1
|
Liu L, Chen D, Huang F, Jia T, Cheng W, Pan M, Zhao M, Bu X, Liao X, Wang Y, Cao M, Qian Q, Feng J. Interference of default mode on attention networks in adults with attention-deficit/hyperactivity disorder and its association with genetic variants and treatment outcomes. CNS Neurosci Ther 2024; 30:e14900. [PMID: 39145420 PMCID: PMC11325164 DOI: 10.1111/cns.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Altered brain functional connectivity has been proposed as the neurobiological underpinnings of attention-deficit/hyperactivity disorder (ADHD), and the default mode interference hypothesis is one of the most popular neuropsychological models. Here, we explored whether this hypothesis is supported in adults with ADHD and the association with high-risk genetic variants and treatment outcomes. METHODS Voxel-based whole-brain connectome analysis was conducted on resting-state functional MRI data from 84 adults with ADHD and 89 healthy controls to identify functional connectivity substrates corresponding to ADHD-related alterations. The candidate genetic variants and 12-week cognitive behavioral therapy data were leveraged from the same population to assess these associations. RESULTS We detected breakdowns of functional connectivity in the precuneus and left middle temporal gyrus in adults with ADHD, with exact contributions from decreased connectivity within the default mode, dorsal and ventral attention networks, as well as increased connectivity among them with the middle temporal gyrus serving as a crucial 'bridge'. Additionally, significant associations between the altered functional connectivity and genetic variants in both MAOA and MAOB were detected. Treatment restored brain function, with the amelioration of connectivity of the middle temporal gyrus, accompanied by improvements in ADHD core symptoms. CONCLUSIONS These findings support the interference of default mode on attention in adults with ADHD and its association with genetic risk variants and clinical management, providing insights into the underlying pathogenesis of ADHD and potential biomarkers for treatment evaluation.
Collapse
Affiliation(s)
- Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Di Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Fang Huang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Mental Health Education and Counselling Center, Zhejiang University, Hangzhou, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Meirong Pan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mengjie Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuan Bu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Montiel-Herrera F, Batanero-Geraldo A, López JC, Vargas JP, Quintero E, Díaz E. Effects of acute and chronic methylphenidate on prepulse inhibition: A sex difference study in Wistar rats. Physiol Behav 2024; 278:114526. [PMID: 38531426 DOI: 10.1016/j.physbeh.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The utilization of methylphenidate (MPH) is experiencing a notable surge within the adult population. This growth can be attributed to two key factors: its recreational and cognitive enhancement purposes, as well as the rising prevalence of ADHD diagnoses within this population. This study examined acute and chronic oral MPH effects on attention in male and female Wistar rats. To this end, we used a prepulse inhibition (PPI) task, which is widely used to assess psychoactive drug effects in both humans and rodents. This task allowed us to evaluate changes in attention by analyzing sensorimotor gating associated with stimulus selection process. METHODS Animals were administered a clinically relevant dose of MPH (5 mg/kg) daily for seven days. The estrous cycle phases of the female rats were measured during behavioral sessions. The PPI task was conducted 20 min after drug administration on day 1 (acute), day 7 (chronic), and 48 h post-treatment. RESULTS Results indicated that both acute and chronic MPH treatment impaired PPI expression in male rats, but not in female rats, regardless of their estrous cycle phase. Furthermore, a differential effect of chronic MPH treatment on the PPI task was found in male rats. Specifically, on the seventh treatment day, the PPI effect was observed when animals undertook the PPI task for the first time but was impaired in those animals in which the initial PPI session occurred under the acute influence of the drug (day 1). CONCLUSIONS These findings suggest that the impact of MPH on sensorimotor gating responses may vary based on sex and task experience, possibly leading to state-dependent effects in healthy individuals.
Collapse
Affiliation(s)
- F Montiel-Herrera
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - A Batanero-Geraldo
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J C López
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J P Vargas
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Quintero
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Díaz
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain.
| |
Collapse
|
3
|
TIAN T, XU X, SONG J, ZHANG X, ZHANG D, YUAN H, ZHONG F, LI J, HU Y. Learning and Memory Impairments With Attention-Deficit/Hyperactivity Disorder. Physiol Res 2024; 73:205-216. [PMID: 38710050 PMCID: PMC11081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 05/08/2024] Open
Abstract
ADHD is a common chronic neurodevelopmental disorder and is characterized by persistent inattention, hyperactivity, impulsivity and are often accompanied by learning and memory impairment. Great evidence has shown that learning and memory impairment of ADHD plays an important role in its executive function deficits, which seriously affects the development of academic, cognitive and daily social skills and will cause a serious burden on families and society. With the increasing attention paid to learning and memory impairment in ADHD, relevant research is gradually increasing. In this article, we will present the current research results of learning and memory impairment in ADHD from the following aspects. Firstly, the animal models of ADHD, which display the core symptoms of ADHD as well as with learning and memory impairment. Secondly, the molecular mechanism of has explored, including some neurotransmitters, receptors, RNAs, etc. Thirdly, the susceptibility gene of ADHD related to the learning and impairment in order to have a more comprehensive understanding of the pathogenesis. Key words: Learning and memory, ADHD, Review.
Collapse
Affiliation(s)
- Tian TIAN
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xu XU
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jia SONG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xiaoqian ZHANG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Dan ZHANG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hui YUAN
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Fengyu ZHONG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jing LI
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Youfang HU
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Schachar R, Crosbie J. Biederman's Contribution to the Understanding of Executive Function in ADHD. J Atten Disord 2024; 28:895-904. [PMID: 38327019 DOI: 10.1177/10870547231222597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE To examine the theoretical and empirical contribution of Joe Biederman and his colleagues to the understanding of executive function (EF) and ADHD. METHOD We searched PubMed for references to EF in Biederman's publications and conducted a narrative review of this literature. RESULTS In 50 or more papers using neuropsychological tests, rating scales and measures of mind wandering, Biederman demonstrated that EF are evident in ADHD and closely linked to its underlying neurobiological and genetic risk. He argued that EF need to be monitoring to ensure comprehensive assessment and treatment, but could not be used as a diagnostic proxy. CONCLUSION Biederman built an innovative and impressive collaboration to address the issue of EF in ADHD. His work shows a commitment to understanding of EF in order to improve patient care. Biederman laid down a roadmap for research in ADHD and EF for the rest of the field to follow.
Collapse
Affiliation(s)
- Russell Schachar
- Neuroscicences and Mental Health, Department of Psychiatry, The Hospital for Sick Children, University of Toronto, ON, Canada
| | - Jennifer Crosbie
- Neuroscicences and Mental Health, Department of Psychiatry, The Hospital for Sick Children, University of Toronto, ON, Canada
| |
Collapse
|
5
|
Custodio RJP, Hengstler JG, Cheong JH, Kim HJ, Wascher E, Getzmann S. Adult ADHD: it is old and new at the same time - what is it? Rev Neurosci 2024; 35:225-241. [PMID: 37813870 DOI: 10.1515/revneuro-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Even though the number of studies aiming to improve comprehension of ADHD pathology has increased in recent years, there still is an urgent need for more effective studies, particularly in understanding adult ADHD, both at preclinical and clinical levels, due to the increasing evidence that adult ADHD is highly distinct and a different entity from childhood ADHD. This review paper outlines the symptoms, diagnostics, and neurobiological mechanisms of ADHD, with emphasis on how adult ADHD could be different from childhood-onset. Data show a difference in the environmental, genetic, epigenetic, and brain structural changes, when combined, could greatly impact the behavioral presentations and the severity of ADHD in adults. Furthermore, a crucial aspect in the quest to fully understand this disorder could be through longitudinal analysis. In this way, we will determine if and how the pathology and pharmacology of ADHD change with age. This goal could revolutionize our understanding of the disorder and address the weaknesses in the current clinical classification systems, improving the characterization and validity of ADHD diagnosis, specifically those in adults.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jan G Hengstler
- Systems Toxicology, Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, South Korea
| | - Edmund Wascher
- Experimental Ergonomics, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Stephan Getzmann
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| |
Collapse
|
6
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
7
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
8
|
Bacanlı A, Unsel-Bolat G, Suren S, Yazıcı KU, Callı C, Aygunes Jafari D, Kosova B, Rohde LA, Ercan ES. Effects of the dopamine transporter gene on neuroimaging findings in different attention deficit hyperactivity disorder presentations. Brain Imaging Behav 2021; 15:1103-1114. [PMID: 33469789 DOI: 10.1007/s11682-020-00437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a phenotipically and neurobiologically heterogeneous disorder. Deficiencies at different levels in response inhibition, differences in dopamine transporter genotype (DAT1) and various symptomatic presentations contribute to ADHD heterogeneity. Integrating these three aspects into a functional neuroimaging research could help unreval specific neurobiological components of more phenotipically homogeneous groups of patients with ADHD. During the Go-NoGo trial, we investigated the effect of the DAT1 gene using 3 T MRI in 72 ADHD cases and 24 (TD) controls that typically developed between the ages 8 and 15 years. In the total ADHD group, DAT1 predicted homozygosity for the 10R allele and hypoactivation in the anterior cingulate cortex and paracingulate cortex. There were no significant activation differences between DAT1 10R/10R homozygotes and 9R carriers in TD controls. Subjects with predominantly inattentive ADHD (ADHD-I) presentation with DAT1 10R/10R homozygous reduced neuronal activation during Go trial particularly in the frontal regions and insular cortex, and in the parietal regions during NoGo trial (brain regions reported as part of Default Mode Network- DMN). Additionally, DAT1 10R/10R homozygousness was associated with increased occipital zone activation during only the Go trial in the ADHD combined presentation (ADHD-C) group. Our results point the three main findings: 1) The DAT1 gene is 10R homozygous for differentiated brain activation in ADHD cases but not in the TD controls, supporting the DAT1 gene as a potential marker for ADHD, 2) The relationship between the DAT1 gene and the occipital regions in ADHD-C group which may reflect compensatory mechanisms, 3) The relationship between DAT1 gene and the reduced DMN suppression for 9R carriers probabaly stems from the ADHD-I group.
Collapse
Affiliation(s)
- Ali Bacanlı
- Department of Child and Adolescent Psychiatry, Zubeyde Hanim Training and Research Hospital, Başkent University, Izmir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University, Balıkesir, Turkey.
| | - Serkan Suren
- Department of Child and Adolescent Psychiatry, Medical Park Hospital, Samsun, Turkey
| | - Kemal Utku Yazıcı
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Cem Callı
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Duygu Aygunes Jafari
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Buket Kosova
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Eyup Sabri Ercan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
9
|
Helfer B, Maltezos S, Liddle E, Kuntsi J, Asherson P. Lateralization of attention in adults with ADHD: Evidence of pseudoneglect. Eur Psychiatry 2020; 63:e68. [PMID: 32594941 PMCID: PMC7443776 DOI: 10.1192/j.eurpsy.2020.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background. We investigated whether adults with attention-deficit/hyperactivity disorder (ADHD) show pseudoneglect—preferential allocation of attention to the left visual field (LVF) and a resulting slowing of mean reaction times (MRTs) in the right visual field (RVF), characteristic of neurotypical (NT) individuals —and whether lateralization of attention is modulated by presentation speed and incentives. Method. Fast Task, a four-choice reaction-time task where stimuli were presented in LVF or RVF, was used to investigate differences in MRT and reaction time variability (RTV) in adults with ADHD (n = 43) and NT adults (n = 46) between a slow/no-incentive and fast/incentive condition. In the lateralization analyses, pseudoneglect was assessed based on MRT, which was calculated separately for the LVF and RVF for each condition and each study participant. Results. Adults with ADHD had overall slower MRT and increased RTV relative to NT. MRT and RTV improved under the fast/incentive condition. Both groups showed RVF-slowing with no between-group or between-conditions differences in RVF-slowing. Conclusion. Adults with ADHD exhibited pseudoneglect, a NT pattern of lateralization of attention, which was not attenuated by presentation speed and incentives.
Collapse
Affiliation(s)
- Bartosz Helfer
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stefanos Maltezos
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Adult Autism and ADHD Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Elizabeth Liddle
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Kuc K, Bielecki M, Racicka-Pawlukiewicz E, Czerwinski MB, Cybulska-Klosowicz A. The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD. Sci Rep 2020; 10:6176. [PMID: 32277231 PMCID: PMC7148317 DOI: 10.1038/s41598-020-63296-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropharmacological and human clinical studies have suggested that the brain dopaminergic system is substantively involved in normal and pathological phenotypes of attention. Dopamine transporter gene (SLC6A3) was proposed as a candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD). We investigated the effect of the SLC6A3 variants on cognitive performance in ADHD and healthy children and teenagers. Participants completed cognitive tasks measuring attentional switching, selective and sustained attention, and effectiveness of alerting, orienting and executive attention. We estimated the effects of 40 bp variable number of tandem repeat (VNTR) polymorphism located in the 3' untranslated region (3' UTR) (9-repeat vs 10-repeat allele) of the SLC6A3 gene, ADHD diagnosis, age, and their interactions as predictors of cognitive performance. ADHD children demonstrated deficits in most of the examined attention processes, persistent within the examined age range (9-16 years). No significant effects were observed for the interaction of ADHD and the SLC6A3 polymorphism, but the results revealed a significant main effect of SLC6A3 genotype in the entire research sample. Subjects carrying 9R allele performed the switching task significantly worse in comparison to children with 10R/10R or 10R/11R genotype. SLC6A3 polymorphism moderated age-related improvements in orienting and attentional switching. Results suggest that SLC6A3 genotype influence these attentional/cognitive functions which deficits are not the key symptoms in ADHD.
Collapse
Affiliation(s)
- Katarzyna Kuc
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | | | - Michał B Czerwinski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Boon HJ. What do ADHD Neuroimaging Studies Reveal for Teachers, Teacher Educators and Inclusive Education? CHILD & YOUTH CARE FORUM 2020. [DOI: 10.1007/s10566-019-09542-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Pineau G, Villemonteix T, Slama H, Kavec M, Balériaux D, Metens T, Baijot S, Mary A, Ramoz N, Gorwood P, Peigneux P, Massat I. Dopamine transporter genotype modulates brain activity during a working memory task in children with ADHD. RESEARCH IN DEVELOPMENTAL DISABILITIES 2019; 92:103430. [PMID: 31306870 DOI: 10.1016/j.ridd.2019.103430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/04/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Dopamine active transporter gene (DAT1) is a candidate gene associated with attention-deficit/hyperactivity disorder (ADHD). The DAT1 variable number tandem repeat (VNTR)-3' polymorphism is functional and 9R carriers have been shown to produce more DAT than 10R homozygotes. We used functional magnetic resonance imaging (fMRI) to investigate the effects of this polymorphism on the neural substrates of working memory (WM) in a small but selected population of children with ADHD, naïve of any psychotropic treatment and without comorbidity. MRI and genotype data were obtained for 36 children (mean age: 10,36 +/- 1,49 years) with combined-type ADHD (9R n = 15) and 25 typically developing children (TDC) (mean age: 9,55 +/- 1,25 years) (9R n = 12). WM performance was similar between conditions. We found a cross-over interaction effect between gene (9R vs. 10R) and diagnosis (TDC vs. ADHD) in the orbito-frontal gyrus, cerebellum and inferior temporal lobe. In these areas, WM-related activity was higher for 9R carriers in ADHD subjects and lower in TDC. In ADHD children only, 10R homozygotes exhibited higher WM-related activity than 9R carriers in a network encompassing the parietal and the temporal lobes, the ventral visual cortex, the orbito-frontal gyrus and the head of the caudate nucleus. There was no significant results in TDC group. Our preliminary findings suggest that DAT1 VNTR polymorphism can modulate WM-related brain activity ADHD children.
Collapse
Affiliation(s)
- Guillaume Pineau
- GHU Paris Psychiatrie and Neurosciences (CMME, Hôpital Sainte-Anne), 1 rue Cabanis, 75014 Paris, France; INSERM U1266 (Team 1, Institute of Psychiatry and Neurosciences of Paris), Paris, France.
| | - Thomas Villemonteix
- Psychopathology and Neuropsychology Lab, Paris 8 University, 2 Rue de la Liberté, 93526 Saint-Denis, France
| | - Hichem Slama
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium; UNESCOG - Research Unit in Cognitive Neurosciences, at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, ULB, Belgium; Department of Clinical and Cognitive Neuropsychology, Erasme Hospital, Belgium
| | - Martin Kavec
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, 808 Lennik street, CP601, 1070 Brussels, Belgium; UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| | - Danielle Balériaux
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, 808 Lennik street, CP601, 1070 Brussels, Belgium; UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| | - Thierry Metens
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, 808 Lennik street, CP601, 1070 Brussels, Belgium; UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| | - Simon Baijot
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium; UNESCOG - Research Unit in Cognitive Neurosciences, at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, ULB, Belgium
| | - Alison Mary
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium; National Fund of Scientific Research, Belgium
| | - Nicolas Ramoz
- INSERM U1266 (Team 1, Institute of Psychiatry and Neurosciences of Paris), Paris, France
| | - Philip Gorwood
- GHU Paris Psychiatrie and Neurosciences (CMME, Hôpital Sainte-Anne), 1 rue Cabanis, 75014 Paris, France; INSERM U1266 (Team 1, Institute of Psychiatry and Neurosciences of Paris), Paris, France
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| | - Isabelle Massat
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherche Cognition et Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium; National Fund of Scientific Research, Belgium; Laboratory of Experimental Neurology, ULB, Belgium
| |
Collapse
|
13
|
Luo Y, Weibman D, Halperin JM, Li X. A Review of Heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). Front Hum Neurosci 2019; 13:42. [PMID: 30804772 PMCID: PMC6378275 DOI: 10.3389/fnhum.2019.00042] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects approximately 8%–12% of children worldwide. Throughout an individual’s lifetime, ADHD can significantly increase risk for other psychiatric disorders, educational and occupational failure, accidents, criminality, social disability and addictions. No single risk factor is necessary or sufficient to cause ADHD. The multifactorial causation of ADHD is reflected in the heterogeneity of this disorder, as indicated by its diversity of psychiatric comorbidities, varied clinical profiles, patterns of neurocognitive impairment and developmental trajectories, and the wide range of structural and functional brain anomalies. Although evidence-based treatments can reduce ADHD symptoms in a substantial portion of affected individuals, there is yet no curative treatment for ADHD. A number of theoretical models of the emergence and developmental trajectories of ADHD have been proposed, aimed at providing systematic guides for clinical research and practice. We conducted a comprehensive review of the current status of research in understanding the heterogeneity of ADHD in terms of etiology, clinical profiles and trajectories, and neurobiological mechanisms. We suggest that further research focus on investigating the impact of the etiological risk factors and their interactions with developmental neural mechanisms and clinical profiles in ADHD. Such research would have heuristic value for identifying biologically homogeneous subgroups and could facilitate the development of novel and more tailored interventions that target underlying neural anomalies characteristic of more homogeneous subgroups.
Collapse
Affiliation(s)
- Yuyang Luo
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dana Weibman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jeffrey M Halperin
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, United States
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,Department of Electric and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
14
|
Barth B, Mayer-Carius K, Strehl U, Kelava A, Häußinger FB, Fallgatter AJ, Ehlis AC. Identification of neurophysiological biotypes in attention deficit hyperactivity disorder. Psychiatry Clin Neurosci 2018; 72:836-848. [PMID: 30084523 DOI: 10.1111/pcn.12773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
AIM Findings on neurophysiological alterations in attention deficit hyperactivity disorder (ADHD) have been proposed to underlie ADHD symptoms, with different etiological pathways for different patient biotypes. We aimed at determining whether neurophysiological deviations confirm distinct neurophysiological profiles in ADHD, thus providing direct evidence for the endophenotype concept. METHODS Neurophysiological biotypes were investigated in 87 adult patients with ADHD using cluster analysis. Parameters fed into the analysis comprised both hemodynamic and electrophysiological data. To validate results, the independent variables of the clusters were compared with healthy controls. RESULTS Cluster analysis yielded three neurophysiologically based ADHD biotypes showing: (i) above-average functioning in attention allocation; (ii) difficulties in attention allocation and inhibitory control but elevated frontal activation during a working memory task; and (iii) functional impairments in state regulation. CONCLUSION Classifying patients with ADHD into neurophysiological biotypes sheds light on etiological pathways, with implications for diagnostics and (individualized) treatment options.
Collapse
Affiliation(s)
- Beatrix Barth
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Graduate School of Neural and Behavioral Sciences, University of Tübingen, Tübingen, Germany
| | - Kerstin Mayer-Carius
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Ute Strehl
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Florian Benedikt Häußinger
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Andreas Jochen Fallgatter
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Salavert J, Ramos-Quiroga JA, Moreno-Alcázar A, Caseras X, Palomar G, Radua J, Bosch R, Salvador R, McKenna PJ, Casas M, Pomarol-Clotet E. Functional Imaging Changes in the Medial Prefrontal Cortex in Adult ADHD. J Atten Disord 2018; 22:679-693. [PMID: 26515892 DOI: 10.1177/1087054715611492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Functional imaging studies have found reduced frontal activity, mainly in dorso/ventro-lateral regions and reduced task-related de-activation of the default mode network in childhood ADHD. Adult studies are fewer and inconclusive. We aimed to investigate the potential neural bases of executive function in ADHD adults, examining brain activity during N-back task performance, and to explore the potential corrective effects of long-term methylphenidate treatment. METHOD We recruited a large adult ADHD-combined sample and a matched control group and obtained functional magnetic resonance imaging (fMRI) images during task. ADHD participants were subdivided in a group under long-term treatment with methylphenidate (washed out for the scan) and a treatment-naive group. RESULTS ADHD participants showed deficient de-activation of the medial prefrontal cortex during 2-back task, implying default mode network dysfunction. We found no relationship between blunted de-activation and treatment history. CONCLUSION As de-activation failure in the medial frontal cortex is linked to lapses of attention, findings suggest a potential link to ADHD symptomatology.
Collapse
Affiliation(s)
- José Salavert
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,2 Hospital Sant Rafael, Germanes Hospitalàries, Barcelona, Spain.,3 Universitat Autònoma de Barcelona, Spain
| | - Josep A Ramos-Quiroga
- 3 Universitat Autònoma de Barcelona, Spain.,4 CIBERSAM, Madrid, Spain.,5 Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana Moreno-Alcázar
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,4 CIBERSAM, Madrid, Spain
| | | | - Gloria Palomar
- 3 Universitat Autònoma de Barcelona, Spain.,4 CIBERSAM, Madrid, Spain.,5 Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joaquim Radua
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,4 CIBERSAM, Madrid, Spain.,7 King's College London, UK.,8 Karolinska Institutet, Stokholm, Sweden
| | - Rosa Bosch
- 3 Universitat Autònoma de Barcelona, Spain.,4 CIBERSAM, Madrid, Spain.,5 Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Raymond Salvador
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,4 CIBERSAM, Madrid, Spain
| | - Peter J McKenna
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,4 CIBERSAM, Madrid, Spain
| | - Miquel Casas
- 3 Universitat Autònoma de Barcelona, Spain.,4 CIBERSAM, Madrid, Spain.,5 Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Edith Pomarol-Clotet
- 1 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,4 CIBERSAM, Madrid, Spain
| |
Collapse
|
16
|
Ko CH, Hsieh TJ, Wang PW, Lin WC, Chen CS, Yen JY. The Altered Brain Activation of Phonological Working Memory, Dual Tasking, and Distraction Among Participants With Adult ADHD and the Effect of the MAOA Polymorphism. J Atten Disord 2018; 22:240-249. [PMID: 25777072 DOI: 10.1177/1087054715572609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The present study aimed to reveal the brain correlates of phonological working memory (WM), dual tasking, and distraction in adult ADHD combined with the effect of polymorphisms of monoamine oxidase A ( MAOA rs1137070 Asp470Asp). METHOD A total of 29 participants with adult ADHD and 21 controls were recruited. They completed 0-back and 2-back tasks, as wells as 2-back tasks with a dual-task effect or a distracting effect, during functional magnetic resonance imaging scanning. RESULTS The brain activation of WM in the bilateral inferior frontal lobe, pars opercularis, was higher among the adult ADHD group. The genotype of MAOA significantly interacted with the ADHD effect in the left inferior frontal lobe, pars opercularis. Adults with ADHD had higher activation in the left lingual area in response to the dual-tasking effect. CONCLUSION The MAOA polymorphism moderated the altered activation in pars opercularis for WM among adults with ADHD. The higher lingual gyrus activation might indicate that higher attention resources are demanded to sustain the dual-task function of adults with ADHD.
Collapse
Affiliation(s)
- Chih-Hung Ko
- 1 Department of Psychiatry, Kaohsiung Medical University Hospital, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicince, Kaohsiung Medical University, Taiwan.,3 Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Taiwan
| | - Tsyh-Jyi Hsieh
- 4 Department of Radiology, Faculty of Medicine, College of Medicince, Kaohsiung Medical University, Taiwan.,5 Department of Radiology, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| | - Peng-Wei Wang
- 1 Department of Psychiatry, Kaohsiung Medical University Hospital, Taiwan
| | - Wei-Chen Lin
- 6 Department of Medical Imaging, Kaohsiung Medical University Hospital, Taiwan
| | - Cheng-Sheng Chen
- 1 Department of Psychiatry, Kaohsiung Medical University Hospital, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicince, Kaohsiung Medical University, Taiwan
| | - Ju-Yu Yen
- 2 Department of Psychiatry, Faculty of Medicine, College of Medicince, Kaohsiung Medical University, Taiwan.,7 Department of Psychiatry, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| |
Collapse
|
17
|
Conrin SD, Zhan L, Morrissey ZD, Xing M, Forbes A, Maki P, Milad MR, Ajilore O, Langenecker SA, Leow AD. From Default Mode Network to the Basal Configuration: Sex Differences in the Resting-State Brain Connectivity as a Function of Age and Their Clinical Correlates. Front Psychiatry 2018; 9:365. [PMID: 30150944 PMCID: PMC6100484 DOI: 10.3389/fpsyt.2018.00365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks-the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22-25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26-30 age group (p = 0.003) and the 31-35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes.
Collapse
Affiliation(s)
- Sean D Conrin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Engineering and Technology, University of Wisconsin-Stout, Menomonie, WI, United States
| | - Zachery D Morrissey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Mengqi Xing
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Angus Forbes
- Department of Computational Media, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Pauline Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohammed R Milad
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott A Langenecker
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Ghosh P, Maitra S, Saha T, Sinha S, Mukhopadhyay K. Functional genetic polymorphisms in dopaminergic transporters: Association with ADHD traits in the Indian probands. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry 2016; 21:872-84. [PMID: 27217152 PMCID: PMC5414093 DOI: 10.1038/mp.2016.74] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were found for salivary cortisol, whereas lower serum docosahexaenoic acid (DHA) levels were found in ADHD adults. This last association was significant even after Bonferroni correction and in absence of heterogeneity. Other polyunsaturated fatty acids (PUFAs) such as AA (arachidonic acid), EPA (eicosapentaenoic acid) and DyLA (dihomogammalinolenic acid) levels were not different between patients and controls. No publication biases were observed for these markers. Genes linked to dopaminergic, serotoninergic and noradrenergic signaling, metabolism (DBH, TPH1, TPH2, DDC, MAOA, MAOB, BCHE and TH), neurodevelopment (BDNF and others), the SNARE system and other forty genes/proteins related to different pathways were not meta-analyzed due to insufficient data. In conclusion, we found that there were not enough genetic, pharmacogenetic and biochemical studies of ADHD in adults and that more investigations are needed. Moreover we confirmed a significant role of BAIAP2 and DHA in the etiology of ADHD exclusively in adults. Future research should be focused on the replication of these findings and to assess their specificity for ADHD.
Collapse
|
22
|
Martelle SE, Raffield LM, Palmer ND, Cox AJ, Freedman BI, Hugenschmidt CE, Williamson JD, Bowden DW. Dopamine pathway gene variants may modulate cognitive performance in the DHS - Mind Study. Brain Behav 2016; 6:e00446. [PMID: 27066308 PMCID: PMC4797918 DOI: 10.1002/brb3.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is an established association between type 2 diabetes and accelerated cognitive decline. The exact mechanism linking type 2 diabetes and reduced cognitive function is less clear. The monoamine system, which is extensively involved in cognition, can be altered by type 2 diabetes status. Thus, this study hypothesized that sequence variants in genes linked to dopamine metabolism and associated pathways are associated with cognitive function as assessed by the Digit Symbol Substitution Task, the Modified Mini-Mental State Examination, the Stroop Task, the Rey Auditory-Verbal Learning Task, and the Controlled Oral Word Association Task for Phonemic and Semantic Fluency in the Diabetes Heart Study, a type 2 diabetes-enriched familial cohort (n = 893). METHODS To determine the effects of candidate variants on cognitive performance, genetic association analyses were performed on the well-documented variable number tandem repeat located in the 3' untranslated region of the dopamine transporter, as well as on single-nucleotide polymorphisms covering genes in the dopaminergic pathway, the insulin signaling pathway, and the convergence of both. Next, polymorphisms in loci of interest with strong evidence for involvement in dopamine processing were extracted from genetic datasets available in a subset of the cohort (n = 572) derived from Affymetrix(®) Genome-Wide Human SNP Array 5.0 and 1000 Genomes imputation from this array. RESULTS The candidate gene analysis revealed one variant from the DOPA decarboxylase gene, rs10499695, to be associated with poorer performance on a subset of Rey Auditory-Verbal Learning Task measuring retroactive interference (P = 0.001, β = -0.45). Secondary analysis of genome-wide and imputed data uncovered another DOPA decarboxylase variant, rs62445903, also associated with retroactive interference (P = 7.21 × 10(-7), β = 0.3). These data suggest a role for dopaminergic genes, specifically a gene involved in regulation of dopamine synthesis, in cognitive performance in type 2 diabetes.
Collapse
Affiliation(s)
- Susan E Martelle
- Department of Physiology and Pharmacology Wake Forest School of Medicine Winston - Salem North Carolina; Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Nichole D Palmer
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Amanda J Cox
- Molecular Basis of Disease Griffith University Southport Brisbane Queensland Australia
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology Wake Forest School of Medicine Winston - Salem North Carolina
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Don W Bowden
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| |
Collapse
|
23
|
Ettinger U, Merten N, Kambeitz J. Meta-analysis of the association of the SLC6A3 3'-UTR VNTR with cognition. Neurosci Biobehav Rev 2015; 60:72-81. [PMID: 26593110 DOI: 10.1016/j.neubiorev.2015.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/04/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
Abstract
The gene coding for the dopamine transporter (DAT), SLC6A3, contains a 40-base pair variable number of tandem repeats (VNTR) polymorphism (rs28363170) in its 3' untranslated region. This VNTR has been associated with attention deficit hyperactivity disorder (ADHD) and has been investigated in relation to cognition and brain function. Here, we report the results of a comprehensive meta-analysis with meta-regression examining the association of the VNTR with different domains of cognition in healthy adults. We extracted data from 28 independent studies and carried out meta-analyses for associations with working memory (k=10 samples, N=1193 subjects), inhibition (k=8 samples, N=829 subjects), executive functions including inhibition (k=10 samples, N=984 subjects), attention (k=6 samples, N=742 subjects) and declarative long-term memory (k=5 samples, N=251 subjects). None of the investigated dimensions showed significant associations with the VNTR (all p>0.26). Meta-regression including year of publication, gender, age, ethnicity and percentage of 10R-homozygotes similarly did not attain significance. We conclude that there is no evidence that rs28363170 may be a significant predictor of cognitive function in healthy adults.
Collapse
Affiliation(s)
- Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| | | | - Joseph Kambeitz
- Department of Psychiatry, University of Munich, Munich, Germany
| |
Collapse
|
24
|
Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 15:104-16. [PMID: 25253063 DOI: 10.3758/s13415-014-0320-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cognitive performance is modulated by the neurotransmitter dopamine (DA). Recently, it has been proposed that DA has a strong impact on top-down but not on bottom-up selective visual attention. We tested this assumption by analyzing the influence of two gene variants of the dopaminergic system. Both the catechol O-methyltransferase (COMT) protein and the dopamine transporter (DAT) protein are crucial for the degradation and inactivation of DA. These metabolizing proteins modulate the availability of DA, especially in the prefrontal cortex and basal ganglia. The functional COMT Val158Met polymorphism of the COMT gene represents two coding variants, valine and methionine. In Met allele carriers, the COMT activity is reduced three- to fourfold. A variable number of tandem repeats (VNTR) polymorphism exists in the DAT1 gene, which encodes DAT. The DAT density was reported to be about 50% higher for the DAT1 10-repeat than the DAT1 9-repeat allele. We assessed attention via two experimental tasks that predominantly measure either top-down processing (the Stroop task) or bottom-up processing (the Posner-Cuing task). Carriers of the Met allele of the COMT Val158Met polymorphism displayed better performance in the Stroop task, but did not outperform the other participants in the Posner-Cuing task. The same result was noted for carriers of the DAT1 10-repeat allele. From these findings, we suggest that normal variations of the dopaminergic system impact more strongly on top-down than on bottom-up attention.
Collapse
|
25
|
Takeuchi H, Tomita H, Taki Y, Kikuchi Y, Ono C, Yu Z, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Hashizume H, Kunitoki K, Sassa Y, Kawashima R. Cognitive and neural correlates of the 5-repeat allele of the dopamine D4 receptor gene in a population lacking the 7-repeat allele. Neuroimage 2015; 110:124-35. [PMID: 25659462 DOI: 10.1016/j.neuroimage.2015.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 12/10/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023] Open
Abstract
The 5-repeat allele of a common length polymorphism in the gene that encodes the dopamine D4 receptor (DRD4) is robustly associated with the risk of attention deficit hyperactivity disorder (ADHD) and substantially exists in Asian populations, which have a lower ADHD prevalence. In this study, we investigated the effect of this allele on microstructural properties of the brain and on its functional activity during externally directed attention-demanding tasks and creative performance in the 765 Asian subjects. For this purpose, we employed diffusion tensor imaging, N-back functional magnetic resonance imaging paradigms, and a test to measure creativity by divergent thinking. The 5-repeat allele was significantly associated with increased originality in the creative performance, increased mean diffusivity (the measure of how the tissue includes water molecules instead of neural and vessel components) in the widespread gray and white matter areas of extensive areas, particularly those where DRD4 is expressed, and reduced task-induced deactivation in the areas that are deactivated during the tasks in the course of both the attention-demanding working memory task and simple sensorimotor task. The observed neural characteristics of 5-repeat allele carriers may lead to an increased risk of ADHD and behavioral deficits. Furthermore, the increased originality of creative thinking observed in the 5-repeat allele carriers may support the notion of the side of adaptivity of the widespread risk allele of psychiatric diseases.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimage Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Japan; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimage Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yuka Kotozaki
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Hashizume
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
26
|
Association between amygdala reactivity and a dopamine transporter gene polymorphism. Transl Psychiatry 2014; 4:e420. [PMID: 25093598 PMCID: PMC4150236 DOI: 10.1038/tp.2014.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 12/29/2022] Open
Abstract
Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3' untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [(15)O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity.
Collapse
|
27
|
Maitra S, Sarkar K, Ghosh P, Karmakar A, Bhattacharjee A, Sinha S, Mukhopadhyay K. Potential contribution of dopaminergic gene variants in ADHD core traits and co-morbidity: a study on eastern Indian probands. Cell Mol Neurobiol 2014; 34:549-64. [PMID: 24585059 DOI: 10.1007/s10571-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner's parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case-control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e-007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 '9R' allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu Z, Yang L, Wang Y. Applying Imaging Genetics to ADHD: the Promises and the Challenges. Mol Neurobiol 2014; 50:449-62. [DOI: 10.1007/s12035-014-8683-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022]
|
29
|
Aboitiz F, Ossandón T, Zamorano F, Palma B, Carrasco X. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks. Front Psychol 2014; 5:183. [PMID: 24723897 PMCID: PMC3972460 DOI: 10.3389/fpsyg.2014.00183] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/14/2014] [Indexed: 12/25/2022] Open
Abstract
A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Department of Psychiatry, Medical School, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Tomás Ossandón
- Department of Psychiatry, Medical School, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Francisco Zamorano
- División de Neurociencia, Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del DesarrolloSantiago, Chile
| | - Bárbara Palma
- Programa de Doctorado en Psicoterapia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ximena Carrasco
- Servicio de Neurología y Psiquiatría, Hospital de Niños Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
30
|
Dresler T, Barth B, Ethofer T, Lesch KP, Ehlis AC, Fallgatter AJ. Imaging genetics in adult attention-deficit/hyperactivity disorder (ADHD): a way towards pathophysiological understanding? Borderline Personal Disord Emot Dysregul 2014; 1:6. [PMID: 26401290 PMCID: PMC4574388 DOI: 10.1186/2051-6673-1-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/18/2013] [Indexed: 11/10/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, early-onset and enduring developmental disorder whose underlying etiological and neurobiological processes are the current focus of major research. Research strategies have made considerable effort in elucidating the complex genetic architecture of ADHD and indicate various pathways from genotype to phenotype. Understanding ADHD as a neuropsychiatric disorder enabled to investigate markers of neural activity as endophenotypes to better explain the link from gene to symptomatology (the so-called imaging genetics approach). Overcoming the originally rather restrictive requirements for an endophenotype, imaging genetics studies are supposed to offer a much more flexible and hypothesis-driven approach towards the etiology of ADHD. Although 1) ADHD often persists into adulthood, thus remaining a prevalent disorder, and 2) imaging genetics provides a promising research approach, a review on imaging genetics in adult ADHD - as available for childhood ADHD (Durston 2010) - is lacking. In this review, therefore, findings from the few available imaging genetics studies in adult ADHD will be summarized and complemented by relevant findings from healthy controls and children with ADHD that are considered important for the adult ADHD imaging genetics approach. The studies will be reviewed regarding implications for basic research and possible practical applications. Imaging genetics studies in adult ADHD have the potential to further clarify pathophysiological pathways and mechanisms, to derive new testable hypotheses, to investigate genetic interaction effects and to partly influence practical applications. In combination with other research strategies, they can incrementally foster the understanding of relevant processes in a more comprehensive way. Current limitations comprise the incapability to discover new genes, a high genetic load in patients potentially obscuring the effect of single candidate genes, the mostly unknown heritability of the endophenotype and the heterogeneous manifestation of ADHD.
Collapse
Affiliation(s)
- Thomas Dresler
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany ; LEAD Graduate School, University of Tübingen, Tübingen, Germany
| | - Beatrix Barth
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany ; Graduate School of Neural and Behavioral Sciences, University of Tübingen, Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany ; LEAD Graduate School, University of Tübingen, Tübingen, Germany ; CIN, Center of Integrative Neuroscience, Excellence Cluster, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Gordon EM, Devaney JM, Bean S, Vaidya CJ. Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function. ACTA ACUST UNITED AC 2013; 25:336-45. [PMID: 23968837 DOI: 10.1093/cercor/bht229] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.
Collapse
Affiliation(s)
- Evan M Gordon
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Joseph M Devaney
- Department of Integrative Systems Biology, Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20310, USA
| | - Stephanie Bean
- Department of Psychology, Georgetown University, Washington, DC 20057, USA and
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC 20057, USA and Children's Research Institute, Children's National Medical Center, Washington, DC 20310, USA
| |
Collapse
|
32
|
Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev 2013; 38:125-34. [PMID: 23928090 DOI: 10.1016/j.neubiorev.2013.07.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 01/30/2023]
Abstract
A review of the existing functional magnetic resonance imaging (fMRI) studies on reward anticipation in patients with attention-deficit/hyperactivity disorder (ADHD) is provided. Meta-analysis showed a significant medium effect size (Cohen's d=0.48-0.58) in terms of ventral-striatal (VS)-hyporesponsiveness in ADHD. Studies on VS-responsiveness and trait impulsivity in the healthy population demonstrate the opposite relationship, i.e. impulsivity-scores positively correlated with VS activation during reward processing. Against the background that ADHD may represent an extreme on a continuum of normal variability, the question arises as to how these contrasting findings can be integrated. We discuss three theoretical approaches, each of which integrates the opposing findings: (1) an inverted-u-shape model; (2) a (genetic) moderator model; and (3) the "unrelated model". We conclude that at the present stage the number of existing studies in the healthy population as well as in ADHD groups is too small for a final answer. Therefore, our presented integrative approaches should be understood as an attempt to frame future research directions by generating testable hypotheses and giving practical suggestions for future studies.
Collapse
Affiliation(s)
- Michael M Plichta
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany.
| | - Anouk Scheres
- Developmental Psychology, Behavioural Science Institute, Radboud University Nijmegen, Netherlands
| |
Collapse
|
33
|
Reid RC, Davtian M, Lenartowicz A, Torrevillas RM, Fong TW. Perspectives on the assessment and treatment of adult ADHD in hypersexual men. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.31] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hoogman M, Onnink M, Cools R, Aarts E, Kan C, Arias Vasquez A, Buitelaar J, Franke B. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD. Eur Neuropsychopharmacol 2013; 23:469-78. [PMID: 22749356 DOI: 10.1016/j.euroneuro.2012.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 11/26/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable disorder and several genes increasing disease risk have been identified. The dopamine transporter gene, SLC6A3/DAT1, has been studied most extensively in ADHD research. Interestingly, a different haplotype of this gene (formed by genetic variants in the 3' untranslated region and intron 8) is associated with childhood ADHD (haplotype 10-6) and adult ADHD (haplotype 9-6). The expression of DAT1 is highest in striatal regions in the brain. This part of the brain is of interest to ADHD because of its role in reward processing is altered in ADHD patients; ADHD patients display decreased striatal activation during reward processing. To better understand how the DAT1 gene exerts effects on ADHD, we studied the effect of this gene on reward-related brain functioning in the area of its highest expression in the brain, the striatum, using functional magnetic resonance imaging. In doing so, we tried to resolve inconsistencies observed in previous studies of healthy individuals and ADHD-affected children. In a sample of 87 adult ADHD patients and 77 healthy comparison subjects, we confirmed the association of the 9-6 haplotype with adult ADHD. Striatal hypoactivation during the reward anticipation phase of a monetary incentive delay task in ADHD patients was again shown, but no significant effects of DAT1 on striatal activity were found. Although the importance of the DAT1 haplotype as a risk factor for adult ADHD was again demonstrated in this study, the mechanism by which this gene increases disease risk remains largely unknown.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Karalunas SL, Huang-Pollock CL, Nigg JT. Is reaction time variability in ADHD mainly at low frequencies? J Child Psychol Psychiatry 2013; 54:536-44. [PMID: 23278286 PMCID: PMC3620969 DOI: 10.1111/jcpp.12028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Intraindividual variability in reaction times (RT variability) has garnered increasing interest as an indicator of cognitive and neurobiological dysfunction in children with attention deficit hyperactivity disorder (ADHD). Recent theory and research has emphasized specific low-frequency patterns of RT variability. However, whether group differences are specific to low frequencies is not well examined. METHOD Two studies are presented. The first is a quantitative review of seven previously published studies that have examined patterns of RT variability in ADHD. The second provides new data from a substantially larger sample of children than in prior studies (N(Control) = 42; NADHD = 123). The children completed a choice RT task as part of a traditional go/stop task. Fast-Fourier transform analyses were applied to assess patterns of variability. RESULTS Quantitative review of previous studies indicated that children with ADHD demonstrate more low-frequency variability than non-ADHD controls (Hedge's g = .39; 95% CI: .16-.62), but an equivalent excess variability in a faster frequency comparison band (g = .36; 95% CI: .03-.69), with a trivial and nonsignificant difference between ESs in each band. New data replicated results of the quantitative review with nearly identical effects in the low-frequency (g = .39; 95% CI: .05-.75) and faster frequency comparison bands (g = .40; 95% CI: .04-.74) and no evidence of diagnosis × frequency interaction (p = .954). CONCLUSIONS Results suggest that theories of RT variability in ADHD that focus on low-frequency variability will need to be modified to account for the presence of variability at a broader range of frequencies.
Collapse
Affiliation(s)
- Sarah L Karalunas
- ADHD Research Study UHN80R1, Oregon Health & Science University, Portland, OR 97239-9979, USA
| | | | | |
Collapse
|
36
|
Gordon EM, Breeden AL, Bean SE, Vaidya CJ. Working memory-related changes in functional connectivity persist beyond task disengagement. Hum Brain Mapp 2012; 35:1004-17. [PMID: 23281202 DOI: 10.1002/hbm.22230] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/19/2023] Open
Abstract
We examined whether altered connectivity in functional networks during working memory performance persists following conclusion of that performance, into a subsequent resting state. We conducted functional magnetic resonance imaging (fMRI) in 50 young adults during an initial resting state, followed by an N-back working memory task and a subsequent resting state, in order to examine changes in functional connectivity within and between the default-mode network (DMN) and the task-positive network (TPN) across the three states. We found that alterations in connectivity observed during the N-back task persisted into the subsequent resting state within the TPN and between the DMN and TPN, but not within the DMN. Further, both speed of working memory performance and TPN connectivity strength during the N-back task predicted connectivity strength in the subsequent resting state. Finally, DMN connectivity measured before and during the N-back task predicted individual differences in self-reported inattentiveness, but this association was not found during the post-task resting state. Together, these findings have important implications for models of how the brain recovers following effortful cognition, as well as for experimental designs using resting and task scans.
Collapse
Affiliation(s)
- Evan M Gordon
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC
| | | | | | | |
Collapse
|
37
|
Abstract
The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30-40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood.
Collapse
|
38
|
Koziol LF, Stevens MC. Neuropsychological Assessment and The Paradox of ADHD. APPLIED NEUROPSYCHOLOGY-CHILD 2012; 1:79-89. [DOI: 10.1080/21622965.2012.694764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Brown A, Biederman J, Valera E, Lomedico A, Aleardi M, Makris N, Seidman LJ. Working memory network alterations and associated symptoms in adults with ADHD and Bipolar Disorder. J Psychiatr Res 2012; 46:476-83. [PMID: 22272986 PMCID: PMC3686289 DOI: 10.1016/j.jpsychires.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/05/2012] [Indexed: 11/20/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) and Bipolar Disorder (BPD) co-occur frequently and represent a particularly morbid clinical form of both disorders, however underlying neural circuitry contributing to the comorbidity remain understudied. Our aim was to investigate functional brain circuitry during working memory in a group of participants who meet criteria for both disorders (ADHD + BPD), and to explore the relationship of symptoms of each disorder to brain function. We used fMRI to image brain activity in 18 male adults with both ADHD and BPD, and 18 healthy control participants matched one-to-one on age, sex, and handedness, while they performed a sequential letter N-back task. We investigated differences in activation between these groups, and also correlations of brain activity during the task to symptoms of ADHD and BPD independently. We found significant hypoactivity in the subjects with ADHD + BPD vs. controls across frontal and parietal regions, and further, found that BPD and ADHD symptoms related to activity in anatomically distinct regions that were respectively characterized by activation and suppression during task. We conclude that comorbid ADHD + BPD is associated with alterations across anterior and posterior nodes of the working memory network, and symptoms of each disorder are related to anatomically and functionally distinct brain regions.
Collapse
Affiliation(s)
- Ariel Brown
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Madaan V, Bestha DP. By fault or by default. Front Psychiatry 2012; 3:27. [PMID: 22470356 PMCID: PMC3311267 DOI: 10.3389/fpsyt.2012.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/08/2012] [Indexed: 11/17/2022] Open
Affiliation(s)
- Vishal Madaan
- Child and Family Psychiatry, Psychiatry and Neurobehavioral Sciences, University of Virginia Health System Charlottesville, VA, USA
| | | |
Collapse
|
41
|
Mills KL, Bathula D, Dias TGC, Iyer SP, Fenesy MC, Musser ED, Stevens CA, Thurlow BL, Carpenter SD, Nagel BJ, Nigg JT, Fair DA. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD. Front Psychiatry 2012; 3:2. [PMID: 22291667 PMCID: PMC3265767 DOI: 10.3389/fpsyt.2012.00002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/08/2012] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting-state functional connectivity MRI (rs-fcMRI) studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical-striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD. METHODS We correlated the rs-fcMRI of five thalamic regions of interest (ROIs) with spatial span working memory scores in a sample of 67 children aged 7-11 years [ADHD and typically developing children (TDC)]. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7-11 years) from the ADHD-200 dataset. Thalamic ROIs were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus. RESULTS/CONCLUSION Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.
Collapse
Affiliation(s)
- Kathryn L Mills
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gordon EM, Stollstorff M, Devaney JM, Bean S, Vaidya CJ. Effect of dopamine transporter genotype on intrinsic functional connectivity depends on cognitive state. ACTA ACUST UNITED AC 2011; 22:2182-96. [PMID: 22047966 DOI: 10.1093/cercor/bhr305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional connectivity between brain regions can define large-scale neural networks and provide information about relationships between those networks. We examined how relationships within and across intrinsic connectivity networks were 1) sensitive to individual differences in dopaminergic function, 2) modulated by cognitive state, and 3) associated with executive behavioral traits. We found that regardless of cognitive state, connections between frontal, parietal, and striatal nodes of Task-Positive networks (TPNs) and Task-Negative networks (TNNs) showed higher functional connectivity in 10/10 homozygotes of the dopamine transporter gene, a polymorphism influencing synaptic dopamine, than in 9/10 heterozygotes. However, performance of a working memory task (a state requiring dopamine release) modulated genotype differences selectively, such that cross-network connectivity between TPNs and TNNs was higher in 10/10 than 9/10 subjects during working memory but not during rest. This increased cross-network connectivity was associated with increased self-reported measures of impulsivity and inattention traits. By linking a gene regulating synaptic dopamine to a phenotype characterized by inefficient executive function, these findings validate cross-network connectivity as an endophenotype of executive dysfunction.
Collapse
Affiliation(s)
- Evan M Gordon
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
43
|
Vadalà R, Giugni E, Pichiecchio A, Balottin U, Bastianello S. Attention deficit hyperactivity disorder (ADHD): from a childhood neuropsychiatric disorder to an adult condition. FUNCTIONAL NEUROLOGY 2011; 26:117-119. [PMID: 22152431 PMCID: PMC3814555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|