1
|
Chavoshnejad P, Vallejo L, Zhang S, Guo Y, Dai W, Zhang T, Razavi MJ. Mechanical hierarchy in the formation and modulation of cortical folding patterns. Sci Rep 2023; 13:13177. [PMID: 37580340 PMCID: PMC10425471 DOI: 10.1038/s41598-023-40086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.
Collapse
Affiliation(s)
- Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Liam Vallejo
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Songyao Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanchen Guo
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Weiying Dai
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Tuo Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
2
|
Maitra R, Horne CM, O’Daly O, Papanastasiou E, Gaser C. Psychotic Like Experiences in Healthy Adolescents are Underpinned by Lower Fronto-Temporal Cortical Gyrification: a Study from the IMAGEN Consortium. Schizophr Bull 2023; 49:309-318. [PMID: 36226895 PMCID: PMC10016412 DOI: 10.1093/schbul/sbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND HYPOTHESIS Psychotic Like Experiences (PLEs) are widely prevalent in children and adolescents and increase the risk of developing psychosis. Cortical gyrification characterizes brain development from in utero till about the first 2 years of life and can be measured in later years as static gyrification changes demonstrating neurodevelopment and dynamic gyrification changes reflecting brain maturation during adolescence. We hypothesized that PLEs would be associated with static cortical gyrification changes reflecting a neurodevelopmental abnormality. STUDY DESIGN We studied 1252 adolescents recruited in the IMAGEN consortium. We used a longitudinal study design, with Magnetic Resonance Imaging measurements at age 14 years and age 19 years; measurement of PLEs using the Community Assessment of Psychic Experiences (CAPE) questionnaire at age 19 years; and clinical diagnoses at age 23 years. STUDY RESULTS Our results show static gyrification changes in adolescents with elevated PLEs on 3 items of the CAPE-voice hearing, unusual experiences of receiving messages, and persecutory ideas-with lower cortical gyrification in fronto-temporal regions in the left hemisphere. This group also demonstrated dynamic gyrification changes with higher cortical gyrification in right parietal cortex in late adolescence; a finding that we replicated in an independent sample of patients with first-episode psychosis. Adolescents with high PLEs were also 5.6 times more likely to transition to psychosis in adulthood by age 23 years. CONCLUSIONS This is the largest study in adolescents that demonstrates fronto-temporal abnormality of cortical gyrification as a potential biomarker for vulnerability to PLEs and transition to psychosis.
Collapse
Affiliation(s)
- Raka Maitra
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Charlotte M Horne
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Owen O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Evangelos Papanastasiou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
- Therapeutic Area CNS, Boehringer Ingelheim International GmbH, Inghelheim, Germany
| | - Christian Gaser
- Departments of Neurology, Jena University Hospital, Jena, Germany
- Departments of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sasabayashi D, Takayanagi Y, Takahashi T, Furuichi A, Kobayashi H, Noguchi K, Suzuki M. Increased brain gyrification and subsequent relapse in patients with first-episode schizophrenia. Front Psychiatry 2022; 13:937605. [PMID: 36032231 PMCID: PMC9406142 DOI: 10.3389/fpsyt.2022.937605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Most schizophrenia patients experience psychotic relapses, which may compromise long-term outcome. However, it is difficult to objectively assess the actual risk of relapse for each patient as the biological changes underlying relapse remain unknown. The present study used magnetic resonance imaging (MRI) to investigate the relationship between brain gyrification pattern and subsequent relapse in patients with first-episode schizophrenia. The subjects consisted of 19 patients with and 33 patients without relapse during a 3-year clinical follow-up after baseline MRI scanning. Using FreeSurfer software, we compared the local gyrification index (LGI) between the relapsed and non-relapsed groups. In the relapsed group, we also explored the relationship among LGI and the number of relapses and time to first relapse after MRI scanning. Relapsed patients exhibited a significantly higher LGI in the bilateral parietal and left occipital areas than non-relapsed patients. In addition, the time to first relapse was negatively correlated with LGI in the right inferior temporal cortex. These findings suggest that increased LGI in the temporo-parieto-occipital regions in first-episode schizophrenia patients may be a potential prognostic biomarker that reflects relapse susceptibility in the early course of the illness.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Adamczyk P, Płonka O, Kruk D, Jáni M, Błądziński P, Kalisz A, Castelein S, Cechnicki A, Wyczesany M. On the relation of white matter brain abnormalities and the asociality symptoms in schizophrenia outpatients - a DTI study. Acta Neurobiol Exp (Wars) 2021; 81:80-95. [PMID: 33949167 DOI: 10.21307/ane-2021-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/29/2021] [Indexed: 11/11/2022]
Abstract
Recent MRI studies have shown that abnormal functional connections in schizophrenia coexist with subtle changes in the structure of axons in the brain. However, there is a discrepancy in the literature concerning the relationship between white matter abnormalities and the occurrence of negative psychopathological symptoms. In the present study, we investigate the relationship between the altered white matter structure and specific psychopathology symptoms, i.e., subscales of Positive and Negative Syndrome Scale (PANSS) and Brief Negative Symptoms Scale (BNSS) in a sample of schizophrenia outpatients. For investigation on white matter abnormalities in schizophrenia, the diffusion tensor imaging analysis of between-group differences in main diffusion parameters by tract-based spatial statistics was conducted on schizophrenia outpatients and healthy controls. Hence, the correlation of PANSS and BNSS psychopathology subscales in the clinical group with fractional anisotropy was analyzed in the 17 selected cortical regions of interest. Presented between-group results revealed widespread loss of white matter integrity located across the brain in schizophrenia outpatients. Results on the white matter relationship with psychopathology revealed the negative correlation between fractional anisotropy in the left orbital prefrontal cortex, right Heschl's gyrus, bilateral precuneus and posterior cingulate cortex and the severity of asociality, as assessed with the BNSS. In conclusion, the presented study confirms the previous evidence on the widespread white matter abnormalities in schizophrenia outpatients and indicates the existence of the subtle but specific association between fractional anisotropy in the fronto-temporo-parietal regions with the asociality. Recent MRI studies have shown that abnormal functional connections in schizophrenia coexist with subtle changes in the structure of axons in the brain. However, there is a discrepancy in the literature concerning the relationship between white matter abnormalities and the occurrence of negative psychopathological symptoms. In the present study, we investigate the relationship between the altered white matter structure and specific psychopathology symptoms, i.e., subscales of Positive and Negative Syndrome Scale (PANSS) and Brief Negative Symptoms Scale (BNSS) in a sample of schizophrenia outpatients. For investigation on white matter abnormalities in schizophrenia, the diffusion tensor imaging analysis of between-group differences in main diffusion parameters by tract-based spatial statistics was conducted on schizophrenia outpatients and healthy controls. Hence, the correlation of PANSS and BNSS psychopathology subscales in the clinical group with fractional anisotropy was analyzed in the 17 selected cortical regions of interest. Presented between-group results revealed widespread loss of white matter integrity located across the brain in schizophrenia outpatients. Results on the white matter relationship with psychopathology revealed the negative correlation between fractional anisotropy in the left orbital prefrontal cortex, right Heschl’s gyrus, bilateral precuneus and posterior cingulate cortex and the severity of asociality, as assessed with the BNSS. In conclusion, the presented study confirms the previous evidence on the widespread white matter abnormalities in schizophrenia outpatients and indicates the existence of the subtle but specific association between fractional anisotropy in the fronto-temporo-parietal regions with the asociality.
Collapse
Affiliation(s)
| | - Olga Płonka
- Institute of Psychology , Jagiellonian University , Krakow , Poland
| | - Dawid Kruk
- Psychosis Research and Psychotherapy Unit , Association for the Development of Community Psychiatry and Care , Krakow , Poland ; Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Martin Jáni
- Institute of Psychology , Jagiellonian University , Krakow , Poland ; Department of Psychiatry , Faculty of Medicine , Masaryk University and University Hospital Brno , Brno , Czech Republic
| | - Piotr Błądziński
- Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Aneta Kalisz
- Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | - Stynke Castelein
- Lentis Research , Lentis Psychiatric Institute , Groningen , The Netherlands ; Faculty of Behavioural and Social Sciences , University of Groningen , Groningen , The Netherlands
| | - Andrzej Cechnicki
- Psychosis Research and Psychotherapy Unit , Association for the Development of Community Psychiatry and Care , Krakow , Poland ; Community Psychiatry and Psychosis Research Center , Chair of Psychiatry , Medical College , Jagiellonian University , Krakow , Poland
| | | |
Collapse
|
7
|
Sasabayashi D, Takayanagi Y, Takahashi T, Nemoto K, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Increased brain gyrification in the schizophrenia spectrum. Psychiatry Clin Neurosci 2020; 74:70-76. [PMID: 31596011 DOI: 10.1111/pcn.12939] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
AIM Increased brain gyrification in diverse cortical regions has been reported in patients with schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unknown whether patients with schizotypal disorder exhibit similar changes. METHODS This magnetic resonance imaging study investigated brain gyrification in 46 patients with schizotypal disorder (29 male, 17 female), 101 patients with schizophrenia (55 male, 46 female), and 77 healthy controls (44 male, 33 female). T1-weighted magnetic resonance images were obtained for each participant. Using FreeSurfer software, the local gyrification index (LGI) of the entire cortex was compared across the groups. RESULTS Both schizophrenia and schizotypal disorder patients showed a significantly higher LGI in diverse cortical regions, including the bilateral prefrontal and left parietal cortices, as compared with controls, but its extent was broader in schizophrenia especially for the right prefrontal and left occipital regions. No significant correlations were found between the LGI and clinical variables (e.g., symptom severity, medication) for either of the patient groups. CONCLUSION Increased LGI in the frontoparietal regions was common to both patient groups and might represent vulnerability to schizophrenia, while more diverse changes in schizophrenia patients might be associated with the manifestation of florid psychosis.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
8
|
Lubeiro A, de Luis-García R, Rodríguez M, Álvarez A, de la Red H, Molina V. Biological and cognitive correlates of cortical curvature in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:68-75. [PMID: 29107210 DOI: 10.1016/j.pscychresns.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Mean cortical curvature may relate to cortico-cortical connections integrity. We explored the association between prefrontal (PFC) cortical curvature and fractional anisotropy (FA) values for tracts connecting PFC and relevant cortical regions. In schizophrenia Anatomical and diffusion magnetic resonance images were obtained from 34 patients (16 of them first-episodes) and 32 healthy controls. We calculated curvature at rostral lateral prefrontal (RLPF) and superior medial prefrontal (SMPF) areas and mean FA for the tracts respectively connecting RLPF and SMPF areas with anterior caudal cingulate (ACC), superior temporal gyrus (STG) and superior parietal SP regions. Cognitive and clinical data were collected, including baseline symptoms, Clinical Global Impression change scores from baseline to follow-up, illness duration and treatment dosage. Patients showed significantly lower FA values in the tracts linking right RLPF-ACC, right SMPF-SPG and bilaterally PFC-STG. FA values in short-range cortico-cortical connections (linking PFC and ACC) were inversely associated with PFC curvature. In patients, cognitive performance was negatively associated with PFC curvature. Larger curvature values were associated to lack of clinical improvement at follow-up. We conclude that cortical curvature is influenced by integrity in short-range cortico-cortical connections and relates to cognition and clinical outcome in schizophrenia patients.
Collapse
Affiliation(s)
- Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Margarita Rodríguez
- Radiology Service, University Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Aldara Álvarez
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Henar de la Red
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007, Spain; CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Spain.
| |
Collapse
|
9
|
Nenadić I, Hoof A, Dietzek M, Langbein K, Reichenbach JR, Sauer H, Güllmar D. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder. Psychiatry Res Neuroimaging 2017; 266:96-100. [PMID: 28644999 DOI: 10.1016/j.pscychresns.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps University Marburg & Marburg University Hospital / UKGM, Marburg, Germany.
| | - Anna Hoof
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| |
Collapse
|