1
|
Agunbiade K, Fonville L, McGonigle J, Elliott R, Ersche KD, Flechais R, Orban C, Murphy A, Smith DG, Suckling J, Taylor EM, Deakin B, Robbins TW, Nutt DJ, Lingford‐Hughes AR, Paterson LM, Nutt D, Lingford‐Hughes A, Paterson L, McGonigle J, Flechais R, Orban C, Deakin B, Elliott R, Murphy A, Taylor E, Robbins T, Ersche K, Suckling J, Smith D, Reed L, Passetti F, Faravelli L, Erritzoe D, Mick I, Kalk N, Waldman A, Nestor L, Kuchibatla S, Boyapati V, Metastasio A, Faluyi Y, Fernandez‐Egea E, Abbott S, Sahakian B, Voon V, Rabiner I. Alterations in white matter microstructure in alcohol and alcohol‐polydrug dependence: Associations with lifetime alcohol and nicotine exposure. Addict Biol 2022. [PMCID: PMC9540248 DOI: 10.1111/adb.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that alcohol dependence (AD) is associated with microstructural deficits in white matter, but the relationship with lifetime alcohol exposure and the impact of polydrug dependence is not well understood. Using diffusion tensor magnetic resonance (MR) imaging, we examined white matter microstructure in relation to alcohol and polydrug dependence using data from the Imperial College Cambridge Manchester (ICCAM) platform study. Tract‐based spatial statistics were used to examine fractional anisotropy (FA) in a cohort of abstinent AD participants, most of whom had a lifetime history of dependence to nicotine. A further subgroup also had a lifetime history of dependence to cocaine and/or opiates. Individuals with AD had lower FA throughout the corpus callosum, and negative associations with alcohol and nicotine exposure were found. A group‐by‐age interaction effect was found showing greater reductions with age in the alcohol‐dependent group within corpus callosum, overlapping with the group difference. We found no evidence of recovery with abstinence. A comparison of alcohol‐only‐ and alcohol‐polydrug‐dependent groups found no differences in FA. Overall, our findings show that AD is associated with lower FA and suggest that these alterations are primarily driven by lifetime alcohol consumption and cigarette smoking, showing no relationship with exposure to other substances such as cocaine, opiates or cannabis. Reductions in FA across the adult lifespan are more pronounced in AD and offer further support for the notion of accelerated ageing in relation to alcohol dependence. These findings highlight there may be lasting structural differences in white matter in alcohol dependence, despite continued abstinence.
Collapse
Affiliation(s)
- Kofoworola Agunbiade
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Leon Fonville
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - John McGonigle
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychiatry University of Cambridge Cambridge UK
- Department of Systems Neuroscience University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Remy Flechais
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Csaba Orban
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Dana G. Smith
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychology University of Cambridge Cambridge UK
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychiatry University of Cambridge Cambridge UK
| | - Eleanor M. Taylor
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychology University of Cambridge Cambridge UK
| | - David J. Nutt
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | | | - Louise M. Paterson
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lee J, Ju G, Son JW, Shin CJ, Lee SI, Park H, Kim S. White matter integrity in alcohol-dependent patients with long-term abstinence. Medicine (Baltimore) 2021; 100:e26078. [PMID: 34032740 PMCID: PMC8154411 DOI: 10.1097/md.0000000000026078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Based on association studies on amounts of alcohol consumed and cortical and subcortical structural shrinkage, we investigated the effect of chronic alcohol consumption on white matter pathways using probabilistic tractography.Twenty-three alcohol-dependent men (with an average sobriety of 13.1 months) from a mental health hospital and 22 age-matched male healthy social drinkers underwent 3T magnetic resonance imaging. Eighteen major white matter pathways were reconstructed using the TRActs Constrained by UnderLying Anatomy tool (provided by the FreeSurfer). The hippocampal volumes were estimated using an automated procedure. The lifetime drinking history interview, Alcohol Use Disorder Identification Test, Brief Michigan Alcoholism Screening Test, and pack-years of smoking were also evaluated.Analysis of covariance controlling for age, cigarette smoking, total motion index indicated that there was no definite difference of diffusion parameters between the 2 groups after multiple comparison correction. As hippocampal volume decreased, the fractional anisotropy of the right cingulum-angular bundle decreased. Additionally, the axial diffusivity of right cingulum-angular bundle was positively correlated with the alcohol abstinence period.The results imply resilience of white matter in patients with alcohol dependence. Additional longitudinal studies with multimodal methods and neuropsychological tests may improve our findings of the changes in white matter pathways in patients with alcohol dependence.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jung-Woo Son
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Chul-Jin Shin
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Sang Ick Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
3
|
Sharma E, Jacob P, Murthy P, Jain S, Varghese M, Jayarajan D, Kumar K, Benegal V, Vaidya N, Zhang Y, Desrivieres S, Schumann G, Iyengar U, Holla B, Purushottam M, Chakrabarti A, Fernandes GS, Heron J, Hickman M, Kartik K, Kalyanram K, Rangaswamy M, Bharath RD, Barker G, Orfanos DP, Ahuja C, Thennarasu K, Basu D, Subodh BN, Kuriyan R, Kurpad SS, Kumaran K, Krishnaveni G, Krishna M, Singh RL, Singh LR, Toledano M. Consortium on Vulnerability to Externalizing Disorders and Addictions (cVEDA): A developmental cohort study protocol. BMC Psychiatry 2020; 20:2. [PMID: 31898525 PMCID: PMC6941284 DOI: 10.1186/s12888-019-2373-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low and middle-income countries like India with a large youth population experience a different environment from that of high-income countries. The Consortium on Vulnerability to Externalizing Disorders and Addictions (cVEDA), based in India, aims to examine environmental influences on genomic variations, neurodevelopmental trajectories and vulnerability to psychopathology, with a focus on externalizing disorders. METHODS cVEDA is a longitudinal cohort study, with planned missingness design for yearly follow-up. Participants have been recruited from multi-site tertiary care mental health settings, local communities, schools and colleges. 10,000 individuals between 6 and 23 years of age, of all genders, representing five geographically, ethnically, and socio-culturally distinct regions in India, and exposures to variations in early life adversity (psychosocial, nutritional, toxic exposures, slum-habitats, socio-political conflicts, urban/rural living, mental illness in the family) have been assessed using age-appropriate instruments to capture socio-demographic information, temperament, environmental exposures, parenting, psychiatric morbidity, and neuropsychological functioning. Blood/saliva and urine samples have been collected for genetic, epigenetic and toxicological (heavy metals, volatile organic compounds) studies. Structural (T1, T2, DTI) and functional (resting state fMRI) MRI brain scans have been performed on approximately 15% of the individuals. All data and biological samples are maintained in a databank and biobank, respectively. DISCUSSION The cVEDA has established the largest neurodevelopmental database in India, comparable to global datasets, with detailed environmental characterization. This should permit identification of environmental and genetic vulnerabilities to psychopathology within a developmental framework. Neuroimaging and neuropsychological data from this study are already yielding insights on brain growth and maturation patterns.
Collapse
Affiliation(s)
- Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Preeti Jacob
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Mathew Varghese
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Deepak Jayarajan
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Keshav Kumar
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychology, Psychiatry & Neuroscience, MRC SGDP Centre, King’s College London, London, UK
| | - Yuning Zhang
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychology, Psychiatry & Neuroscience, MRC SGDP Centre, King’s College London, London, UK
| | - Sylvane Desrivieres
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychology, Psychiatry & Neuroscience, MRC SGDP Centre, King’s College London, London, UK
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychology, Psychiatry & Neuroscience, MRC SGDP Centre, King’s College London, London, UK
| | - Udita Iyengar
- Department of Child & Adolescent Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London, London, UK
| | - Bharath Holla
- Department of Psychiatry, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Amit Chakrabarti
- Regional Occupational Health Centre (ROHC), Eastern, ICMR-National Institute of Occupational Health (NIOH), Kolkata, West Bengal India
| | - Gwen Sascha Fernandes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, Andhra Pradesh India
| | - Kartik Kalyanram
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, Andhra Pradesh India
| | | | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King’s College London, London, UK
| | | | - Chirag Ahuja
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kandavel Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, Karnataka India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - B. N. Subodh
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John’s Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry and Department of Medical Ethics, St. John’s Medical College and Hospital, Bengaluru, India
| | | | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Foundation for Research and Advocacy in Mental Health, Mysore, India
| | - Rajkumar Lenin Singh
- Department of Psychiatry, Regional Institute of Medical Sciences (RIMS), Imphal, Manipur India
| | - L. Roshan Singh
- Department of Clinical Psychology, Regional Institute of Medical Sciences (RIMS), Imphal, Manipur India
| | - Mireille Toledano
- Faculty of Medicine, School of Public Health, Imperial College, London, UK
| |
Collapse
|
4
|
Holla B, Bharath RD, Venkatasubramanian G, Benegal V. Altered brain cortical maturation is found in adolescents with a family history of alcoholism. Addict Biol 2019; 24:835-845. [PMID: 30058761 DOI: 10.1111/adb.12662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Substance-naïve offspring from high-density alcohol use disorder (AUD) families exhibit altered subcortical brain volumes structurally and altered executive-functioning and emotion-processing functionally, compared with their peers. However, there is a dearth of literature exploring alterations of cortical thickness (CTh) in this population. T1-weighted structural brain MRI was acquired in 75 substance-naïve male offspring of treatment-seeking early onset (<25 years) AUD patients with high familial loading of AUDs (≥2 affected relatives) (FHP) and 65 age-matched substance-naïve male controls with negative family history from the community. Surface-based CTh reconstruction was done using FreeSurfer. Univariate general linear models were implemented at each vertex using SurfStat, controlling for age (linear and quadratic effects), and head size, to examine the main effect of familial AUD risk on CTh and its relationship with externalizing symptom score (ESS). A Johnson-Neyman procedure revealed that the main effect of familial AUD risk on CTh was seen during adolescence, where the FHP group had thicker cortices involving bilateral precentral gyri, left caudal middle frontal gyrus (MFG), bilateral temporo-parietal junction, left inferior-frontal gyrus and right inferior-temporal gyrus. Thicker cortices in left MFG and inferior-parietal lobule were also associated with greater ESS within both groups. More importantly, these group differences diminished with age by young adulthood. Familial AUD risk is associated with age-related differences in maturation of several higher order association cortices that are critical to ongoing development in executive function, emotion regulation and social cognition during adolescence. Early supportive intervention for a delay in alcohol initiation during this critical phase may be crucial for this at-risk population.
Collapse
Affiliation(s)
- Bharath Holla
- Centre for Addiction Medicine, Department of PsychiatryNational Institute of Mental Health and Neurosciences (NIMHANS) India
| | - Rose Dawn Bharath
- Cognitive Neuroscience Centre and Department of Neuroimaging and Interventional RadiologyNIMHANS India
| | | | - Vivek Benegal
- Centre for Addiction Medicine, Department of PsychiatryNational Institute of Mental Health and Neurosciences (NIMHANS) India
| |
Collapse
|
5
|
Jones SA, Nagel BJ. Altered frontostriatal white matter microstructure is associated with familial alcoholism and future binge drinking in adolescence. Neuropsychopharmacology 2019; 44:1076-1083. [PMID: 30636769 PMCID: PMC6461789 DOI: 10.1038/s41386-019-0315-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Adolescence is a time of significant neurobiological development, including changes in white matter microstructure. Familial alcoholism and adolescent binge-drinking have both been associated with altered white matter microstructure; however, the temporal nature of these effects, and their interaction, is unclear. Using diffusion-weighted imaging and voxel-wise multilevel modeling, the effects of familial alcoholism and future binge-drinking on white matter microstructural development were assessed in 45 adolescents, who went on to binge-drink (but were alcohol-naive at baseline), and 68 adolescents, who remained largely alcohol-naive, all with varying degrees of familial alcoholism. Both future binge-drinking and familial alcoholism were associated with altered frontostriatal white matter microstructure early in adolescence, prior to alcohol use. While several binge-drinking-related effects persisted throughout adolescence (in the posterior limb of the internal capsule, superior corona radiata, and cerebellar peduncles), the association between familial alcoholism and altered white matter microstructure dissipated across adolescence in all regions. There were no white matter regions identified where future binge-drinking or familial alcoholism were significantly associated with emergent or exacerbated alterations in white matter microstructure. Altogether, these findings suggest that alterations in frontostiatal white matter microstructure, some of which are associated with familial alcoholism, may be used to predict which adolescents are more likely to go on and engage in alcohol use. Meanwhile, a reduction in family history-related associations with altered white matter microstructure by late-adolescence is encouraging for future prevention work targeted at at-risk youth.
Collapse
Affiliation(s)
- Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Cengel HY, Bozkurt M, Evren C, Umut G, Keskinkilic C, Agachanli R. Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Res 2018; 262:46-54. [PMID: 29407568 DOI: 10.1016/j.psychres.2018.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/26/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
The use of synthetic cannabinoid has been increasing throughout the world and has become a major public health problem. The present study aims to investigate the attention, memory, visuospatial and executive functions in individuals with synthetic cannabinoid use disorder and compare the results with findings obtained from individuals with cannabis use disorder and healthy volunteers with no substance use. Fifty-two patients with synthetic cannabinoid use disorder, 45 patients with cannabis use disorder and 48 healthy control group males were included in the study. The neuropsychological test battery was designed to involve ten studies evaluating a large series of cognitive functions. Impairments in attention, memory, executive and visuospatial functions were identified in individuals with synthetic cannabinoid use disorder and these impairments were found to be significantly greater than in individuals with cannabis use disorder and healthy controls. In line with the data obtained from this study; the evaluation of each cognitive function with more comprehensive test batteries and supporting these evaluations with sensitive brain imaging studies are important topics for future research.
Collapse
Affiliation(s)
- Hanife Yilmaz Cengel
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Muge Bozkurt
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Cuneyt Evren
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Gokhan Umut
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Cahit Keskinkilic
- Department of Neuropsychology, Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Ruken Agachanli
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
7
|
Global white matter microstructural abnormalities associated with addiction liability score in drug naïve youth. Brain Imaging Behav 2017; 12:274-283. [PMID: 28271440 DOI: 10.1007/s11682-017-9679-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormalities in brain white matter (WM) structure have been reported in youths having a family history of substance use disorders (SUDs). It was hypothesized that these abnormalities constitute features of the liability for SUDs transmitted across generations. The association between severity of intergenerational risk for SUD, measured by the Transmissible Liability Index (TLI), and white matter microstructure was examined. Diffusion tensor imaging (DTI) measured WM microstructure in forty-four drug-naïve 10-14 year-olds (N = 19 with parental SUD). Metrics of WM microstructure (i.e., fractional anisotropy, radial diffusivity, mean diffusivity and axial diffusivity) were quantified across the whole brain and in four tracts of interest: anterior corona radiata, superior and inferior longitudinal fasciculi and superior fronto-occipital fasciculi. The TLI was completed by the youths, their parents and, when available, their teachers. The relationship between WM structure and TLI score across the entire group was evaluated using linear multiple regression and between group comparisons were also examined. Fractional anisotropy and radial diffusivity in multiple tracts across the brain were significantly associated with TLI scores. Confirming and extending prior research, the findings indicate that global atypicality in WM tracts was linearly related to liability for eventual SUD development in drug naïve youths.
Collapse
|
8
|
Silveri MM, Dager AD, Cohen-Gilbert JE, Sneider JT. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain. Neurosci Biobehav Rev 2016; 70:244-259. [PMID: 27377691 DOI: 10.1016/j.neubiorev.2016.06.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 01/02/2023]
Abstract
Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alterations reported across substance used and MR modalities are in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life.
Collapse
Affiliation(s)
- Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Alecia D Dager
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julia E Cohen-Gilbert
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer T Sneider
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Pohl KM, Sullivan EV, Rohlfing T, Chu W, Kwon D, Nichols BN, Zhang Y, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Schirda C, Nagel BJ, Pfefferbaum A. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage 2016; 130:194-213. [PMID: 26872408 DOI: 10.1016/j.neuroimage.2016.01.061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 01/18/2023] Open
Abstract
Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.
Collapse
Affiliation(s)
- Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - B Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra A Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States; Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Kevin Cummins
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ty Brumback
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Michael D De Bellis
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - James T Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudiu Schirda
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Neurobiological phenotypes associated with a family history of alcoholism. Drug Alcohol Depend 2016; 158:8-21. [PMID: 26559000 PMCID: PMC4698007 DOI: 10.1016/j.drugalcdep.2015.10.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. METHODS This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. RESULTS Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. CONCLUSIONS It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults.
Collapse
|
11
|
Cservenka A. Advances in Human Neuroconnectivity Research: Applications for Understanding Familial History Risk for Alcoholism. Alcohol Res 2015; 37:89-95. [PMID: 26259090 PMCID: PMC4476606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent advances in brain imaging have allowed researchers to further study the networks connecting brain regions. Specifically, research examining the functioning of these networks in groups with a genetic predisposition for alcoholism has found atypical circuitry in the brains of such individuals. Further research with larger sample sizes and multimodal method integration are necessary to confirm these intriguing findings.
Collapse
|
12
|
Squeglia LM, Jacobus J, Brumback T, Meloy MJ, Tapert SF. White matter integrity in alcohol-naive youth with a family history of alcohol use disorders. Psychol Med 2014; 44:2775-86. [PMID: 25066702 PMCID: PMC4134398 DOI: 10.1017/s0033291714000609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Understanding pre-existing neural vulnerabilities found in youth who are family history positive (FHP) for alcohol use disorders could help inform preventative interventions created to delay initiation age and escalation of heavy drinking. The goal of this study was to compare indices of white matter integrity using diffusion tensor imaging (DTI) between FHP and family history negative (FHN) youth using a sample of 94 alcohol-naive adolescents and to examine if differences were associated with global and domain-specific cognitive functioning. METHOD Participants were 48 FHP and 46 FHN demographically matched, healthy, substance-naive 12- to 14-year-olds (54% female) recruited from local middle schools. Participants completed a neuropsychological test battery and magnetic resonance imaging session, including DTI. RESULTS FHP youth had higher fractional anisotropy and axial diffusivity, and lower radial and mean diffusivity, than FHN youth in 19 clusters spanning projection, association and interhemispheric white matter tracts. Findings were replicated after controlling for age, gender, socio-economic status, grade and pubertal development. Groups did not differ significantly on global or domain-specific neuropsychological test scores. CONCLUSIONS FHP teens showed higher white matter integrity, but similar cognitive functioning, to FHN youth. More mature neural features could be related to more precocious behaviors, such as substance use initiation, in FHP youth. Future research exploring white matter maturation before and after substance use initiation will help elucidate the neurodevelopmental trajectories in youth at risk for substance use disorders, to inform preventive efforts and better understand the sequelae of adolescent alcohol and drug use.
Collapse
Affiliation(s)
- L. M. Squeglia
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - J. Jacobus
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - T. Brumback
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - M. J. Meloy
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - S. F. Tapert
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
13
|
Ewing SWF, Sakhardande A, Blakemore SJ. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth. NEUROIMAGE-CLINICAL 2014; 5:420-37. [PMID: 26958467 PMCID: PMC4749850 DOI: 10.1016/j.nicl.2014.06.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. Methods For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Results Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Conclusions Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain. A large proportion of adolescents drink alcohol. Studies show how alcohol affects human adolescent brain development. This includes a systematic review of MRI and fMRI studies in alcohol-using youth. Changes in structure and function are observed in the brain in alcohol-using youth.
Collapse
Affiliation(s)
| | - Ashok Sakhardande
- UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AR, UK
| | | |
Collapse
|
14
|
Paolozza A, Treit S, Beaulieu C, Reynolds JN. Response inhibition deficits in children with Fetal Alcohol Spectrum Disorder: relationship between diffusion tensor imaging of the corpus callosum and eye movement control. NEUROIMAGE-CLINICAL 2014; 5:53-61. [PMID: 24967159 PMCID: PMC4066187 DOI: 10.1016/j.nicl.2014.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/03/2014] [Accepted: 05/30/2014] [Indexed: 11/27/2022]
Abstract
Response inhibition is the ability to suppress irrelevant impulses to enable goal-directed behavior. The underlying neural mechanisms of inhibition deficits are not clearly understood, but may be related to white matter connectivity, which can be assessed using diffusion tensor imaging (DTI). The goal of this study was to investigate the relationship between response inhibition during the performance of saccadic eye movement tasks and DTI measures of the corpus callosum in children with or without Fetal Alcohol Spectrum Disorder (FASD). Participants included 43 children with an FASD diagnosis (12.3 ± 3.1 years old) and 35 typically developing children (12.5 ± 3.0 years old) both aged 7-18, assessed at three sites across Canada. Response inhibition was measured by direction errors in an antisaccade task and timing errors in a delayed memory-guided saccade task. Manual deterministic tractography was used to delineate six regions of the corpus callosum and calculate fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity, and perpendicular diffusivity. Group differences in saccade measures were assessed using t-tests, followed by partial correlations between eye movement inhibition scores and corpus callosum FA and MD, controlling for age. Children with FASD made more saccade direction errors and more timing errors, which indicates a deficit in response inhibition. The only group difference in DTI metrics was significantly higher MD of the splenium in FASD compared to controls. Notably, direction errors in the antisaccade task were correlated negatively to FA and positively to MD of the splenium in the control, but not the FASD group, which suggests that alterations in connectivity between the two hemispheres of the brain may contribute to inhibition deficits in children with FASD.
Collapse
Affiliation(s)
- Angelina Paolozza
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sarah Treit
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Christian Beaulieu
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G-2E1, Canada ; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T5G 0B7, Canada
| | - James N Reynolds
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada ; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
15
|
Losnegård A, Lundervold A, Hodneland E. White matter fiber tracking directed by interpolating splines and a methodological framework for evaluation. Front Neuroinform 2013; 7:13. [PMID: 23898264 PMCID: PMC3724124 DOI: 10.3389/fninf.2013.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022] Open
Abstract
Image-based tractography of white matter (WM) fiber bundles in the brain using diffusion weighted MRI (DW-MRI) has become a useful tool in basic and clinical neuroscience. However, proper tracking is challenging due to the anatomical complexity of fiber pathways, the coarse resolution of clinically applicable whole-brain in vivo imaging techniques, and the difficulties associated with verification. In this study we introduce a new tractography algorithm using splines (denoted Spline). Spline reconstructs smooth fiber trajectories iteratively, in contrast to most other tractography algorithms that create piecewise linear fiber tract segments, followed by spline fitting. Using DW-MRI recordings from eight healthy elderly people participating in a longitudinal study of cognitive aging, we compare our Spline algorithm to two state-of-the-art tracking methods from the TrackVis software suite. The comparison is done quantitatively using diffusion metrics (fractional anisotropy, FA), with both (1) tract averaging, (2) longitudinal linear mixed-effects model fitting, and (3) detailed along-tract analysis. Further validation is done on recordings from a diffusion hardware phantom, mimicking a coronal brain slice, with a known ground truth. Results from the longitudinal aging study showed high sensitivity of Spline tracking to individual aging patterns of mean FA when combined with linear mixed-effects modeling, moderately strong differences in the along-tract analysis of specific tracts, whereas the tract-averaged comparison using simple linear OLS regression revealed less differences between Spline and the two other tractography algorithms. In the brain phantom experiments with a ground truth, we demonstrated improved tracking ability of Spline compared to the two reference tractography algorithms being tested.
Collapse
Affiliation(s)
- Are Losnegård
- Neuroinformatics and Image Analysis Laboratory, Department of Biomedicine, University of Bergen Bergen, Norway ; Kavli Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital Bergen, Norway
| | | | | |
Collapse
|