1
|
Lesh TA, Rhilinger J, Brower R, Mawla AM, Ragland JD, Niendam TA, Carter CS. Using Task-fMRI to Explore the Relationship Between Lifetime Cannabis Use and Cognitive Control in Individuals With First-Episode Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae016. [PMID: 39144106 PMCID: PMC11317632 DOI: 10.1093/schizbullopen/sgae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
While continued cannabis use and misuse in individuals with schizophrenia is associated with a variety of negative outcomes, individuals with a history of use tend to show higher cognitive performance compared to non-users. While this is replicated in the literature, few studies have used task-based functional magnetic resonance imaging (fMRI) to evaluate whether the brain networks underpinning these cognitive features are similarly impacted. Forty-eight first-episode individuals with schizophrenia (FES) with a history of cannabis use (FES + CAN), 28 FES individuals with no history of cannabis use (FES-CAN), and 59 controls (CON) performed the AX-Continuous Performance Task during fMRI. FES+CAN showed higher cognitive control performance (d'-context) compared to FES-CAN (P < .05, ηp 2 = 0.053), and both FES+CAN (P < .05, ηp 2 = 0.049) and FES-CAN (P < .001, ηp 2 = 0.216) showed lower performance compared to CON. FES+CAN (P < .05, ηp 2 = 0.055) and CON (P < 0.05, ηp 2 = 0.058) showed higher dorsolateral prefrontal cortex (DLPFC) activation during the task compared to FES-CAN, while FES+CAN and CON were not significantly different. Within the FES+CAN group, the younger age of initiation of cannabis use was associated with lower IQ and lower global functioning. More frequent use was also associated with higher reality distortion symptoms at the time of the scan. These data are consistent with previous literature suggesting that individuals with schizophrenia and a history of cannabis use have higher cognitive control performance. For the first time, we also reveal that FES+CAN have higher DLPFC brain activity during cognitive control compared to FES-CAN. Several possible explanations for these findings are discussed.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Joshua Rhilinger
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Rylee Brower
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alex M Mawla
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Oscoz-Irurozqui M, Almodóvar-Payá C, Guardiola-Ripoll M, Guerrero-Pedraza A, Hostalet N, Salvador R, Carrión MI, Maristany T, Pomarol-Clotet E, Fatjó-Vilas M. Cannabis Use and Endocannabinoid Receptor Genes: A Pilot Study on Their Interaction on Brain Activity in First-Episode Psychosis. Int J Mol Sci 2023; 24:ijms24087501. [PMID: 37108689 PMCID: PMC10142622 DOI: 10.3390/ijms24087501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The role of both cannabis use and genetic background has been shown in the risk for psychosis. However, the effect of the interplay between cannabis and variability at the endocannabinoid receptor genes on the neurobiological underpinnings of psychosis remains inconclusive. Through a case-only design, including patients with a first-episode of psychosis (n = 40) classified as cannabis users (50%) and non-users (50%), we aimed to evaluate the interaction between cannabis use and common genetic variants at the endocannabinoid receptor genes on brain activity. Genetic variability was assessed by genotyping two Single Nucleotide Polymorphisms (SNP) at the cannabinoid receptor type 1 gene (CNR1; rs1049353) and cannabinoid receptor type 2 gene (CNR2; rs2501431). Functional Magnetic Resonance Imaging (fMRI) data were obtained while performing the n-back task. Gene × cannabis interaction models evidenced a combined effect of CNR1 and CNR2 genotypes and cannabis use on brain activity in different brain areas, such as the caudate nucleus, the cingulate cortex and the orbitofrontal cortex. These findings suggest a joint role of cannabis use and cannabinoid receptor genetic background on brain function in first-episode psychosis, possibly through the impact on brain areas relevant to the reward circuit.
Collapse
Affiliation(s)
- Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Salud Mental Errenteria-Osakidetza, Av Galtzaraborda 69-75, 20100 Errenteria, Guipúzcoa, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Hospital Benito Menni CASM, C/Doctor Antoni Pujadas 38, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | | | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Fish S, Christidi F, Karavasilis E, Velonakis G, Kelekis N, Klein C, Stefanis NC, Smyrnis N. Interaction of schizophrenia and chronic cannabis use on reward anticipation sensitivity. NPJ SCHIZOPHRENIA 2021; 7:33. [PMID: 34135344 PMCID: PMC8209034 DOI: 10.1038/s41537-021-00163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
Chronic cannabis use and schizophrenia are both thought to affect reward processing. While behavioural and neural effects on reward processing have been investigated in both conditions, their interaction has not been studied, although chronic cannabis use is common among these patients. In the present study eighty-nine participants divided into four groups (control chronic cannabis users and non-users; schizophrenia patient cannabis users and non-users) performed a two-choice decision task, preceded by monetary cues (high/low reward/punishment or neutral), while being scanned using functional magnetic resonance imaging. Reward and punishment anticipation resulted in activation of regions of interest including the thalamus, striatum, amygdala and insula. Chronic cannabis use and schizophrenia had opposing effects on reward anticipation sensitivity. More specifically control users and patient non-users showed faster behavioural responses and increased activity in anterior/posterior insula for high magnitude cues compared to control non-users and patient users. The same interaction pattern was observed in the activation of the right thalamus for reward versus punishment cues. This study provided evidence for interaction of chronic cannabis use and schizophrenia on reward processing and highlights the need for future research addressing the significance of this interaction for the pathophysiology of these conditions and its clinical consequences.
Collapse
Affiliation(s)
- Simon Fish
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece.,1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Foteini Christidi
- Department of Medical Physics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Nikolaos Kelekis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Christoph Klein
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nicholas C Stefanis
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece. .,2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.
| |
Collapse
|
4
|
Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:563-579. [PMID: 31365275 PMCID: PMC7027431 DOI: 10.1080/00952990.2019.1634086] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Background: Cannabis is the most widely used illicit substance worldwide, and legalization for recreational and medical purposes has substantially increased its availability and use in the United States.Objectives: Decades of research have suggested that recreational cannabis use confers risk for cognitive impairment across various domains, and structural and functional differences in the brain have been linked to early and heavy cannabis use.Methods: With substantial evidence for the role of the endocannabinoid system in neural development and understanding that brain development continues into early adulthood, the rising use of cannabis in adolescents and young adults raises major concerns. Yet some formulations of cannabinoid compounds are FDA-approved for medical uses, including applications in children.Results: Potential effects on the trajectory of brain morphology and cognition, therefore, should be considered. The goal of this review is to update and consolidate relevant findings in order to inform attitudes and public policy regarding the recreational and medical use of cannabis and cannabinoid compounds.Conclusions: The findings point to considerations for age limits and guidelines for use.
Collapse
Affiliation(s)
- Alison C Burggren
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Anaheed Shirazi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Ginder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Stoychev KR. Neuroimaging Studies in Patients With Mental Disorder and Co-occurring Substance Use Disorder: Summary of Findings. Front Psychiatry 2019; 10:702. [PMID: 31708805 PMCID: PMC6819501 DOI: 10.3389/fpsyt.2019.00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 11/21/2022] Open
Abstract
Introduction: More than half of psychiatric patients have comorbid substance use disorder (dual diagnosis) and this rate, confirmed by many epidemiological studies, is substantially higher compared to general population. Combined operation of self-medication mechanisms, common etiological factors, and mutually causative influences most likely accounts for comorbidity, which, despite its clinical prevalence, remains underrepresented in psychiatric research, especially in terms of neuroimaging. The current paper attempts to review and discuss all existing methodologically sustainable structural and functional neuroimaging studies in comorbid subjects published in the last 20 years. Methods: Performing a systematic PubMed/MEDLINE, Web of Science, and Cochrane databases search with predefined key-words and selection criteria, 43 structural and functional neuroimaging studies were analyzed. Results: Although markedly inconsistent and confounded by a variety of sources, available data suggest that structural brain changes are slightly more pronounced, yet not qualitatively different in comorbid patients compared to non-comorbid ones. In schizophrenia (SZ) patients, somewhat greater gray matter reduction is seen in cingulate cortex, dorsolateral prefrontal and frontotemporal cortex, limbic structures (hippocampus), and basal ganglia (striatum). The magnitude of structural changes is positively correlated to duration and severity of substance use, but it is important to note that at least in the beginning of the disease, dual diagnosis subjects tend to show less brain abnormalities and better cognitive functioning than pure SZ ones suggesting lower preexisting neuropathological burden. When analysing neuroimaging findings in SZ and bipolar disorder subjects, dorsolateral prefrontal, cingular, and insular cortex emerge as common affected areas in both groups which might indicate a shared endophenotypic (i.e., transdiagnostic) disruption of brain networks involved in executive functioning, emotional processing, and social cognition, rendering affected individuals susceptible to both mental disorder and substance misuse. In patients with anxiety disorders and substance misuse, a common neuroimaging finding is reduced volume of limbic structures (n. accumbens, hippocampus and amygdala). Whether this is a neuropathological marker of common predisposition to specific behavioral symptoms and drug addiction or a result from neuroadaptation changes secondary to substance misuse is unknown. Future neuroimaging studies with larger samples, longitudinal design, and genetic subtyping are warranted to enhance current knowledge on comorbidity.
Collapse
|
6
|
Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018; 32:825-849. [PMID: 29591635 PMCID: PMC6058406 DOI: 10.1177/0269881118760662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A substantial body of credible evidence has accumulated that suggest that cannabis use is an important potentially preventable risk factor for the development of psychotic illness and its worse prognosis following the onset of psychosis. Here we summarize the relevant evidence to argue that the time has come to investigate the neurobiological effects of cannabis in patients with psychotic disorders. In the first section we summarize evidence from longitudinal studies that controlled for a range of potential confounders of the association of cannabis use with increased risk of developing psychotic disorders, increased risk of hospitalization, frequent and longer hospital stays, and failure of treatment with medications for psychosis in those with established illness. Although some evidence has emerged that cannabis-using and non-using patients with psychotic disorders may have distinct patterns of neurocognitive and neurodevelopmental impairments, the biological underpinnings of the effects of cannabis remain to be fully elucidated. In the second and third sections we undertake a systematic review of 70 studies, including over 3000 patients with psychotic disorders or at increased risk of psychotic disorder, in order to delineate potential neurobiological and neurochemical mechanisms that may underlie the effects of cannabis in psychotic disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| |
Collapse
|
7
|
Bogaty SER, Lee RSC, Hickie IB, Hermens DF. Meta-analysis of neurocognition in young psychosis patients with current cannabis use. J Psychiatr Res 2018; 99:22-32. [PMID: 29407284 DOI: 10.1016/j.jpsychires.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Adult psychosis patients (i.e. over the age of 25 years) who are also lifetime cannabis users (CANN±) appear to exhibit superior cognition compared to never-using patients (CANN-). The objective of this meta-analysis was to evaluate the cognitive differences between CANN- and patients who currently use cannabis (CANN+) (i.e. during the CANN± patients' cannabis-using stage). Specifically, focusing on young patients under the age of 25 years, the typical stage of both psychosis- and cannabis-onset. METHOD Of the 308 studies identified through database searches and secondary referencing, 14 compared neurocognition of CANN+ and CANN- in young people with psychotic disorders (mean age between 15 and 45 years). Effect sizes were extracted using neurocognitive test performance between CANN+ and CANN- and random effects modelling was conducted on pooled ES and moderator analyses. RESULTS CANN+ performed worse on several cognitive domains (i.e. premorbid IQ, current IQ, verbal learning, verbal working memory, motor inhibition) compared to CANN-. The association between age and performance in CANN+ cognition was varied, with older age predictive of worse performance in processing speed, sustained attention, verbal memory, and better performance in verbal learning and very fluency. Of note, CANN+ outperformed CANN- in tests of conceptual set-shifting. CONCLUSION These results are consistent with previous findings indicating that CANN+ demonstrate poorer neurocognition than CANN-; and that this is exacerbated with increasing age. Our findings demonstrate significant cognitive differences between patients with CANN+ versus CANN- even at early-onset psychosis, which could suggest a different underlying mechanism towards psychosis for cannabis users.
Collapse
Affiliation(s)
| | - Rico S C Lee
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Brain and Mental Health Laboratory, Monash University, Melbourne, VIC, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Daniel F Hermens
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| |
Collapse
|
8
|
Abstract
Emotional material is commonly reported to be more accurately recognised; however, there is substantial evidence of increased false alarm rates (FAR) for emotional material and several reports of stronger influences on response bias than accuracy. This pattern is more frequently reported for words than pictures. Research on the mechanisms underlying bias differences has mostly focused on word lists under short retention intervals. This article presents four series of experiments examining recognition memory for emotional pictures while varying arousal and the control over the content of the pictures at two retention intervals, and one study measuring the relatedness of the series picture sets. Under the shorter retention interval, emotion increased false alarms and reduced accuracy. Under the longer retention interval emotion increased hit rates and FAR, resulting in reduced accuracy and/or bias. At both retention intervals, the pattern of valence effects differed based on the arousal associated with the picture sets. Emotional pictures were found to be more related than neutral pictures in each set; however, the influence of relatedness alone does not provide an adequate explanation for all emotional differences. The results demonstrate substantial emotional differences in picture recognition that vary based on valence, arousal and retention interval.
Collapse
|
9
|
Bernard JA, Russell CE, Newberry RE, Goen JR, Mittal VA. Patients with schizophrenia show aberrant patterns of basal ganglia activation: Evidence from ALE meta-analysis. Neuroimage Clin 2017; 14:450-463. [PMID: 28275545 PMCID: PMC5328905 DOI: 10.1016/j.nicl.2017.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/31/2017] [Indexed: 12/29/2022]
Abstract
The diverse circuits and functional contributions of the basal ganglia, coupled with known differences in dopaminergic function in patients with schizophrenia, suggest they may be an important contributor to the etiology of the hallmark symptoms and cognitive dysfunction experienced by these patients. Using activation-likelihood-estimation meta-analysis of functional imaging research, we investigated differences in activation patterns in the basal ganglia in patients with schizophrenia, relative to healthy controls across task domains. This analysis included 42 functional neuroimaging studies, representing a variety of behavioral domains that have been linked to basal ganglia function in prior work. We provide important new information about the functional activation patterns and functional topography of the basal ganglia for different task domains in healthy controls. Crucially however, we demonstrate that across task domains, patients with schizophrenia show markedly decreased activation in the basal ganglia relative to healthy controls. Our results provide further support for basal ganglia dysfunction in patients with schizophrenia, and the broad dysfunction across task domains may contribute to the symptoms and cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Jessica A. Bernard
- Department of Psychology, Texas A&M University, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, United States
| | - Courtney E. Russell
- Department of Psychology & Neuroscience, University of Colorado Boulder, United States
| | - Raeana E. Newberry
- Department of Psychology & Neuroscience, University of Colorado Boulder, United States
| | - James R.M. Goen
- Department of Psychology, Texas A&M University, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, United States
- Department of Psychiatry, Northwestern University, United States
- Institute for Policy Research, Northwestern University, United States
- Department of Medical Social Sciences, Northwestern University, United States
| |
Collapse
|
10
|
Hodgins S, Klein S. New Clinically Relevant Findings about Violence by People with Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2017; 62:86-93. [PMID: 27605579 PMCID: PMC5298520 DOI: 10.1177/0706743716648300] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To review findings with clinical relevance that add to knowledge about antisocial and aggressive behaviour among persons with schizophrenia. METHOD Nonsystematic literature review. RESULTS Recent evidence shows that individuals who develop schizophrenia present cognitive deficits, psychotic-like experiences, and internalizing and externalizing problems from childhood onwards. Many of their relatives present not only schizophrenia-related disorders but also antisocial behaviour. While the increased risk of aggressive behaviour among persons with schizophrenia has been robustly established, recent findings show that by first contact with clinical services for psychosis, most people with schizophrenia who will engage in aggressive behaviour may be identified. At first episode, 2 distinct types are distinguishable: those who present a history of antisocial and aggressive behaviour since childhood and those who began engaging in aggressive behaviour as illness onsets. Antipsychotic medications and other treatments shown to be effective for schizophrenia are needed by both types of patients. Additionally, those with a history of antisocial and aggressive behaviour since childhood require cognitive-behavioural programs aimed at reducing these behaviours and promoting prosocial behaviour. Reducing physical victimisation and cannabis use will likely reduce aggressive behaviour. Evidence suggests that threats to hurt others often precede assaults. CONCLUSIONS At first contact with services, patients with schizophrenia who have engaged in aggressive behaviour should be identified and treated for schizophrenia and for aggression. Research is needed to identify interactions between genotypes and environmental factors, from conception onwards, that promote and that protect against the development of aggressive behaviour among persons with schizophrenia.
Collapse
Affiliation(s)
- Sheilagh Hodgins
- 1 Département de Psychiatrie, Institut Universitaire de Santé Mentale de Montréal, Université de Montréal, Montreal, Quebec.,2 Karolinska Institutet, Solna, Sweden
| | - Sanja Klein
- 3 Department of Psychology, University of Giessen, Gießen, Germany.,4 Vitos Klinik für forensische Psychiatrie Haina, Haina, Germany
| |
Collapse
|
11
|
Emotion processing in treatment-resistant schizophrenia patients treated with clozapine: An fMRI study. Schizophr Res 2015; 168:377-80. [PMID: 26255082 DOI: 10.1016/j.schres.2015.07.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVES To examine the neural correlates of emotion processing in treatment-resistant patients with schizophrenia (SCZ-TR). METHODS Twenty-two SCZ-TR patients on clozapine, 24 schizophrenia patients on antipsychotics other than clozapine, and 39 healthy controls were scanned using functional neuroimaging while viewing positive, negative and neutral images. RESULTS Emotionally-laden images (positive and negative) elicited hyper-activations in the dorso-medial prefrontal cortex and left cerebellum in SCZ-TR patients, compared to the two other groups. Similarly, neutral images prompted hyper-activations in the cingulate gyrus in SCZ-TR patients, relative to the two other groups. CONCLUSIONS Treatment resistance is associated with neuro-functional hyper-activations in schizophrenia patients during emotion processing.
Collapse
|
12
|
Løberg EM, Helle S, Nygård M, Berle JØ, Kroken RA, Johnsen E. The Cannabis Pathway to Non-Affective Psychosis may Reflect Less Neurobiological Vulnerability. Front Psychiatry 2014; 5:159. [PMID: 25477825 PMCID: PMC4235385 DOI: 10.3389/fpsyt.2014.00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/24/2014] [Indexed: 12/19/2022] Open
Abstract
There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability × cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics, and neurological soft signs (NSS) in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group, which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings.
Collapse
Affiliation(s)
- Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Siri Helle
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Merethe Nygård
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Jan Øystein Berle
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Rune A. Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|