1
|
Gencheva TM, Valkov BV, Kandilarova SS, Maes MHJ, Stoyanov DS. Diagnostic value of structural, functional and effective connectivity in bipolar disorder. Acta Psychiatr Scand 2024. [PMID: 39137928 DOI: 10.1111/acps.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The aim of this systematic review is to assess the functional magnetic resonance imaging (fMRI) studies of bipolar disorder (BD) patients that characterize differences in terms of structural, functional, and effective connectivity between the patients with BD, patients with other psychiatric disorders and healthy controls as possible biomarkers for diagnosing the disorder using neuroimaging. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), guidelines a systematic search for recent (since 2015) original studies on connectivity in bipolar disorder was conducted in PUBMED and SCOPUS. RESULTS A total of 60 studies were included in this systematic review: 20 of the structural connectivity, 33 of the functional connectivity, and only 7 of the studies focused on effective connectivity complied with the inclusion and exclusion criteria. DISCUSSION Despite the great heterogeneity in the findings, there are several trends that emerge. In structural connectivity studies, the main abnormalities in bipolar disorder patients were in the frontal gyrus, anterior, as well as posterior cingulate cortex and differences in emotion and reward-related networks. Cerebellum (vermis) to cerebrum functional connectivity was found to be the most common finding in BD. Moreover, prefrontal cortex and amygdala connectivity as part of the rich-club hubs were often reported to be disrupted. The most common findings based on effective connectivity were alterations in salience network, default mode network and executive control network. Although more studies with larger sample sizes are needed to ascertain altered brain connectivity as diagnostic biomarker, there is a perspective that the method could be used as a single marker of diagnosis in the future, and the process of adoption could be accelerated by using approaches such as semiunsupervised machine learning.
Collapse
Affiliation(s)
| | - Bozhidar V Valkov
- Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina S Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Michael H J Maes
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Drozdstoy S Stoyanov
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Xiong Y, Yang L, Wang C, Zhao C, Luo J, Wu D, Ouyang Y, de Thiebaut de Schotten M, Gong G. Cortical mapping of callosal connections in healthy young adults. Hum Brain Mapp 2024; 45:e26629. [PMID: 38379508 PMCID: PMC10879906 DOI: 10.1002/hbm.26629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
The corpus callosum (CC) is the principal white matter bundle supporting communication between the two brain hemispheres. Despite its importance, a comprehensive mapping of callosal connections is still lacking. Here, we constructed the first bidirectional population-based callosal connectional atlas between the midsagittal section of the CC and the cerebral cortex of the human brain by means of diffusion-weighted imaging tractography. The estimated connectional topographic maps within this atlas have the most fine-grained spatial resolution, demonstrate histological validity, and were reproducible in two independent samples. This new resource, a complete and comprehensive atlas, will facilitate the investigation of interhemispheric communication and come with a user-friendly companion online tool (CCmapping) for easy access and visualization of the atlas.
Collapse
Affiliation(s)
- Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Changtong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Di Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yiping Ouyang
- The Queen's University of Belfast Joint CollegeChina Medical UniversityShenyangChina
| | - Michel de Thiebaut de Schotten
- Brain Connectivity and Behaviour LaboratorySorbonne UniversitéParisFrance
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives‐UMR 5293, Centre National de la Recherche Scienti que, Commissariat à l'Energie AtomiqueUniversity of BordeauxBordeauxFrance
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
3
|
Yi X, Xiao Q, Fu Y, Wang X, Shen L, Ding J, Jiang F, Wang J, Zhang Z, Chen BT. Association of white matter microstructural alteration with non-suicidal self-injury behavior and visual working memory in adolescents with borderline personality disorder. Psychiatry Res 2024; 331:115619. [PMID: 38048646 DOI: 10.1016/j.psychres.2023.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Non-suicidal self-injurious behavior (NSSI) is the core characteristic of adolescent borderline personality disorder (BPD) and visual working memory is involved in the pathological processes of BPD. This study aimed to investigate alterations in white matter microstructure and their association with NSSI and visual working memory in adolescents with BPD. METHODS 53 adolescents diagnosed with BPD and 39 healthy controls (HCs) were enrolled. White matter microstructure was assessed with the fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI). Correlation analysis was performed to assess the association between FA/MD and core features of BPD. A mediation analysis was performed to test whether the effects of white matter alterations on NSSI could be mediated by visual working memory. RESULTS Adolescents with BPD showed a reduced FA and an increased MD in the cortical-limbic and cortical-thalamus circuit when compared to the HCs (p < 0.05). Increased MD was positively correlated with NSSI, impulse control and identity disturbance (p < 0.05), and was negatively correlated with the score of visual reproduction. Reserved visual working memory masked the effects of white matter microstructural alterations on NSSI behavior. CONCLUSIONS White matter microstructural deficits in the cortical-limbic and cortical-thalamus circuits may be associated with NSSI and visual working memory in adolescents with BPD. Reserved visual working memory may protect against NSSI.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan 410008, PR China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xueying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Liying Shen
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jun Ding
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, PR China
| | - Furong Jiang
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Videtta G, Squarcina L, Rossetti MG, Brambilla P, Delvecchio G, Bellani M. White matter modifications of corpus callosum in bipolar disorder: A DTI tractography review. J Affect Disord 2023; 338:220-227. [PMID: 37301293 DOI: 10.1016/j.jad.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The recent widespread use of diffusion tensor imaging (DTI) tractography allowed researchers to investigate the diffusivity modifications and neuroanatomical changes of white matter (WM) fascicles in major psychiatric disorders, including bipolar disorder (BD). In BD, corpus callosum (CC) seems to have a crucial role in explaining the pathophysiology and cognitive impairment of this psychiatric disorder. This review aims to provide an overview on the latest results emerging from studies that investigated neuroanatomical changes of CC in BD using DTI tractography. METHODS Bibliographic research was conducted on PubMed, Scopus and Web of Science datasets until March 2022. Ten studies fulfilled our inclusion criteria. RESULTS From the reviewed DTI tractography studies a significant decrease of fractional anisotropy emerged in the genu, body and splenium of CC of BD patients compared to controls. This finding is coupled with reduction of fiber density and modification in fiber tract length. Finally, an increase of radial and mean diffusivity in forceps minor and in the entire CC was also reported. LIMITATIONS Small sample size, heterogeneity in terms of methodological (diffusion gradient) and clinical (lifetime comorbidity, BD status, pharmacological treatments) characteristics. CONCLUSIONS Overall, these findings suggest the presence of structural modifications in CC in BD patients, which may in turn explain the cognitive impairments often observed in this psychiatric disorder, especially in executive processing, motor control and visual memory. Finally, structural modifications may suggest an impairment in the amount of functional information and a morphological impact within those brain regions connected by CC.
Collapse
Affiliation(s)
- Giovanni Videtta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
6
|
Vermeulen CL, du Toit PJ, Venter G, Human‐Baron R. A morphological study of the shape of the corpus callosum in normal, schizophrenic and bipolar patients. J Anat 2022; 242:153-163. [PMID: 36226749 PMCID: PMC9877476 DOI: 10.1111/joa.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Abnormalities in the morphology of the corpus callosum have been found to be involved in cognitive impairments or abnormal behaviour in patients with mental disorders such as schizophrenia and bipolar disorder. The present study investigated morphological shape differences of the corpus callosum in a large cohort of 223 participants between normal, schizophrenic and bipolar patients on MRI scans, CT scans and cadaver samples. Healthy samples were compared to a mental disorder population sample to determine morphological shapes variations associated with schizophrenia and bipolar disorder. Landmark-based methodology was used to contour the corpus callosum shape that served as standard positions to allow for radial and thickness partitioning in order to determine shape variations within the specific localised anatomical sections of the corpus callosum. Shape analysis was performed using Ordinary Procrustes averaging and superimposing landmarks to define an average landmark position for the specific regions of the corpus callosum. No significant global shape differences were found between the different mental disorders. Schizophrenia and bipolar shapes differed mostly in the genu-rostrum, posterior body, isthmus and splenium. Sample group comparisons yielded significant differences between all groups and global measurement parameters and in various sub-regions. The findings of the present study suggest that the corpus callosum in schizophrenia and bipolar differs significantly compared to healthy controls, specifically in the anterior body and isthmus for schizophrenia and only in the isthmus for bipolar disorder. Shape changes in these regions may possibly, in part, be responsible for the symptoms and cognitive impairments observed in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Christiaan L. Vermeulen
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Peet J. du Toit
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa,Associate of the Institute for Food, Nutrition and WellbeingUniversity of PretoriaPretoriaSouth Africa,Associate of the Institute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa,Associate of the Exercise Smart TeamUniversity of PretoriaPretoriaSouth Africa
| | - Gerda Venter
- Department of Anatomy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Rene Human‐Baron
- Department of Anatomy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
8
|
The Limits between Schizophrenia and Bipolar Disorder: What Do Magnetic Resonance Findings Tell Us? Behav Sci (Basel) 2022; 12:bs12030078. [PMID: 35323397 PMCID: PMC8944966 DOI: 10.3390/bs12030078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia and bipolar disorder, two of the most severe psychiatric illnesses, have historically been regarded as dichotomous entities but share many features of the premorbid course, clinical profile, genetic factors and treatment approaches. Studies focusing on neuroimaging findings have received considerable attention, as they plead for an improved understanding of the brain regions involved in the pathophysiology of schizophrenia and bipolar disorder. In this review, we summarize the main magnetic resonance imaging findings in both disorders, aiming at exploring the neuroanatomical and functional similarities and differences between the two. The findings show that gray and white matter structural changes and functional dysconnectivity predominate in the frontal and limbic areas and the frontotemporal circuitry of the brain areas involved in the integration of executive, cognitive and affective functions, commonly affected in both disorders. Available evidence points to a considerable overlap in the affected regions between the two conditions, therefore possibly placing them at opposite ends of a psychosis continuum.
Collapse
|
9
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Kieseppä T, Mäntylä R, Luoma K, Rikandi E, Jylhä P, Isometsä E. White Matter Hyperintensities after Five-Year Follow-Up and a Cross-Sectional FA Decrease in Bipolar I and Major Depressive Patients. Neuropsychobiology 2022; 81:39-50. [PMID: 34130283 DOI: 10.1159/000516234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION An increase in brain white matter hyperintensities (WMHs) and a decrease in white matter fractional anisotrophy (FA) have been detected in bipolar I (BPI), II (BPII), and major depressive disorder (MDD) patients. Their relationship, and differences in diagnostic groups are obscure. Longitudinal studies are rare. OBJECTIVE After 5-year follow-up, we evaluated WMHs in BPI, BPII, and MDD patients as compared with controls, and studied the effects of clinical variables. We also explored the associations of clinical variables with cross-sectional whole brain FA. METHODS Eight BPI, 8 BPII, 6 MDD patients, and 19 controls participated in magnetic resonance imaging at baseline and follow-up. Diffusion weighted imaging was included at follow-up. WMHs were rated by the Coffey scale, and a tract-based spatial statistics method was used for diffusion data. The general linear model, ANOVA, Fisher's exact, Wilcoxon sign, and Kruskal-Wallis tests were used for statistical analyses. RESULTS Periventricular WMHs were increased in BPI patients (p = 0.047) and associated with the duration of disorder and lifetime occurrence of substance use disorder (p = 0.018). FA decrease was found in the corpus callosum of BPI patients (p < 0.01). MDD patients showed FA decrease in the right cerebellar middle peduncle (RCMP) (p < 0.01). In BPI patients, the duration of disorder associated with FA increase in RCMP (p < 0.05). No FA decrease was detected in patients with WMHs as compared with those without. CONCLUSIONS Preceding illness burden associated modestly with WMHs, and FA increase in RCMP in BPI patients. MDD patients had FA decrease in RCMP. No association with FA decrease and WMHs was found.
Collapse
Affiliation(s)
- Tuula Kieseppä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| | - Riitta Mäntylä
- Department of Radiology, HUS Medical Imaging Center, Hyvinkää Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katariina Luoma
- Department of Radiology, HUS Medical Imaging Center, Meilahti Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eva Rikandi
- Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Pekka Jylhä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| | - Erkki Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| |
Collapse
|
11
|
Ramírez-Bermúdez J, Marrufo-Melendez O, Berlanga-Flores C, Guadamuz A, Atriano C, Carrillo-Mezo R, Alvarado P, Favila R, Taboada J, Rios C, Yoldi-Negrete M, Ruiz-Garcia R, Tohen M. White Matter Abnormalities in Late Onset First Episode Mania: A Diffusion Tensor Imaging Study. Am J Geriatr Psychiatry 2021; 29:1225-1236. [PMID: 33879344 DOI: 10.1016/j.jagp.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION A first manic episode after 50 years of age is uncommon. Late Onset Mania might be indicative of abnormalities in white matter, probably related to vascular, degenerative, or inflammatory processes. OBJECTIVE To determine if patients with late onset mania have reduced white matter integrity according to Magnetic Resonance Diffusion Tensor Imaging (DTI) and structural MRI. METHODS Twenty-two patients with late onset mania (>50 years old) and 22 age-paired healthy subjects were included in the study. Fractional anisotropy (FA) was used as a quantitative measure of white matter integrity. Fazekas scale was assessed also to measure white matter abnormalities in the FLAIR sequence. The Frontal Assessment Battery, COGNISTAT and Trail making test A and B were used as cognitive measurements. RESULTS According to DTI, commissural connections (left corpus callosum), and limbic connections (right and left uncinate fasciculus) were different between the patients and the comparison group. Fractional anisotropy values in the left corpus callosum showed significant correlations with neuropsychological measures, and with the Fazekas scale score. According to Fazekas scale, a pathological score in the FLAIR sequence was significantly more frequent in the patients as compared to the comparison group. CONCLUSIONS Patients with first episode mania in late life have relevant white matter abnormalities not explained by age, affecting interhemispheric and fronto-limbic networks probably related to executive functioning and emotional processing, at the level of the corpus callosum and the uncinate fasciculus. The etiology of this white matter loss of integrity in patients with late-onset mania is yet to be explored.
Collapse
Affiliation(s)
- Jesus Ramírez-Bermúdez
- National Autonomous University of Mexico, School of Medicine; National Institute of Neurology and Neurosurgery, Neuropsychiatry.
| | | | - Cecilia Berlanga-Flores
- National Autonomous University of Mexico, School of Medicine; National Institute of Neurology and Neurosurgery, Neuropsychiatry
| | - Adilia Guadamuz
- National Institute of Neurology and Neurosurgery, Department of Neuroimaging
| | - Carmen Atriano
- National Institute of Neurology and Neurosurgery, Neuropsychiatry
| | - Roger Carrillo-Mezo
- National Institute of Neurology and Neurosurgery, Department of Neuroimaging
| | - Patricia Alvarado
- National Institute of Neurology and Neurosurgery, Experimental Psychiatry Laboratory
| | - Rafael Favila
- National Institute of Neurology and Neurosurgery, Experimental Psychiatry Laboratory
| | - Jesus Taboada
- National Institute of Neurology and Neurosurgery, Department of Neuroimaging
| | - Camilo Rios
- National Institute of Neurology and Neurosurgery, Neurochemistry Laboratory
| | - Maria Yoldi-Negrete
- Clinical Investigations, National Institute of Psychiatry Juan Ramon de la Fuente, Mexico City, Mexico
| | | | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine
| |
Collapse
|
12
|
Podwalski P, Tyburski E, Szczygieł K, Waszczuk K, Rek-Owodziń K, Mak M, Plichta P, Bielecki M, Rudkowski K, Kucharska-Mazur J, Andrusewicz W, Misiak B, Szulc A, Michalczyk A, Michałowska S, Sagan L, Samochowiec J. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J Clin Med 2021; 10:jcm10112225. [PMID: 34063845 PMCID: PMC8196621 DOI: 10.3390/jcm10112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deficit syndrome (DS) is a subtype of schizophrenia characterized by primary persistent negative symptoms. The corpus callosum (CC) appears to be related to psychopathology in schizophrenia. This study assessed white matter integrity in the CC using diffusion tensor imaging (DTI) in deficit and non-deficit schizophrenia (NDS) patients. We also investigated the psychopathological dimensions of schizophrenia and their relationship to CC integrity. Fifteen DS patients, 40 NDS patients, and 30 healthy controls (HC) underwent psychiatric evaluation and neuroimaging. We divided the CC into five regions and assessed their fractional anisotropy (FA) and mean diffusivity (MD). Psychopathology was assessed with the Positive and Negative Syndrome Scale. DS patients had lower FA than NDS patients and HC, and higher MD in Region 5 of the CC than did HC. NDS patients had higher MD in Region 4 of the CC. The patient groups differed in terms of negative symptoms. After differentiating clinical groups and HC, no significant correlations were observed between DTI measures and psychopathological symptoms. Our results suggest that DS and NDS are characterized by minor impairments of the posterior CC. We confirmed that DS patients have greater negative psychopathology than NDS patients. Our results are preliminary, and further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 61-719 Poznan, Poland;
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University in Warsaw, 05-802 Warsaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Sylwia Michałowska
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, 71-004 Szczecin, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
13
|
Neuroanatomic and Functional Neuroimaging Findings. Curr Top Behav Neurosci 2020; 48:173-196. [PMID: 33040316 DOI: 10.1007/7854_2020_174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The search for brain morphology findings that could explain behavioral disorders has gone through a long path in the history of psychiatry. With the advance of brain imaging technology, studies have been able to identify brain morphology and neural circuits associated with the pathophysiology of mental illnesses, such as bipolar disorders (BD). Promising results have also shown the potential of neuroimaging findings in the identification of outcome predictors and response to treatment among patients with BD. In this chapter, we present brain imaging structural and functional findings associated with BD, as well as their hypothesized relationship with the pathophysiological aspects of that condition and their potential clinical applications.
Collapse
|
14
|
Lee DK, Lee H, Park K, Joh E, Kim CE, Ryu S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 2020; 15:e0232826. [PMID: 32379845 PMCID: PMC7205291 DOI: 10.1371/journal.pone.0232826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20–50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Kyeongwoo Park
- Department of Clinical Psychology, National Center for Mental Health, Seoul, Republic of Korea
| | - Euwon Joh
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Chul-Eung Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
White T, Langen C, Schmidt M, Hough M, James A. Comparative Neuropsychiatry: White Matter Abnormalities in Children and Adolescents with Schizophrenia, Bipolar Affective Disorder, and Obsessive-Compulsive Disorder. Eur Psychiatry 2020; 30:205-13. [DOI: 10.1016/j.eurpsy.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
AbstractBackground:There is considerable evidence that white matter abnormalities play a key role in the pathogenesis of a number of major psychiatric disorders, including schizophrenia, bipolar affective disorder, and obsessive-compulsive disorder. Few studies, however, have compared white matter abnormalities early in the course of the illness.Methods:A total of 102 children and adolescents participated in the study, including 43 with early-onset schizophrenia, 13 with early-onset bipolar affective disorder, 17 with obsessive-compulsive disorder, and 29 healthy controls. Diffusion tensor imaging scans were obtained on all children and the images were assessed for the presence of non-spatially overlapping regions of white matter differences, a novel algorithm known as the pothole approach.Results:Patients with early-onset schizophrenia and early-onset bipolar affective disorder had a significantly greater number of white matter potholes compared to controls, but the total number of potholes did not differ between the two groups. The volumes of the potholes were significantly larger in patients with early-onset bipolar affective disorder compared to the early-onset schizophrenia group. Children and adolescents with obsessive-compulsive disorder showed no differences in the total number of white matter potholes compared to controls.Conclusions:White matter abnormalities in early-onset schizophrenia and bipolar affective disorder are more global in nature, whereas children and adolescents with obsessive-compulsive disorder do not show widespread differences in FA.
Collapse
|
16
|
Cui Y, Dong J, Yang Y, Yu H, Li W, Liu Y, Si J, Xie S, Sui J, Lv L, Jiang T. White matter microstructural differences across major depressive disorder, bipolar disorder and schizophrenia: A tract-based spatial statistics study. J Affect Disord 2020; 260:281-286. [PMID: 31521864 DOI: 10.1016/j.jad.2019.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND White matter abnormalities have been implicated in mental disorders including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ); however, the shared and distinct white matter integrity across mental disorders is still unclear. METHODS A total of 290 participants (MDD = 85, BD = 42, SZ = 68, and healthy controls = 95) were included in the present study. Tract-based spatial statistics were performed to measure fractional anisotropy (FA) and characterize shared and distinguishing white matter changes across mental disorders. RESULTS We found that decreased FA converged across MDD, BD and SZ in the body and genu of the corpus callosum, bilateral anterior and posterior corona radiata, and right superior corona radiata. By contrast, diagnosis-specific effect was only found in MDD in the anterior portion of anterior corona radiata. LIMITATIONS The small and imbalanced sample size, and possible confounding effects of medication. CONCLUSIONS Our findings suggest that abnormally reduced white matter integrity in the interhemispheric and thalamocortical circuit could be consistently involved in the pathogenesis of MDD, BD and SZ.
Collapse
Affiliation(s)
- Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jiahao Dong
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Hongyan Yu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China
| | - Yang Liu
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Sangma Xie
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jing Sui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Squarcina L, Dagnew TM, Rivolta MW, Bellani M, Sassi R, Brambilla P. Automated cortical thickness and skewness feature selection in bipolar disorder using a semi-supervised learning method. J Affect Disord 2019; 256:416-423. [PMID: 31229930 DOI: 10.1016/j.jad.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BD) broadly affects brain structure, in particular areas involved in emotion processing and cognition. In the last years, the psychiatric field's interest in machine learning approaches has been steadily growing, thanks to the potentiality of automatically discriminating patients from healthy controls. METHODS In this work, we employed cortical thickness of 58 regions of interest obtained from magnetic resonance imaging scans of 41 BD patients and 34 healthy controls, to automatically identify the regions which are mostly involved with the disease. We used a semi-supervised method, addressing the criticisms on supervised methods, related to the fact that the diagnosis is not unaffected by uncertainty. RESULTS Our results confirm findings in previous studies, with a classification accuracy of about 75% when mean thickness and skewness of up to five regions are considered. We obtained that the parietal lobe and some areas in the temporal sulcus were the regions which were the most involved with BD. LIMITATIONS The major limitation of our work is the limited size or our dataset, but in line with other recent machine learning works in the field. Moreover, we considered chronic patients, whose brain characteristics may thus be affected. CONCLUSIONS The automatic selection of the brain regions most involved in BD may be of great importance when dealing with the pathogenesis of the disorder. Our method selected regions which are known to be involved with BD, indicating that damage to the identified areas can be considered as a marker of disease.
Collapse
Affiliation(s)
- L Squarcina
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - T M Dagnew
- Department of Computer Science, University of Milan, Milan, Italy.
| | - M W Rivolta
- Department of Computer Science, University of Milan, Milan, Italy
| | - M Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy
| | - R Sassi
- Department of Computer Science, University of Milan, Milan, Italy
| | - P Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
19
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
20
|
From the microscope to the magnet: Disconnection in schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2019; 98:47-57. [PMID: 30629976 DOI: 10.1016/j.neubiorev.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
White matter (WM) abnormalities have implicated schizophrenia (SZ) and bipolar disorder (BD) as disconnection syndromes, yet the extent to which these abnormalities are shared versus distinct remains unclear. Diffusion tensor imaging (DTI) studies yield a putative measure of WM integrity while neuropathological studies provide more specific microstructural information. We therefore systematically reviewed all neuropathological (n = 12) and DTI (n = 11) studies directly comparing patients with SZ and BD. Most studies (18/23) reported no difference between patient groups. Changes in oligodendrocyte density, myelin staining and gene, protein and mRNA expression were found in SZ and/or BD patients as compared to healthy individuals, while DTI studies showed common alterations in thalamic radiations, uncinate fasciculus, corpus callosum, longitudinal fasciculus and corona radiata. Altogether, findings suggest shared disconnectivity in SZ and BD, which are likely related to their considerable overlap. Above all, neuroimaging findings corroborated neuropathological findings in the prefrontal cortex, demonstrating the utility of integrating multiple methodologies. Focusing on clinical dimensions over disease entities will advance our understanding of disconnectivity and help inform preventive medicine.
Collapse
|
21
|
Yang C, Li L, Hu X, Luo Q, Kuang W, Lui S, Huang X, Dai J, He M, Kemp GJ, Sweeney JA, Gong Q. Psychoradiologic abnormalities of white matter in patients with bipolar disorder: diffusion tensor imaging studies using tract-based spatial statistics. J Psychiatry Neurosci 2019; 44:32-44. [PMID: 30565904 PMCID: PMC6306286 DOI: 10.1503/jpn.170221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An increasing number of psychoradiology studies that use tract-based spatial statistics (TBSS) of diffusion tensor imaging have reported abnormalities of white matter in patients with bipolar disorder; however, robust conclusions have proven elusive, especially considering some important clinical and demographic factors. In the present study, we performed a quantitative meta-analysis of TBSS studies to elucidate the most consistent white-matter abnormalities in patients with bipolar disorder. METHODS We conducted a systematic search up to May 2017 for all TBSS studies comparing fractional anisotropy (FA) between patients with bipolar disorder and healthy controls. We performed anisotropic effect size–signed differential mapping meta-analysis. RESULTS We identified a total of 22 data sets including 556 patients with bipolar disorder and 623 healthy controls. We found significant FA reductions in the genu and body of the corpus callosum in patients with bipolar disorder relative to healthy controls. No regions of increased FA were reported. In subgroup analyses, the FA reduction in the genu of the corpus callosum retained significance in patients with bipolar disorder type I, and the FA reduction in the body of the corpus callosum retained significance in euthymic patients with bipolar disorder. Meta-regression analysis revealed that the percentage of female patients was negatively correlated with reduced FA in the body of the corpus callosum. LIMITATIONS Data acquisition, patient characteristics and clinical variables in the included studies were heterogeneous. The small number of diffusion tensor imaging studies using TBSS in patients with bipolar disorder type II, as well as the lack of other clinical information, hindered the application of subgroup meta-analyses. CONCLUSION Our study consistently identified decreased FA in the genu and body of the corpus callosum, suggesting that interhemispheric communication may be the connectivity most affected in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng Yang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xinyu Hu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiang Luo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Weihong Kuang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Su Lui
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - John A Sweeney
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| |
Collapse
|
22
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|
23
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|
24
|
Bracht T, Steinau S, Federspiel A, Schneider C, Wiest R, Walther S. Physical activity is associated with left corticospinal tract microstructure in bipolar depression. NEUROIMAGE-CLINICAL 2018; 20:939-945. [PMID: 30308380 PMCID: PMC6178191 DOI: 10.1016/j.nicl.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system in BD during depression and its association with motor activity. We hypothesized reduced physical activity, microstructural alterations of motor tracts and different associations between activity levels and motor tract microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tractography. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and TBSS analyses did not detect significant group differences. Our results point to white matter microstructure alterations of the left CST in BD. The positive association between motor activity and white matter microstructure suggests a compensatory role of the left CST for psychomotor retardation in BD. Daily physical activity is reduced in bipolar patients with a current depressive episode (BD) The left corticospinal tract (CST) in BD shows increased fractional anisotropy (FA) Increases of FA in the left corticospinal tract in BD are related to less pronounced psychomotor retardation
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Psychiatric University Hospital Zurich, Department of Forensic Psychiatry, Zurich, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Tønnesen S, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Meer DVD, Rokicki J, Moberget T, Gurholt TP, Haukvik UK, Ueland T, Lagerberg TV, Agartz I, Andreassen OA, Westlye LT. White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep 2018; 8:14129. [PMID: 30237410 PMCID: PMC6147807 DOI: 10.1038/s41598-018-32355-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Supported by histological and genetic evidence implicating myelin, neuroinflammation and oligodendrocyte dysfunction in schizophrenia spectrum disorders (SZ), diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) abnormalities when compared to healthy controls (HC). The diagnostic specificity remains unclear, with bipolar disorders (BD) frequently conceptualized as a less severe clinical manifestation along a psychotic spectrum. Further, the age-related dynamics and possible sex differences of WM abnormalities in SZ and BD are currently understudied. Using tract-based spatial statistics (TBSS) we compared DTI-based microstructural indices between SZ (n = 128), BD (n = 61), and HC (n = 293). We tested for age-by-group and sex-by-group interactions, computed effect sizes within different age-bins and within genders. TBSS revealed global reductions in fractional anisotropy (FA) and increases in radial (RD) diffusivity in SZ compared to HC, with strongest effects in the body and splenium of the corpus callosum, and lower FA in SZ compared to BD in right inferior longitudinal fasciculus and right inferior fronto-occipital fasciculus, and no significant differences between BD and HC. The results were not strongly dependent on age or sex. Despite lack of significant group-by-age interactions, a sliding-window approach supported widespread WM involvement in SZ with most profound differences in FA from the late 20 s.
Collapse
Affiliation(s)
- Siren Tønnesen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Prunas C, Delvecchio G, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Diffusion imaging study of the Corpus Callosum in bipolar disorder. Psychiatry Res Neuroimaging 2018; 271:75-81. [PMID: 29129544 DOI: 10.1016/j.pscychresns.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Structural and diffusion imaging studies have provided some evidence of abnormal organization of Corpus Callosum (CC) in Bipolar Disorder (BD). Therefore, by using Diffusion Weighted Imaging (DWI), which allows to build subtle prediction models of fiber integrity for white matter (WM) tracts, this study aims to further explore the microstructure integrity of CC in BD patients compared to matched healthy controls. Twenty-four chronic patients with BD and 35 healthy controls were included in the study. Circular regions of interest were placed, on diffusion images, in the left and right side of callosal regions (i.e. rostrum/genu, anterior body, posterior body, splenium) and the Apparent Diffusion Coefficient (ADC) was then calculated. Significantly increased ADC values were found in right anterior body and in right splenium in BD patients compared to healthy controls (all p < 0.05, Bonferroni corrected). In this study, we found abnormally increased ADC callosal values in BD suggesting microstructural anomalies specifically in the right hemisphere. Interestingly, this finding further supports the presence of an altered inter-hemispheric communication between frontal and temporo-parietal association areas in patients with BD, which may ultimately result in clinical symptoms and cognitive deficits.
Collapse
Affiliation(s)
- Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | - Marco Barillari
- Section of Neurology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | | | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy; Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
27
|
Chang M, Womer FY, Edmiston EK, Bai C, Zhou Q, Jiang X, Wei S, Wei Y, Ye Y, Huang H, He Y, Xu K, Tang Y, Wang F. Neurobiological Commonalities and Distinctions Among Three Major Psychiatric Diagnostic Categories: A Structural MRI Study. Schizophr Bull 2018; 44:65-74. [PMID: 29036668 PMCID: PMC5768040 DOI: 10.1093/schbul/sbx028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) are distinct diagnostic categories in current psychiatric nosology, yet there is increasing evidence for shared clinical and biological features in these disorders. No previous studies have examined brain structural features concurrently in these 3 disorders. The aim of this study was to identify the extent of shared and distinct brain alterations in SZ, BD, and MDD. We examined gray matter (GM) volume and white matter (WM) integrity in a total of 485 individuals (135 with SZ, 86 with BD, 108 with MDD, and 156 healthy controls [HC]) who underwent high-resolution structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at a single site. RESULTS Significant 4-group (SZ, BD, MDD, and HC groups) differences (P < .05, corrected) in GM volumes were found primarily in the paralimbic and heteromodal corticies. Post hoc analyses showed that the SZ, BD, and MDD groups shared GM volume decreases in 87.9% of the total regional volume with significant 4-group differences. Significant 4-group differences in WM integrity (P < .05 corrected) were found in callosal, limbic-paralimbic-hetermodal, cortico-cortical, thalamocortical and cerebellar WM. Post hoc analyses revealed that the SZ and BD groups shared WM alterations in all regions, while WM alterations were not observed with MDD. CONCLUSIONS Our findings of common alterations in SZ, BD, and MDD support the presence of core neurobiological disruptions in these disorders and suggest that neural structural distinctions between these disorders may be less prominent than initially postulated, particularly between SZ and BD.
Collapse
Affiliation(s)
- Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO
| | - E Kale Edmiston
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Chuan Bai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yuting Ye
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Haiyan Huang
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China,To whom correspondence should be addressed; Department of Psychiatry and Radiology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China; tel/fax: +8624-83283405, e-mail:
| |
Collapse
|
28
|
Wang N, Edmiston EK, Luo X, Yang H, Chang M, Wang F, Fan G. Comparing abnormalities of amplitude of low-frequency fluctuations in multiple system atrophy and idiopathic Parkinson's disease measured with resting-state fMRI. Psychiatry Res Neuroimaging 2017; 269:73-81. [PMID: 28957750 DOI: 10.1016/j.pscychresns.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/26/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Multiple system atrophy (MSA) and Idiopathic Parkinson's disease (IPD) show overlapping clinical manifestations with different treatment and prognosis. However, the shared and distinct underlying neural substrates are not yet understood, which needs to be explored between MSA and IPD. Resting-state functional magnetic resonance imaging data were collected from 29 MSA patients, 17 IPD patients and 25 healthy controls (HC) and the Amplitude of Low-Frequency Fluctuations (ALFF) was compared. Lower ALFF in bilateral basal ganglion, bilateral ventrolateral prefrontal cortex and right amygdala, as well as higher ALFF in parieto-temporo-occipital cortex and right cerebellum was shared between both patient groups to compare with HC. In contrast to IPD, decreased or increased ALFF in different regions of visual associative cortices and decreased ALFF in right cerebellum were found in MSA group. Our findings suggested shared and distinct spontaneous brain activity abnormalities in striato-thalamo-cortical (STC) loop, default mood network, visual associative cortices and cerebellum were present in MSA and IPD, which may help to explain similar clinical symptoms in both disorders but a more severe illness prognosis in MSA. Further research is needed to better describe the functional role of the cerebellum and visual associative cortices in early stages of MSA and IPD.
Collapse
Affiliation(s)
- Na Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Elliot Kale Edmiston
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - XiaoGuang Luo
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - HuaGuang Yang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - GuoGuang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
29
|
WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc Natl Acad Sci U S A 2017; 114:E9308-E9317. [PMID: 29078390 DOI: 10.1073/pnas.1713625114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.
Collapse
|
30
|
Lippard ETC, Jensen KP, Wang F, Johnston JAY, Spencer L, Pittman B, Gelernter J, Blumberg HP. Effects of ANK3 variation on gray and white matter in bipolar disorder. Mol Psychiatry 2017; 22:1345-1351. [PMID: 27240527 PMCID: PMC5133179 DOI: 10.1038/mp.2016.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/23/2016] [Accepted: 04/05/2016] [Indexed: 01/22/2023]
Abstract
The single-nucleotide polymorphism rs9804190 in the Ankyrin G (ANK3) gene has been reported in genome-wide association studies to be associated with bipolar disorder (BD). However, the neural system effects of rs9804190 in BD are not known. We investigated associations between rs9804190 and gray and white matter (GM and WM, respectively) structure within a frontotemporal neural system implicated in BD. A total of 187 adolescent and adult European Americans were studied: a group homozygous for the C allele (52 individuals with BD and 56 controls) and a T-carrier group, carrying the high-risk T allele (38 BD and 41 controls). Subjects participated in high-resolution structural magnetic resonance imaging and diffusion tensor imaging (DTI) scanning. Frontotemporal region of interest (ROI) and whole-brain exploratory analyses were conducted. DTI ROI-based analysis revealed a significant diagnosis by genotype interaction within the uncinate fasciculus (P⩽0.05), with BD subjects carrying the T (risk) allele showing decreased fractional anisotropy compared with other subgroups, independent of age. Genotype effects were not observed in frontotemporal GM volume. These findings support effects of rs9804190 on frontotemporal WM in adolescents and adults with BD and suggest a mechanism contributing to WM pathology in BD.
Collapse
Affiliation(s)
- E T C Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - K P Jensen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - F Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J A Y Johnston
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - L Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - B Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - H P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
31
|
Nenadić I, Hoof A, Dietzek M, Langbein K, Reichenbach JR, Sauer H, Güllmar D. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder. Psychiatry Res Neuroimaging 2017; 266:96-100. [PMID: 28644999 DOI: 10.1016/j.pscychresns.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps University Marburg & Marburg University Hospital / UKGM, Marburg, Germany.
| | - Anna Hoof
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| |
Collapse
|
32
|
Squarcina L, Bellani M, Rossetti MG, Perlini C, Delvecchio G, Dusi N, Barillari M, Ruggeri M, Altamura CA, Bertoldo A, Brambilla P. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One 2017; 12:e0178089. [PMID: 28658249 PMCID: PMC5489157 DOI: 10.1371/journal.pone.0178089] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Several strands of evidence reported a significant overlapping, in terms of clinical symptoms, epidemiology and treatment response, between the two major psychotic disorders—Schizophrenia (SCZ) and Bipolar Disorder (BD). Nevertheless, the shared neurobiological correlates of these two disorders are far from conclusive. This study aims toward a better understanding of possible common microstructural brain alterations in SCZ and BD. Magnetic Resonance Diffusion data of 33 patients with BD, 19 with SCZ and 35 healthy controls were acquired. Diffusion indexes were calculated, then analyzed using Tract-Based Spatial Statistics (TBSS). We tested correlations with clinical and psychological variables. In both patient groups mean diffusion (MD), volume ratio (VR) and radial diffusivity (RD) showed a significant increase, while fractional anisotropy (FA) and mode (MO) decreased compared to the healthy group. Changes in diffusion were located, for both diseases, in the fronto-temporal and callosal networks. Finally, no significant differences were identified between patient groups, and a significant correlations between length of disease and FA and VR within the corpus callosum, corona radiata and thalamic radiation were observed in bipolar disorder. To our knowledge, this is the first study applying TBSS on all the DTI indexes at the same time in both patient groups showing that they share similar impairments in microstructural connectivity, with particular regards to fronto-temporal and callosal communication, which are likely to worsen over time. Such features may represent neural common underpinnings characterizing major psychoses and confirm the central role of white matter pathology in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
| | | | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, Verona, Italy
| | | | - Nicola Dusi
- Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Department of Radiology, University of Verona, Verona, Italy
| | | | - Carlo A. Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering (DEI), University of Padova, Padova, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, UTHouston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ SCHIZOPHRENIA 2017; 3:15. [PMID: 28560261 PMCID: PMC5441538 DOI: 10.1038/s41537-017-0013-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Since Emil Kraepelin's conceptualization of endogenous psychoses as dementia praecox and manic depression, the separation between primary psychotic disorders and primary affective disorders has been much debated. We conducted a systematic review of case-control studies contrasting magnetic resonance imaging studies in schizophrenia and bipolar disorder. A literature search in PubMed of studies published between January 2005 and December 2016 was conducted, and 50 structural, 29 functional, 7 magnetic resonance spectroscopy, and 8 combined imaging and genetic studies were deemed eligible for systematic review. Structural neuroimaging studies suggest white matter integrity deficits that are consistent across the illnesses, while gray matter reductions appear more widespread in schizophrenia compared to bipolar disorder. Spectroscopy studies in cortical gray matter report evidence of decreased neuronal integrity in both disorders. Functional neuroimaging studies typically report similar functional architecture of brain networks in healthy controls and patients across the psychosis spectrum, but find differential extent of alterations in task related activation and resting state connectivity between illnesses. The very limited imaging-genetic literature suggests a relationship between psychosis risk genes and brain structure, and possible gene by diagnosis interaction effects on functional imaging markers. While the existing literature suggests some shared and some distinct neural markers in schizophrenia and bipolar disorder, it will be imperative to conduct large, well designed, multi-modal neuroimaging studies in medication-naïve first episode patients that will be followed longitudinally over the course of their illness in an effort to advance our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
34
|
Comparison of Several White Matter Tracts in Feline and Canine Brain by Using Magnetic Resonance Diffusion Tensor Imaging. Anat Rec (Hoboken) 2017; 300:1270-1289. [DOI: 10.1002/ar.23579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
|
35
|
Francis AN, Mothi SS, Mathew IT, Tandon N, Clementz B, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS. Callosal Abnormalities Across the Psychosis Dimension: Bipolar Schizophrenia Network on Intermediate Phenotypes. Biol Psychiatry 2016; 80:627-35. [PMID: 26954565 PMCID: PMC5218825 DOI: 10.1016/j.biopsych.2015.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The corpus callosum has been implicated in the pathogenesis of schizophrenia and bipolar disorder. However, it is unclear whether corpus callosum alterations are related to the underlying familial diathesis for psychotic disorders. We examined the corpus callosum and its subregion volumes and their relationship to cognition, psychotic symptoms, and age in probands with schizophrenia (SZ), psychotic bipolar disorder (PBD), and schizoaffective disorder; their first-degree relatives; and healthy control subjects. METHODS We present findings from morphometric and neurocognitive analyses of 1381 subjects (SZ probands, n = 224; PBD probands, n = 190; schizoaffective disorder probands, n = 142; unaffected relatives, n = 483 [SZ relatives, n = 195; PBD relatives, n = 175; schizoaffective disorder relatives, n = 113]; control subjects, n = 342). Magnetization prepared rapid acquisition gradient-echo T1 scans across five sites were obtained using 3-tesla magnets. Image processing was done using FreeSurfer Version 5.1. Neurocognitive function was measured using the Brief Assessment of Cognition in Schizophrenia scale. RESULTS Anterior and posterior splenial volumes were significantly reduced across the groups. The SZ and PBD probands showed robust and significant reductions, whereas relatives showed significant reductions of intermediate severity. The splenial volumes were positively but differentially correlated with aspects of cognition in the probands and their relatives. Proband groups showed a significant age-related decrease in the volume of the anterior splenium compared with control subjects. Among the psychosis groups, the anterior splenium in probands with PBD showed a stronger correlation with psychotic symptoms, as shown by the Positive and Negative Syndrome Scale. All five subregions showed significantly high familiality. CONCLUSIONS The splenial volumes were significantly reduced across the psychosis dimension. However, this volume reduction impacts cognition and clinical manifestation of the illnesses differentially.
Collapse
Affiliation(s)
- Alan N Francis
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Suraj S Mothi
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Ian T Mathew
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Neeraj Tandon
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Brett Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford; Yale University School of Medicine, New Haven, Connecticut
| | - John A Sweeney
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | |
Collapse
|
36
|
Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RSE, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MWL, Zhou J. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol Med 2016; 46:2771-2783. [PMID: 27396386 PMCID: PMC5358474 DOI: 10.1017/s0033291716001410] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.
Collapse
Affiliation(s)
- C. Wang
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - F. Ji
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - Z. Hong
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. S. Poh
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - R. Krishnan
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. Lee
- Research Division,
Institute of Mental Health, Singapore
- Office of Clinical Sciences,
Duke-NUS Medical School, Singapore
| | - G. Rekhi
- Research Division,
Institute of Mental Health, Singapore
| | - R. S. E. Keefe
- Department of Psychiatry and Behavioral
Sciences, Duke University, Durham,
NC, USA
| | - R. A. Adcock
- Department of Psychiatry and Behavioral
Sciences, Duke University, Durham,
NC, USA
- Center for Cognitive Neuroscience,
Duke University, Durham, NC,
USA
| | - S. J. Wood
- School of Psychology,
University of Birmingham, Edgbaston,
UK
- Department of Psychiatry,
Melbourne Neuropsychiatry Centre, University of
Melbourne and Melbourne Health, Victoria,
Australia
| | - A. Fornito
- Monash Clinical and Imaging
Neuroscience, School of Psychology and Psychiatry & Monash
Biomedical Imaging, Monash University,
Australia
| | - O. Pasternak
- Departments of Psychiatry and Radiology,
Brigham and Women's Hospital, Harvard Medical
School, Boston, MA, USA
| | - M. W. L. Chee
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. Zhou
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
- Clinical Imaging Research Centre, the Agency for
Science, Technology and Research and National University of
Singapore, Singapore
| |
Collapse
|
37
|
Roberts G, Wen W, Frankland A, Perich T, Holmes-Preston E, Levy F, Lenroot RK, Hadzi-Pavlovic D, Nurnberger JI, Breakspear M, Mitchell PB. Interhemispheric white matter integrity in young people with bipolar disorder and at high genetic risk. Psychol Med 2016; 46:2385-2396. [PMID: 27291060 DOI: 10.1017/s0033291716001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND White matter (WM) impairments have been reported in patients with bipolar disorder (BD) and those at high familial risk of developing BD. However, the distribution of these impairments has not been well characterized. Few studies have examined WM integrity in young people early in the course of illness and in individuals at familial risk who have not yet passed the peak age of onset. METHOD WM integrity was examined in 63 BD subjects, 150 high-risk (HR) individuals and 111 participants with no family history of mental illness (CON). All subjects were aged 12 to 30 years. RESULTS This young BD group had significantly lower fractional anisotropy within the genu of the corpus callosum (CC) compared with the CON and HR groups. Moreover, the abnormality in the genu of the CC was also present in HR participants with recurrent major depressive disorder (MDD) (n = 16) compared with CON participants. CONCLUSIONS Our findings provide important validation of interhemispheric abnormalities in BD patients. The novel finding in HR subjects with recurrent MDD - a group at particular risk of future hypo/manic episodes - suggests that this may potentially represent a trait marker for BD, though this will need to be confirmed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - W Wen
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - A Frankland
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - T Perich
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - E Holmes-Preston
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - F Levy
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - R K Lenroot
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - J I Nurnberger
- Department of Psychiatry,Indiana University School of Medicine,Indianapolis, IN,USA
| | - M Breakspear
- Division of Mental Health Research,Queensland Institute of Medical Research,Brisbane,QLD,Australia
| | - P B Mitchell
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| |
Collapse
|
38
|
Scholz V, Houenou J, Kollmann B, Duclap D, Poupon C, Wessa M. Dysfunctional decision-making related to white matter alterations in bipolar I disorder. J Affect Disord 2016; 194:72-9. [PMID: 26803778 DOI: 10.1016/j.jad.2015.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/31/2015] [Accepted: 12/12/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study investigated how frontal white matter (WM) alterations in patients with bipolar I disorder (BD-I) are linked to motivational dysregulation, often reported in the form of risk-taking and impulsivity, and whether structure-function relations in patients might differ from healthy subjects (HC). METHOD We acquired diffusion data from 24 euthymic BD-I patients and 24 controls, to evaluate WM integrity of selected frontal tracts. Risk-taking was assessed by the Cambridge Gambling Task and impulsivity by self-report with the Barratt-Impulsiveness Scale. RESULTS BD-I patients displayed significantly lower integrity in the right cingulum compared to HC. They also showed more risk-taking behavior and reported increased trait-impulsivity. Risk-taking was negatively associated with WM integrity in the right cingulum. Impulsivity was not related to WM integrity in investigated tracts. Together with age and sex, FA in the cingulum explained 25% of variance in risk-taking scores in all study participants. The left inferior fronto-occipital fasciculus (IFOF) was specifically predictive of risk-taking behavior in BD-I patients, but not in HC. LIMITATIONS The employed parameters did not allow us to specify the exact origin of WM changes, nor did the method allow the analysis of specific brain subregions. Also, sample size was moderate and the sample included patients with lifetime alcohol dependence/abuse, hence effects found need replication and have to be interpreted with caution. CONCLUSION Our results further strengthen recent models linking structural changes in frontal networks to behavioral markers of BD-I. They extend recent findings by showing that risk-taking is also linked to the cingulum in BD-I and HC, while other prefrontal tracts (IFOF) are specifically implicated in risk-taking behavior in BD-I patients. Meanwhile, self-reported impulsivity was not associated with WM integrity of the tracts investigated in our study.
Collapse
Affiliation(s)
- Vanessa Scholz
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Josselin Houenou
- UNIACT, Psychiatry Team, NeuroSpin, I2BM, CEA Saclay, Gif-Sur-Yvette, France; Inserm U955, Equipe 15 "Psychiatrie translationnelle", APHP, CHU Mondor, DHU PePsy, Université Paris Est, Fondamental Foundation, Créteil, France
| | - Bianca Kollmann
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | - Cyril Poupon
- Neurospin, UNIRS Lab, CEA Saclay, Gif Sur Yvette, France
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University of Mainz, Mainz, Germany; Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
39
|
Patel VS, Kelly S, Wright C, Gupta CN, Arias-Vasquez A, Perrone-Bizzozero N, Ehrlich S, Wang L, Bustillo JR, Morris D, Corvin A, Cannon DM, McDonald C, Donohoe G, Calhoun VD, Turner JA. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia. Neurosci Lett 2015; 602:44-9. [PMID: 26123324 DOI: 10.1016/j.neulet.2015.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder.
Collapse
Affiliation(s)
- Veena S Patel
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Sinead Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Carrie Wright
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Cota Navin Gupta
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Alejandro Arias-Vasquez
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Stefan Ehrlich
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA.
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Derek Morris
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Colm McDonald
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Gary Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Departments of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jessica A Turner
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Departments of Psychology and Neurosciences, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
40
|
Toteja N, Cokol PG, Ikuta T, Kafantaris V, Peters BD, Burdick KE, John M, Malhotra AK, Szeszko PR. Age-associated alterations in corpus callosum white matter integrity in bipolar disorder assessed using probabilistic tractography. Bipolar Disord 2015; 17:381-91. [PMID: 25532972 PMCID: PMC4458202 DOI: 10.1111/bdi.12278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 09/01/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Atypical age-associated changes in white matter integrity may play a role in the neurobiology of bipolar disorder, but no studies have examined the major white matter tracts using nonlinear statistical modeling across a wide age range in this disorder. The goal of this study was to identify possible deviations in the typical pattern of age-associated changes in white matter integrity in patients with bipolar disorder across the age range of 9-62 years. METHODS Diffusion tensor imaging was performed in 57 (20 male and 37 female) patients with a diagnosis of bipolar disorder and 57 (20 male and 37 female) age- and sex-matched healthy volunteers. Mean diffusivity and fractional anisotropy were computed for the genu and splenium of the corpus callosum, two projection tracts, and five association tracts using probabilistic tractography. RESULTS Overall, patients had lower fractional anisotropy and higher mean diffusivity compared to healthy volunteers across all tracts (while controlling for the effects of age and age(2) ). In addition, there were greater age-associated increases in mean diffusivity in patients compared to healthy volunteers within the genu and splenium of the corpus callosum beginning in the second and third decades of life. CONCLUSIONS Our findings provide evidence for alterations in the typical pattern of white matter development in patients with bipolar disorder compared to healthy volunteers. Changes in white matter development within the corpus callosum may lead to altered inter-hemispheric communication that is considered integral to the neurobiology of the disorder.
Collapse
Affiliation(s)
- Nitin Toteja
- SUNY Downstate Medical Center, Brooklyn, NY, Kings County Hospital, Brooklyn NY
| | | | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, University of Mississippi, MI
| | - Vivian Kafantaris
- Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, Departments of Psychiatry and Molecular Medicine, Hofstra North Shore – LIJ School of Medicine
| | - Bart D. Peters
- Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY
| | - Katherine E. Burdick
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NY, NY
| | - Majnu John
- Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Anil K. Malhotra
- Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, Departments of Psychiatry and Molecular Medicine, Hofstra North Shore – LIJ School of Medicine
| | - Philip R. Szeszko
- Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, Departments of Psychiatry and Molecular Medicine, Hofstra North Shore – LIJ School of Medicine
| |
Collapse
|
41
|
Pearlson GD. Etiologic, Phenomenologic, and Endophenotypic Overlap of Schizophrenia and Bipolar Disorder. Annu Rev Clin Psychol 2015; 11:251-81. [DOI: 10.1146/annurev-clinpsy-032814-112915] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Godfrey D. Pearlson
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510;
- Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, Connecticut 06106
| |
Collapse
|
42
|
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161:102-12. [PMID: 24948485 DOI: 10.1016/j.schres.2014.04.041] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. METHOD We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. RESULTS Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent. CONCLUSION Neuroinflammation is associated with white matter pathology in people with schizophrenia, and may contribute to structural and functional disconnectivity, even at the first episode of psychosis.
Collapse
Affiliation(s)
- Souhel Najjar
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States.
| | - Daniel M Pearlman
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States; The Dartmouth Institute of Health Policy and Clinical Practice, Audrey and Theodor Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
43
|
Schmitt A, Malchow B, Keeser D, Falkai P, Hasan A. Neurobiologie der Schizophrenie. DER NERVENARZT 2014; 86:324-6, 328-31. [DOI: 10.1007/s00115-014-4115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
LIU D, XU Y, JIANG K. Advances in neuroimaging research of schizophrenia in China. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 26:181-93. [PMID: 25317005 PMCID: PMC4194001 DOI: 10.3969/j.issn.1002-0829.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
Abstract
SUMMARY Since Hounsfield's first report about X-ray computed tomography (CT) in 1972, there has been substantial progress in the application of neuroimaging techniques to study the structure, function, and biochemistry of the brain. This review provides a summary of recent research in structural and functional neuroimaging of schizophrenia in China and four tables describing all of the relevant studies from mainland China. The first research report using neuroimaging techniques in China dates back to 1983, a study that reported encephalatrophy in 30% of individuals with schizophrenia. Functional neuroimaging research in China emerged in the 1990s and has undergone rapid development since. Recently, structural and functional brain networks has become a hot topic among China's neuroimaging researchers.
Collapse
Affiliation(s)
| | - Yifeng XU
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaida JIANG
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Ellison-Wright I, Nathan PJ, Bullmore ET, Zaman R, Dudas RB, Agius M, Fernandez-Egea E, Müller U, Dodds CM, Forde NJ, Scanlon C, Leemans A, McDonald C, Cannon DM. Distribution of tract deficits in schizophrenia. BMC Psychiatry 2014; 14:99. [PMID: 24693962 PMCID: PMC4108049 DOI: 10.1186/1471-244x-14-99] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gray and white matter brain changes have been found in schizophrenia but the anatomical organizing process underlying these changes remains unknown. We aimed to identify gray and white matter volumetric changes in a group of patients with schizophrenia and to quantify the distribution of white matter tract changes using a novel approach which applied three complementary analyses to diffusion imaging data. METHODS 21 patients with schizophrenia and 21 matched control subjects underwent brain magnetic resonance imaging. Gray and white matter volume differences were investigated using Voxel-based Morphometry (VBM). White matter diffusion changes were located using Tract Based Spatial Statistics (TBSS) and quantified within a standard atlas. Tracts where significant regional differences were located were examined using fiber tractography. RESULTS No significant differences in gray or white matter volumetry were found between the two groups. Using TBSS the schizophrenia group showed significantly lower fractional anisotropy (FA) compared to the controls in regions (false discovery rate <0.05) including the genu, body and splenium of the corpus callosum and the left anterior limb of the internal capsule (ALIC). Using fiber tractography, FA was significantly lower in schizophrenia in the corpus callosum genu (p = 0.003). CONCLUSIONS In schizophrenia, white matter diffusion deficits are prominent in medial frontal regions. These changes are consistent with the results of previous studies which have detected white matter changes in these areas. The pathology of schizophrenia may preferentially affect the prefrontal-thalamic white matter circuits traversing these regions.
Collapse
Affiliation(s)
- Ian Ellison-Wright
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK,Avon and Wiltshire Mental Health Partnership NHS Trust, Heathwood, Fountain Way, Salisbury SP2 7FD, UK
| | - Pradeep J Nathan
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK,School of Psychology and Psychiatry, Monash University, Building 17, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia,New Medicines, UCB Pharma, Chemin du Foriest B-1420, Braine-l'Alleud, Belgium
| | - Edward T Bullmore
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK,GlaxoSmithKline, Clinical Unit Cambridge (CUC), Addenbrooke’s Centre for Clinical Investigation (ACCI), Addenbrooke’s Hospital, Hills Road, PO Box 128, Cambridge CB2 0GG, UK
| | - Rashid Zaman
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 189, Cambridge CB2 2QQ, UK,South Essex Partnership University NHS Foundation Trust (SEPT), The Lodge, The Chase, Wickford, Essex SS11 7XX, United Kingdom
| | - Robert B Dudas
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 189, Cambridge CB2 2QQ, UK,Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK
| | - Mark Agius
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 189, Cambridge CB2 2QQ, UK,South Essex Partnership University NHS Foundation Trust (SEPT), The Lodge, The Chase, Wickford, Essex SS11 7XX, United Kingdom
| | - Emilio Fernandez-Egea
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 189, Cambridge CB2 2QQ, UK,Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK,Behavioural Clinical Neuroscience Institute (BCNI), University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 189, Cambridge CB2 2QQ, UK
| | - Ulrich Müller
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK,Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK
| | - Chris M Dodds
- GlaxoSmithKline, Clinical Unit Cambridge (CUC), Addenbrooke’s Centre for Clinical Investigation (ACCI), Addenbrooke’s Hospital, Hills Road, PO Box 128, Cambridge CB2 0GG, UK
| | - Natalie J Forde
- Clinical Neuroimaging Laboratory, Departments of Anatomy & Psychiatry, College of Medicine, Nursing and Health Sciences, 202 Comerford Suite, Clinical Sciences Institute, National University of Ireland, Galway, Republic of Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Departments of Anatomy & Psychiatry, College of Medicine, Nursing and Health Sciences, 202 Comerford Suite, Clinical Sciences Institute, National University of Ireland, Galway, Republic of Ireland
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Q.S.459, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Departments of Anatomy & Psychiatry, College of Medicine, Nursing and Health Sciences, 202 Comerford Suite, Clinical Sciences Institute, National University of Ireland, Galway, Republic of Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Departments of Anatomy & Psychiatry, College of Medicine, Nursing and Health Sciences, 202 Comerford Suite, Clinical Sciences Institute, National University of Ireland, Galway, Republic of Ireland
| |
Collapse
|
46
|
Torres CV, Manzanares R, Sola RG. Integrating Diffusion Tensor Imaging-Based Tractography into Deep Brain Stimulation Surgery: A Review of the Literature. Stereotact Funct Neurosurg 2014; 92:282-90. [DOI: 10.1159/000362937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|