ, Hammill C, Lerch JP, Anagnostou E, Taylor MJ. Changing Faces: Dynamic Emotional Face Processing in Autism Spectrum Disorder Across Childhood and Adulthood. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:825-836. [PMID: 33279458 DOI: 10.1016/j.bpsc.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is classically associated with poor emotional face processing. Few studies, however, have used more ecological dynamic stimuli. We contrasted functional magnetic resonance imaging measures of dynamic emotional face processing in ASD and typically developing (TD) cohorts across a wide age range to determine if the processing and age-related trajectories differed between participants with and without ASD. METHODS Functional magnetic resonance imaging data collected from 200 participants (5-42 years old; 107 in ASD cohort, 93 in TD cohort) during the presentation of dynamic emotional faces (neutral-to-happy, neutral-to-angry) and dynamic flowers (closed-to-open) were analyzed. Group differences and group-by-age interactions in the faces versus flowers and between emotion contrasts were investigated. RESULTS Differences in activation between dynamic faces and flowers in occipital regions, including the fusiform gyri, were reduced in the ASD group. Contrasting the two emotions, ASD compared with TD participants showed increased engagement of the precentral, postcentral, and superior temporal gyri to happy faces and increased activation to angry faces occipitally. Emotion processing regions, such as insula, temporal pole, and frontal regions, showed increased recruitment with age to happy faces compared with both angry faces and flowers in the TD group, but decreased recruitment with age in the ASD group. CONCLUSIONS Using dynamic stimuli, we demonstrated that participants with ASD processed faces similarly to nonface stimuli, and age-related atypicalities were more pronounced to happy faces in participants with ASD. We demonstrated emotion-specific atypicalities in a large group of participants with ASD that underscore persistent difficulties from childhood into mid-adulthood.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Eun Jung Choi
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada
| | - Christopher Hammill
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Characterizing Olfactory Function in Children with Autism Spectrum Disorder and Children with Sensory Processing Dysfunction. Brain Sci 2020; 10:brainsci10060362. [PMID: 32531995 PMCID: PMC7348741 DOI: 10.3390/brainsci10060362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
Abnormalities in olfactory function have been identified in a number of neurological and psychiatric disorders, including Parkinson's disease and schizophrenia. However, little is known about olfactory function in autism spectrum disorder (ASD). The present study aims to assess the olfactory profiles of children with ASD, compared to an age- and sex-matched comparison group of typically developing children and a second clinical control group consisting of non-ASD children with sensory processing dysfunction (SPD). Participants completed a battery of sensory and behavioral assessments including olfactory tasks (Sniffin' Sticks Threshold Test and self-reported valence ratings for two target odorants (phenylethyl alcohol and vanillin) and the University of Pennsylvania Smell Identification Test), and an autism evaluation (Autism Diagnostic Observation Schedule-2). Children with ASD showed intact odor detection with reduced odor identification ability. Poor odor identification was significantly correlated with autism symptom severity. Children with SPD demonstrated reduced odor detection and identification ability. These findings provide evidence for differential patterns of smell processing among ASD and non-ASD neurodevelopmental disorders. Future studies are needed to determine whether the association of impaired olfaction and increased autism symptoms is due to shared etiology.
Collapse
|
23
|
Yasuno F, Makinodan M, Takahashi M, Matsuoka K, Yoshikawa H, Kitamura S, Ishida R, Kishimoto N, Miyasaka T, Kichikawa K, Kishimoto T. Microstructural Anomalies Evaluated by Neurite Orientation Dispersion and Density Imaging Are Related to Deficits in Facial Emotional Recognition via Perceptual-Binding Difficulties in Autism Spectrum Disorder. Autism Res 2020; 13:729-740. [PMID: 32048810 DOI: 10.1002/aur.2280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 11/06/2022]
Abstract
The integration of visual features is important for recognizing objects as a coherent whole, a key domain of difficulty in autism spectrum disorder (ASD). We tested the hypothesis that ASD patients exhibit difficulties in facial emotional recognition via perceptual binding difficulties due to weak coherence. We assessed 18 ASD and 27 typically developing individuals for their ability to identify emotional expressions from faces in pictures moving behind a narrow vertical and horizontal slit. In this task, only a single local piece of facial information was provided at any one time through the slit. Using a voxel-based analysis of neurite-orientation dispersion and density imaging (NODDI), we examined the relationship between NODDI index values at each voxel and the behavioral performance of ASD patients in the slit-viewing paradigm. ASD patients demonstrated impaired recognition of facial emotional expression only in horizontal slit-viewing. This deficit was associated with deficits in communication ability. Voxel-based analysis revealed significant negative correlations between behavioral deficits in horizontal slit-viewing and NODDI index values in clusters including the ventral occipital complex region, superior temporal/parietal association areas, and forceps major of the corpus callosum. Our results indicated deficits for the first time in perceptual integration of facial expression across hemispheres in ASD patients due to microstructural disturbances in the corpus callosum and areas related to viewing of the human face. This may underscore the difficulties faced by ASD patients in understanding the emotions of other people, contributing to impairments in communication ability in ASD patients. Autism Res 2020, 13: 729-740. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We assessed ASD and typically developing individuals for their ability to identify emotional expressions from faces in pictures moving behind a narrow vertical and horizontal slit. ASD patients demonstrated impaired recognition of facial emotional expression only in horizontal slit-viewing. Voxel-based analysis revealed significant negative correlations between behavioral deficits and NODDI index values in clusters including the corpus callosum. Our results indicated deficits in perceptual integration of facial expression across hemispheres in ASD patients potentially resulting from microstructural disturbances.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan.,Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | | | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | | | | |
Collapse
|
24
|
Expression Recognition Difficulty Is Associated with Social But Not Attention-to-Detail Autistic Traits and Reflects Both Alexithymia and Perceptual Difficulty. J Autism Dev Disord 2020; 49:4559-4571. [PMID: 31414264 DOI: 10.1007/s10803-019-04158-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autistic people often show difficulty with facial expression recognition. However, the degree of difficulty varies widely, which might reflect varying symptom profiles. We examined three domains of autistic traits in the typical population and found that more autistic-like social skills were associated with greater difficulty labelling expressions, and more autistic-like communication was associated with greater difficulty labelling and perceptually discriminating between expressions. There were no associations with autistic-like attention to detail. We also found that labelling, but not perceptual, difficulty was mediated by alexithymia. We found no evidence that labelling or perceptual difficulty was mediated by weakened adaptive coding. Results suggest expression recognition varies between the sub-clinical expressions of autistic symptom domains and reflects both co-occurring alexithymia and perceptual difficulty.
Collapse
|
25
|
Mohajer B, Masoudi M, Ashrafi A, Mohammadi E, Bayani Ershadi AS, Aarabi MH, Uban KA. Structural white matter alterations in male adults with high functioning autism spectrum disorder and concurrent depressive symptoms; a diffusion tensor imaging study. J Affect Disord 2019; 259:40-46. [PMID: 31437700 DOI: 10.1016/j.jad.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD), a prevalent developmental condition, is associated with comorbid mood disorders, most importantly depression. Here, we explored the underlying association between brain white matter microstructural integrity, assessed by diffusion tensor imaging (DTI), and depressive symptoms, in male adults with high-functioning ASD. METHOD To assess our main purpose, Autism Brain Imaging Data Exchange II dataset was used to acquire brain diffusion imaging from 26 adult male patients with ASD ranging from 18 to 62 years of age, and 26 age and gender-matched typically developed control subjects. Participants were evaluated for depressive symptoms manifestation by the Beck Depression Index (BDI). DWI images were preprocessed and analyzed for DTI scalers in the "ExploreDTI" toolbox. Adjusted linear regression models were used. Association between normalized BDI score and its interaction with diagnosis, as predictors, and measures of fractional anisotropy (FA) and mean diffusivity (MD) of regions of interest according to Mori atlas was assessed. RESULT Significant lower microstructural integrity of white matter was found in association with higher BDI scores in ASD group, mainly in regions of anterior limb of internal capsule (ALIC) and corona radiata. Also, a statistically significant positive interaction between BDI and ASD was seen in FA of left ALIC. DISCUSSION Considering similar regional brain white matter involvement with the imaging studies of depression in the typically developed population, we propose that these alterations of white matter tracts in depressive symptoms of adult ASD subjects might be, at least, similar to depression in typically developed population.
Collapse
Affiliation(s)
- Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Masoudi
- Faculty of medicine, Tehran university of medical science, Tehran, Iran
| | - Agaah Ashrafi
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mohammadi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Kristina A Uban
- Program in Public Health, University of California Irvine, Irvine, USA
| |
Collapse
|
26
|
Huang WC, Chen Y, Page DT. Genetic Suppression of mTOR Rescues Synaptic and Social Behavioral Abnormalities in a Mouse Model of Pten Haploinsufficiency. Autism Res 2019; 12:1463-1471. [PMID: 31441226 PMCID: PMC7141489 DOI: 10.1002/aur.2186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Heterozygous mutations in PTEN, which encodes a negative regulator of the mTOR and β-catenin signaling pathways, cause macrocephaly/autism syndrome. However, the neurobiological substrates of the core symptoms of this syndrome are poorly understood. Here, we investigate the relationship between cerebral cortical overgrowth and social behavior deficits in conditional Pten heterozygous female mice (Pten cHet) using Emx1-Cre, which is expressed in cortical pyramidal neurons and a subset of glia. We found that conditional heterozygous mutation of Ctnnb1 (encoding β-catenin) suppresses Pten cHet cortical overgrowth, but not social behavioral deficits, whereas conditional heterozygous mutation of Mtor suppresses social behavioral deficits, but not cortical overgrowth. Neuronal activity in response to social cues and excitatory synapse markers are elevated in the medial prefrontal cortex (mPFC) of Pten cHet mice, and heterozygous mutation in Mtor, but not Ctnnb1, rescues these phenotypes. These findings indicate that macroscale cerebral cortical overgrowth and social behavioral phenotypes caused by Pten haploinsufficiency can be dissociated based on responsiveness to genetic suppression of Ctnnb1 or Mtor. Furthermore, neuronal connectivity appears to be one potential substrate for mTOR-mediated suppression of social behavioral deficits in Pten haploinsufficient mice. Autism Res 2019, 12: 1463-1471. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A subgroup of individuals with autism display overgrowth of the head and the brain during development. Using a mouse model of an autism risk gene, Pten, that displays both brain overgrowth and social behavioral deficits, we show here that that these two symptoms can be dissociated. Reversal of social behavioral deficits in this model is associated with rescue of abnormal synaptic markers and neuronal activity.
Collapse
Affiliation(s)
- Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
- The Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California
| | - Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
- The Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California
| |
Collapse
|
27
|
Tops S, Habel U, Radke S. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. Horm Behav 2019; 108:84-93. [PMID: 29505762 DOI: 10.1016/j.yhbeh.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022]
Abstract
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles.
Collapse
Affiliation(s)
- Sanne Tops
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| |
Collapse
|
28
|
McVey AJ. The neurobiological presentation of anxiety in autism spectrum disorder: A systematic review. Autism Res 2019; 12:346-369. [DOI: 10.1002/aur.2063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|
29
|
Deutsch SI, Raffaele CT. Understanding facial expressivity in autism spectrum disorder: An inside out review of the biological basis and clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:401-417. [PMID: 29777730 DOI: 10.1016/j.pnpbp.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
Deficits in decoding and understanding facially expressed emotions occur commonly in persons with autism spectrum disorder (ASD), which contribute to the impairment of social communication that serves as one of its core diagnostic criteria. Research suggests that abnormalities of visual scanning of the face, activation of key nodes within the "social brain" by facially expressed emotions, functional connectivity within and between nodes of the "social brain", and transduction of specific neurotransmitter/neuromodulatory signals contribute to the pathogenesis of these deficits in at least some persons with ASD. Importantly, the etiologies of these deficits are heterogeneous and include genetic, immunologic, and inflammatory mechanisms, as well as in utero exposures to drugs and toxins. The manifestation and severity of these deficits can also be influenced by developmental age, IQ and genetic background. Consistent with the goals of the Special Issue, the current Review is intended to familiarize the readership with several of the leading neurobiological mechanisms proposed to underlie these deficits in decoding facially expressed emotions and stimulate interest in translational preclinical and clinical investigations, whose ultimate purpose is to attenuate their severity and, thereby, improve functional outcomes of persons with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, United States.
| | - C Teal Raffaele
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
30
|
Corbett BA, Muscatello RA, Baldinger C. Comparing stress and arousal systems in response to different social contexts in children with ASD. Biol Psychol 2019; 140:119-130. [PMID: 30557600 PMCID: PMC6471662 DOI: 10.1016/j.biopsycho.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Response to psychological stress can vary based on the extent to which the context is perceived as stressful, especially under different social conditions. The purpose of this preliminary study was to compare physiological stress (cortisol) and regulation (respiratory sinus arrhythmia, RSA) of 10-12 year old children with autism spectrum disorder (ASD, n = 31) or typical development (TD, n = 25) when exposed to two social stress protocols. The extent to which perceived emotion (affect recognition) and anxiety (state and trait) mediate the stress response was also explored. Results revealed different patterns of stress responses dependent on the type of stressor. During a friendly social interaction, both groups generally showed an adaptive, synergistic response between cortisol and RSA. In response to social evaluation, however, the ASD group did not show correlating responses between physiological systems, which was likely due to a blunted stress response to the social evaluative stressor. The ability to recognize neutral faces mediated the relationship between diagnostic group and physiological response to social evaluation, indicating that perception of threat is essential to triggering a stress response. The current study emphasizes the need to consider the important role of social context, social perception, and perceived anxiety when examining social interaction and stress.
Collapse
Affiliation(s)
- Blythe A Corbett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, United States.
| | | | - Charles Baldinger
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Lucibello S, Verdolotti T, Giordano FM, Lapenta L, Infante A, Piludu F, Tartaglione T, Chieffo D, Colosimo C, Mercuri E, Battini R. Brain morphometry of preschool age children affected by autism spectrum disorder: Correlation with clinical findings. Clin Anat 2018; 32:143-150. [DOI: 10.1002/ca.23252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/13/2018] [Indexed: 01/28/2023]
Affiliation(s)
- S. Lucibello
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Verdolotti
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. M. Giordano
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - L. Lapenta
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - A. Infante
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. Piludu
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Tartaglione
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - D. Chieffo
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - C. Colosimo
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - E. Mercuri
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - R. Battini
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Department of Clinical and Experimental Medicine; University of Pisa; Pisa Italy
| |
Collapse
|
32
|
Odriozola P, Dajani DR, Burrows CA, Gabard-Durnam LJ, Goodman E, Baez AC, Tottenham N, Uddin LQ, Gee DG. Atypical frontoamygdala functional connectivity in youth with autism. Dev Cogn Neurosci 2018; 37:100603. [PMID: 30581125 PMCID: PMC6570504 DOI: 10.1016/j.dcn.2018.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/11/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Functional connectivity (FC) between the amygdala and the ventromedial prefrontal cortex underlies socioemotional functioning, a core domain of impairment in autism spectrum disorder (ASD). Although frontoamygdala circuitry undergoes dynamic changes throughout development, little is known about age-related changes in frontoamygdala networks in ASD. Here we characterize frontoamygdala resting-state FC in a cross-sectional sample (ages 7–25) of 58 typically developing (TD) individuals and 53 individuals with ASD. Contrary to hypotheses, individuals with ASD did not show different age-related patterns of frontoamygdala FC compared with TD individuals. However, overall group differences in frontoamygdala FC were observed. Specifically, relative to TD individuals, individuals with ASD showed weaker frontoamygdala FC between the right basolateral (BL) amygdala and the rostral anterior cingulate cortex (rACC). These findings extend prior work to a broader developmental range in ASD, and indicate ASD-related differences in frontoamygdala FC that may underlie core socioemotional impairments in children and adolescents with ASD.
Collapse
Affiliation(s)
- Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychology, University of Miami, Coral Gables, FL 33124, USA.
| | - Dina R Dajani
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | | | | | - Emma Goodman
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Adriana C Baez
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami FL, 33136, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Safar K, Wong SM, Leung RC, Dunkley BT, Taylor MJ. Increased Functional Connectivity During Emotional Face Processing in Children With Autism Spectrum Disorder. Front Hum Neurosci 2018; 12:408. [PMID: 30364114 PMCID: PMC6191493 DOI: 10.3389/fnhum.2018.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate poor social functioning, which may be related to atypical emotional face processing. Altered functional connectivity among brain regions, particularly involving limbic structures may be implicated. The current magnetoencephalography (MEG) study investigated whole-brain functional connectivity of eight a priori identified brain regions during the implicit presentation of happy and angry faces in 20 7 to 10-year-old children with ASD and 22 typically developing controls. Findings revealed a network of increased alpha-band phase synchronization during the first 400 ms of happy face processing in children with ASD compared to controls. This network of increased alpha-band phase synchronization involved the left fusiform gyrus, right insula, and frontal regions critical for emotional face processing. In addition, greater connectivity strength of the left fusiform gyrus (maximal 85 to 208 ms) and right insula (maximal 73 to 270 ms) following happy face presentation in children with ASD compared to typically developing controls was found. These findings reflect altered neuronal communication in children with ASD only to happy faces during implicit emotional face processing.
Collapse
Affiliation(s)
- Kristina Safar
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Simeon M Wong
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel C Leung
- University Health Network - Toronto Western Hospital, Toronto, ON, Canada
| | - Benjamin T Dunkley
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Joshi G, Arnold Anteraper S, Patil KR, Semwal M, Goldin RL, Furtak SL, Chai XJ, Saygin ZM, Gabrieli JDE, Biederman J, Whitfield-Gabrieli S. Integration and Segregation of Default Mode Network Resting-State Functional Connectivity in Transition-Age Males with High-Functioning Autism Spectrum Disorder: A Proof-of-Concept Study. Brain Connect 2018; 7:558-573. [PMID: 28942672 DOI: 10.1089/brain.2016.0483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions). RsFc data analysis was performed using a seed-driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra-DMN-positive and -negative RsFc correlations, respectively. In ASD, the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrus regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of subgrouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of DMN RsFc. Future studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Gagan Joshi
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Sheeba Arnold Anteraper
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kaustubh R Patil
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Meha Semwal
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Rachel L Goldin
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Stephannie L Furtak
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | | | - Zeynep M Saygin
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - John D E Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Joseph Biederman
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
35
|
Wojtalik JA, Eack SM, Smith MJ, Keshavan MS. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH 2018; 9:223-260. [PMID: 30505392 PMCID: PMC6258037 DOI: 10.1086/697566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mental health interventions do not yet offer complete, client-defined functional recovery, and novel directions in treatment research are needed to improve the efficacy of available interventions. One promising direction is the integration of social work and cognitive neuroscience methods, which provides new opportunities for clinical intervention research that will guide development of more effective mental health treatments that holistically attend to the biological, social, and environmental contributors to disability and recovery. This article reviews emerging trends in cognitive neuroscience and provides examples of how these advances can be used by social workers and allied professions to improve mental health treatment. We discuss neuroplasticity, which is the dynamic and malleable nature of the brain. We also review the use of risk and resiliency biomarkers and novel treatment targets based on neuroimaging findings to prevent disability, personalize treatment, and make interventions more targeted and effective. The potential of treatment research to contribute to neuroscience discoveries regarding brain change is considered from the experimental-medicine approach adopted by the National Institute of Mental Health. Finally, we provide resources and recommendations to facilitate the integration of cognitive neuroscience into mental health research in social work.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- Doctoral candidate at the University of Pittsburgh School of Social Work
| | - Shaun M Eack
- Professor at the University of Pittsburgh School of Social Work and Department of Psychiatry
| | - Matthew J Smith
- Associate professor at the University of Michigan School of Social Work
| | | |
Collapse
|
36
|
Interoception and Its Interaction with Self, Other, and Emotion Processing: Implications for the Understanding of Psychosocial Deficits in Borderline Personality Disorder. Curr Psychiatry Rep 2018; 20:28. [PMID: 29594580 DOI: 10.1007/s11920-018-0890-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We review evidence for the potential importance of interoception, i.e., the processing of signals arising from inside the body, for deficient psychosocial functioning in borderline personality disorder (BPD). RECENT FINDINGS Evidence suggests that variability in interoception interacts with higher-order psychological functions such as self, other, and emotion processing. These domains are characteristically impaired in BPD, suggesting a likely causal role of disturbed interoception in the etiology of the disorder. The inability to identify and describe one's own emotional states represents a proxy of impaired interoception which might further mediate between the perception of inner physiological conditions and psychosocial functioning in BPD. There is preliminary evidence explaining how early life stress might adversely affect central interoceptive representation and psychosocial functioning in BPD. Based on these findings and the specific pattern of disturbances in BPD, we propose the crucial role of interoception in an integrated biobehavioral model for BPD.
Collapse
|
37
|
Gibbard CR, Ren J, Skuse DH, Clayden JD, Clark CA. Structural connectivity of the amygdala in young adults with autism spectrum disorder. Hum Brain Mapp 2018; 39:1270-1282. [PMID: 29265723 PMCID: PMC5838552 DOI: 10.1002/hbm.23915] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social cognition, a function associated with the amygdala. Subdivisions of the amygdala have been identified which show specificity of structure, connectivity, and function. Little is known about amygdala connectivity in ASD. The aim of this study was to investigate the microstructural properties of amygdala-cortical connections and their association with ASD behaviours, and whether connectivity of specific amygdala subregions is associated with particular ASD traits. The brains of 51 high-functioning young adults (25 with ASD; 26 controls) were scanned using MRI. Amygdala volume was measured, and amygdala-cortical connectivity estimated using probabilistic tractography. An iterative 'winner takes all' algorithm was used to parcellate the amygdala based on its primary cortical connections. Measures of amygdala connectivity were correlated with clinical scores. In comparison with controls, amygdala volume was greater in ASD (F(1,94) = 4.19; p = .04). In white matter (WM) tracts connecting the right amygdala to the right cortex, ASD subjects showed increased mean diffusivity (t = 2.35; p = .05), which correlated with the severity of emotion recognition deficits (rho = -0.53; p = .01). Following amygdala parcellation, in ASD subjects reduced fractional anisotropy in WM connecting the left amygdala to the temporal cortex was associated with with greater attention switching impairment (rho = -0.61; p = .02). This study demonstrates that both amygdala volume and the microstructure of connections between the amygdala and the cortex are altered in ASD. Findings indicate that the microstructure of right amygdala WM tracts are associated with overall ASD severity, but that investigation of amygdala subregions can identify more specific associations.
Collapse
Affiliation(s)
- Clare R. Gibbard
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Juejing Ren
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - David H. Skuse
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Jonathan D. Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| |
Collapse
|
38
|
Giannopulu I, Terada K, Watanabe T. Communication using robots: a Perception-action scenario in moderate ASD. J EXP THEOR ARTIF IN 2018. [DOI: 10.1080/0952813x.2018.1430865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Irini Giannopulu
- Interdisciplinary Centre for the Artificial Mind (iCAM), FSD, Bond University, Gold Coast, Australia
| | - Kazunori Terada
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, Japan
| | - Tomio Watanabe
- Department of Systems Engineering, Okayama Prefectural University, Okayama, Japan
| |
Collapse
|
39
|
Patriquin MA, DeRamus T, Libero LE, Laird A, Kana RK. Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Hum Brain Mapp 2018; 37:3957-3978. [PMID: 27329401 DOI: 10.1002/hbm.23288] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Social impairments in autism spectrum disorder (ASD), a hallmark feature of its diagnosis, may underlie specific neural signatures that can aid in differentiating between those with and without ASD. To assess common and consistent patterns of differences in brain responses underlying social cognition in ASD, this study applied an activation likelihood estimation (ALE) meta-analysis to results from 50 neuroimaging studies of social cognition in children and adults with ASD. In addition, the group ALE clusters of activation obtained from this was used as a social brain mask to perform surface-based cortical morphometry (SBM) in an empirical structural MRI dataset collected from 55 ASD and 60 typically developing (TD) control participants. Overall, the ALE meta-analysis revealed consistent differences in activation in the posterior superior temporal sulcus at the temporoparietal junction, middle frontal gyrus, fusiform face area (FFA), inferior frontal gyrus (IFG), amygdala, insula, and cingulate cortex between ASD and TD individuals. SBM analysis showed alterations in the thickness, volume, and surface area in individuals with ASD in STS, insula, and FFA. Increased cortical thickness was found in individuals with ASD, the IFG. The results of this study provide functional and anatomical bases of social cognition abnormalities in ASD by identifying common signatures from a large pool of neuroimaging studies. These findings provide new insights into the quest for a neuroimaging-based marker for ASD. Hum Brain Mapp 37:3957-3978, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michelle A Patriquin
- The Menninger Clinic, Houston, Texas.,Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Birmingham, Alabama
| | - Thomas DeRamus
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren E Libero
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angela Laird
- Department of Physics, Florida International University, Birmingham, Florida
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
40
|
Fakhoury M. Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:101-114. [PMID: 28322981 DOI: 10.1016/j.pnpbp.2017.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASD) include a wide range of heterogeneous neurodevelopmental conditions that affect an individual in several aspects of social communication and behavior. Recent advances in molecular genetic technologies have dramatically increased our understanding of ASD etiology through the identification of several autism risk genes, most of which serve important functions in synaptic plasticity and protein synthesis. However, despite significant progress in this field of research, the characterization of the neurobiological mechanisms by which common genetic risk variants might operate to give rise to ASD symptomatology has proven to be far more difficult than expected. The imaging genetics approach holds great promise for advancing our understanding of ASD etiology by bridging the gap between genetic variations and their resultant biological effects on the brain. This paper provides a conceptual overview of the contribution of genetics in ASD and discusses key findings from the emerging field of imaging genetics.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
41
|
Cygan HB, Okuniewska H, Jednoróg K, Marchewka A, Wypych M, Nowicka A. Face processing in a case of high functioning autism with developmental prosopagnosia. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Please Wait, Processing: A Selective Literature Review of the Neurological Understanding of Emotional Processing in ASD and Its Potential Contribution to Neuroeducation. Brain Sci 2017; 7:brainsci7110153. [PMID: 29149018 PMCID: PMC5704160 DOI: 10.3390/brainsci7110153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) and its corresponding conditions have been investigated from a multitude of perspectives resulting in varying understandings of its origin, its outplay, its prognosis, and potential methods of intervention and education for individuals with the disorder. One area that has contributed significantly to providing a different type of understanding is that of neuroscience, and specifically neuroimaging. This paper will offer a selective literature review of research that investigates the role of emotional processing in ASD, and how a deepening of this line of understanding can be used to inform more comprehensive educational practices.
Collapse
|
43
|
Autistic traits modulate the activity of the ventromedial prefrontal cortex in response to female faces. Neurosci Res 2017; 133:28-37. [PMID: 29141188 DOI: 10.1016/j.neures.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 11/10/2017] [Indexed: 02/01/2023]
Abstract
Previous findings have revealed abnormal visual attention or processing of faces among individuals with autism spectrum condition (ASC). However, little attention has been paid to the relationship between autistic traits and neural mechanisms associated with representing facial values. Using fMRI, we investigated the patterns of brain activity in the vmPFC and VS in response to faces of elderly males, elderly females, young males, and young females. During fMRI, subjects with a relatively high autism quotient (high group) and those with a relatively low autism quotient (low group) were presented with a face and asked to rate its pleasantness. After fMRI, the subjects were presented with pairs of faces and asked to select the face that they preferred. Our results indicate a dissociable modulatory effect of autistic traits on the vmPFC and VS: The vmPFC activity in the low group was more sensitive to age differences in female faces compared to that in the high group, whereas VS activity did not show differences between groups. These results suggest that, in the BVS, autistic traits selectively modulate the vmPFC activity associated with facial value representation.
Collapse
|
44
|
Gülkesen KH, Isleyen F, Cinemre B, Samur MK, Sen Kaya S, Zayim N. A Web-based Game for Teaching Facial Expressions to Schizophrenic Patients. Appl Clin Inform 2017; 8:719-730. [PMID: 28696479 PMCID: PMC6220685 DOI: 10.4338/aci-2016-10-ra-0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recognizing facial expressions is an important social skill. In some psychological disorders such as schizophrenia, loss of this skill may complicate the patient's daily life. Prior research has shown that information technology may help to develop facial expression recognition skills through educational software and games. OBJECTIVES To examine if a computer game designed for teaching facial expressions would improve facial expression recognition skills of patients with schizophrenia. METHODS We developed a website composed of eight serious games. Thirty-two patients were given a pre-test composed of 21 facial expression photographs. Eighteen patients were in the study group while 14 were in the control group. Patients in the study group were asked to play the games on the website. After a period of one month, we performed a post-test for all patients. RESULTS The median score of the correct answers was 17.5 in the control group whereas it was 16.5 in the study group (of 21) in pretest. The median post-test score was 18 in the control group (p=0.052) whereas it was 20 in the study group (p<0.001). CONCLUSIONS Computer games may be used for the purpose of educating people who have difficulty in recognizing facial expressions.
Collapse
Affiliation(s)
- Kemal Hakan Gülkesen
- Kemal Hakan Gülkesen, Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya, Turkey,
| | | | | | | | | | | |
Collapse
|
45
|
Okamoto Y, Kosaka H, Kitada R, Seki A, Tanabe HC, Hayashi MJ, Kochiyama T, Saito DN, Yanaka HT, Munesue T, Ishitobi M, Omori M, Wada Y, Okazawa H, Koeda T, Sadato N. Age-dependent atypicalities in body- and face-sensitive activation of the EBA and FFA in individuals with ASD. Neurosci Res 2017; 119:38-52. [DOI: 10.1016/j.neures.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/28/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023]
|
46
|
Batista S, Alves C, d’Almeida OC, Afonso A, Félix-Morais R, Pereira J, Macário C, Sousa L, Castelo-Branco M, Santana I, Cunha L. Disconnection as a mechanism for social cognition impairment in multiple sclerosis. Neurology 2017; 89:38-45. [DOI: 10.1212/wnl.0000000000004060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/14/2017] [Indexed: 11/15/2022] Open
Abstract
Objective:To assess the contribution of microstructural normal-appearing white matter (NAWM) damage to social cognition impairment, specifically in the theory of mind (ToM), in multiple sclerosis (MS).Methods:We enrolled consecutively 60 patients with MS and 60 healthy controls (HC) matched on age, sex, and education level. All participants underwent ToM testing (Eyes Test, Videos Test) and 3T brain MRI including conventional and diffusion tensor imaging sequences. Tract-based spatial statistics (TBSS) were applied for whole-brain voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on NAWM.Results:Patients with MS performed worse on both tasks of ToM compared to HC (Eyes Test 58.7 ± 13.8 vs 81.9 ± 10.4, p < 0.001, Hedges g −1.886; Videos Test 75.3 ± 9.3 vs 88.1 ± 7.1, p < 0.001, Hedges g −1.537). Performance on ToM tests was correlated with higher values of FA and lower values of MD across widespread white matter tracts. The largest effects (≥90% of voxels with statistical significance) for the Eyes Test were body and genu of corpus callosum, fornix, tapetum, uncinate fasciculus, and left inferior cerebellar peduncle, and for the Videos Test genu and splenium of corpus callosum, fornix, uncinate fasciculus, left tapetum, and right superior fronto-occipital fasciculus.Conclusions:These results indicate that a diffuse pattern of NAWM damage in MS contributes to social cognition impairment in the ToM domain, probably due to a mechanism of disconnection within the social brain network. Gray matter pathology is also expected to have an important role; thus further research is required to clarify the neural basis of social cognition impairment in MS.
Collapse
|
47
|
Sharma A, Khosla A, Khosla M, M. YR. Skin conductance response patterns of face processing in children with autism spectrum disorder. ADVANCES IN AUTISM 2017. [DOI: 10.1108/aia-09-2016-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Ioannou C, Zein ME, Wyart V, Scheid I, Amsellem F, Delorme R, Chevallier C, Grèzes J. Shared mechanism for emotion processing in adolescents with and without autism. Sci Rep 2017; 7:42696. [PMID: 28218248 PMCID: PMC5317002 DOI: 10.1038/srep42696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022] Open
Abstract
Although, the quest to understand emotional processing in individuals with Autism Spectrum Disorders (ASD) has led to an impressive number of studies, the picture that emerges from this research remains inconsistent. Some studies find that Typically Developing (TD) individuals outperform those with ASD in emotion recognition tasks, others find no such difference. In this paper, we move beyond focusing on potential group differences in behaviour to answer what we believe is a more pressing question: do individuals with ASD use the same mechanisms to process emotional cues? To this end, we rely on model-based analyses of participants’ accuracy during an emotion categorisation task in which displays of anger and fear are paired with direct vs. averted gaze. Behavioural data of 20 ASD and 20 TD adolescents revealed that the ASD group displayed lower overall performance. Yet, gaze direction had a similar impact on emotion categorisation in both groups, i.e. improved accuracy for salient combinations (anger-direct, fear-averted). Critically, computational modelling of participants’ behaviour reveals that the same mechanism, i.e. increased perceptual sensitivity, underlies the contextual impact of gaze in both groups. We discuss the specific experimental conditions that may favour emotion processing and the automatic integration of contextual information in ASD.
Collapse
Affiliation(s)
- Christina Ioannou
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| | - Marwa El Zein
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| | - Valentin Wyart
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| | - Isabelle Scheid
- Centre Expert Asperger, Fondation Fondamental, Paris, 75019, France.,Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré, Paris, 75019, France
| | - Frédérique Amsellem
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré, Paris, 75019, France.,Génétique Humaine et Fonction Cognitive, Institut Pasteur, Paris, 75015, France
| | - Richard Delorme
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré, Paris, 75019, France.,Génétique Humaine et Fonction Cognitive, Institut Pasteur, Paris, 75015, France
| | - Coralie Chevallier
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| | - Julie Grèzes
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| |
Collapse
|
49
|
Corbett BA, Bales KL, Swain D, Sanders K, Weinstein TAR, Muglia LJ. Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. J Neurodev Disord 2016; 8:32. [PMID: 27540420 PMCID: PMC4989357 DOI: 10.1186/s11689-016-9165-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Children with autism spectrum disorder (ASD) show marked impairment in social functioning and poor adaptation to new and changing contexts, which may be influenced by underlying regulatory processes. Oxytocin (OT) and cortisol are key neuromodulators of biological and behavioral responses, show a synergistic effect, and have been implicated in the neuropathological profile in ASD. However, they are rarely investigated together. The purpose of the pilot study was to evaluate the relationship between cortisol and OT in children with ASD under baseline and physiological stress (hydrocortisone challenge) conditions. Arginine vasopressin (AVP), structurally similar to OT, was also examined. METHODS A double-blind, placebo-controlled, randomly assigned, crossover design was employed in 25 children 8-to-12 years with ASD (N = 14) or typical development (TD, N = 11). A low dose of hydrocortisone and placebo were administered via liquid suspension. Analysis of variance (ANOVA) was used to examine the within-subject factor "Condition" (hydrocortisone/placebo) and "Time" (pre and post) and the between-subject factor "Group" (ASD vs. TD). Pearson correlations examined the relationship between hormone levels and clinical profile. RESULTS There was a significant Time × Condition × Group interaction F (1.23) = 4.18, p = 0.05 showing a rise in OT during the experimental condition (hydrocortisone) and a drop during the placebo condition for the TD group but not the ASD group. There were no group differences for AVP. Hormone levels were associated with social profiles. CONCLUSIONS For the TD group, an inverse relationship was observed. OT increased during physiological challenge suggesting that OT played a stress-buffering role during cortisol administration. In contrast for the ASD group, OT remained unchanged or decreased during both the physiological challenge and the placebo condition, suggesting that OT failed to serve as a stress buffer under conditions of physiological stress. While OT has been tied to the social ability of children with ASD, the diminished moderating effect of OT on cortisol may also play a contributory role in the heightened stress often observed in children with ASD. These results contribute to our understanding of the growing complexity of the effects of OT on social behavior as well as the functional interplay and differential regulation OT may have on stress modulation.
Collapse
Affiliation(s)
- Blythe A. Corbett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN USA
- Department of Psychology, Vanderbilt University, Nasvhille, TN USA
| | | | - Deanna Swain
- Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Kevin Sanders
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
| | | | - Louis J. Muglia
- Department of Pediatrics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
50
|
English MCW, Maybery MT, Visser TAW. Threatening faces fail to guide attention for adults with autistic-like traits. Autism Res 2016; 10:311-320. [PMID: 27385675 DOI: 10.1002/aur.1658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 12/30/2022]
Abstract
Individuals diagnosed with autistic spectrum conditions often show deficits in processing emotional faces relative to neurotypical peers. However, little is known about whether similar deficits exist in neurotypical individuals who show high-levels of autistic-like traits. To address this question, we compared performance on an attentional blink task in a large sample of adults who showed low- or high-levels of autistic-like traits on the Autism Spectrum Quotient. We found that threatening faces inserted as the second target in a rapid serial visual presentation were identified more accurately among individuals with low- compared to high-levels of autistic-like traits. This is the first study to show that attentional blink abnormalities seen in autism extend to the neurotypical population with autistic-like traits, adding to the growing body of research suggesting that autistic-related patterns of behaviors extend into a subset of the neurotypical population. Autism Res 2017, 10: 311-320. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael C W English
- School of Psychology, University of Western Australia, Crawley, Western Australia, Australia
| | - Murray T Maybery
- School of Psychology, University of Western Australia, Crawley, Western Australia, Australia
| | - Troy A W Visser
- School of Psychology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|