1
|
Lin Q, Jin S, Yin G, Li J, Asgher U, Qiu S, Wang J. Cortical Morphological Networks Differ Between Gyri and Sulci. Neurosci Bull 2024:10.1007/s12264-024-01262-7. [PMID: 39044060 DOI: 10.1007/s12264-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024] Open
Abstract
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Collapse
Affiliation(s)
- Qingchun Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Umer Asgher
- Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague (CTU), Prague, 128 00, Czech Republic
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Cascino G, Canna A, Russo AG, Monaco F, Monteleone AM, Ceres R, Carfagno M, Di Salle F, Monteleone P. Association between childhood maltreatment and cortical folding in women with eating disorders. Eur J Neurosci 2023; 58:2868-2873. [PMID: 37369968 DOI: 10.1111/ejn.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Childhood maltreatment (CM) is associated with distinct clinical and biological characteristics in people with eating disorders (EDs). The measurement of local gyrification index (lGI) may help to better characterize the impact of CM on cortical structure. Thus, the present study investigated the association of CM with lGI in women with EDs. Twenty-six women with anorexia nervosa (AN) and 24 with bulimia nervosa (BN) underwent a 3T MRI scan. All participants filled in the Childhood Trauma Questionnaire. All neuroimaging data were processed by FreeSurfer. LGI maps underwent a general linear model to evaluate differences between groups with or without CM. People with AN and BN were merged together. Based on the Childhood Trauma Questionnaire cutoff scores, 24 participants were identified as maltreated and 26 as non-maltreated. Maltreated people with EDs showed a significantly lower lGI in the left middle temporal gyrus compared with non-maltreated people, whereas no differences emerged in the right hemisphere between groups. The present study showed that in people with EDs, CM is associated with reduced cortical folding in the left middle temporal gyrus, an area that could be involved in ED psychopathology. This finding corroborates the hypothesis of a 'maltreated ecophenotype', which argues that CM may allow to biologically, other than clinically, distinguish individuals with the same psychiatric disorder.
Collapse
Affiliation(s)
- Giammarco Cascino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Antonietta Canna
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea Gerardo Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Rossella Ceres
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Carfagno
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Salerno, Italy
| |
Collapse
|
3
|
Schloesser L, Lotter LD, Offermann J, Borucki K, Biemann R, Seitz J, Konrad K, Herpertz-Dahlmann B. Sex-dependent clinical presentation, body image, and endocrine status in long-term remitted anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2023. [PMID: 37319038 DOI: 10.1002/erv.2997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Although anorexia nervosa (AN) in males has recently gained attention, knowledge of its psychological and physiological outcomes is still scarce. We explore sex-specific characteristics of long-term remitted AN with respect to residual eating disorder (ED) psychopathology, body image, and endocrinology. METHOD We recruited 33 patients with AN in remission for at least 18 months (24 women, 9 men) and 36 matched healthy controls (HCs). Eating disorder psychopathology and body image ideals were assessed via clinical interviews, questionnaires, and an interactive 3D body morphing tool. Plasma levels of leptin, free triiodothyronine, cortisol, and sex hormones were quantified. Univariate models controlled for age and weight were used to test for the effects of diagnosis and sex. RESULTS Both patient groups showed residual ED psychopathology but normal weight and hormone levels relative to HCs. Male remitted patients demonstrated significantly stronger muscularity-focused body image ideals, evident in interviews, self-reports, and behavioural data, than both female patients and HCs. CONCLUSIONS Sex-specific body image characteristics in patients with remitted AN point towards the need to adjust test instruments and diagnostic criteria to male-specific psychopathology. In the future, sufficiently powered studies should evaluate the risk of men with AN developing muscle dysmorphia in the long term.
Collapse
Affiliation(s)
- Louisa Schloesser
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jan Offermann
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ronald Biemann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, Jülich Research Centre, Jülich, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Meregalli V, Tenconi E, Madan CR, Somà E, Meneguzzo P, Ceccato E, Zuanon S, Sala A, Favaro A, Collantoni E. Beyond body image: what body schema and motor imagery can tell us about the way patients with anorexia nervosa experience their body. Psychiatry Clin Neurosci 2023; 77:94-101. [PMID: 36330847 DOI: 10.1111/pcn.13501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/04/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
AIM Recent evidence suggests that the body image disturbance often observed in patients with anorexia nervosa also extends to the body schema. According to the embodiment approach, the body schema is not only involved in motor execution, but also in tasks that only require a mental simulation of a movement such as motor imagery, mental rotation of bodies, and visuospatial perspective-taking. The aim of the present study was to assess the ability of patients with anorexia to mentally simulate movements. METHODS The sample included 52 patients with acute anorexia and 62 healthy controls. All participants completed three tests of explicit motor imagery, a mental rotation test and a test of visuospatial perspective-taking. RESULTS Patients with anorexia nervosa, with respect to controls, reported greater difficulties in imagining movements according to a first-person perspective, lower accuracy in motor imagery, selective impairment in the mental rotation of human figures, and reduced ability in assuming a different egocentric visuospatial perspective. CONCLUSION These results are indicative of a specific alteration in motor imagery in patients with anorexia nervosa. Interestingly, patients' difficulties appear to be limited to those tasks which specifically rely on the body schema, while patients and controls performed similarly in the 3D objects mental rotation task.
Collapse
Affiliation(s)
- Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Elena Tenconi
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | - Enrica Somà
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Enrico Ceccato
- Eating Disorders Unit, Ospedale San Bortolo, Vicenza, Italy
| | - Sophia Zuanon
- Eating Disorders Unit, Ospedale San Bortolo, Vicenza, Italy
| | | | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Enrico Collantoni
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| |
Collapse
|
5
|
Halls D, Leppanen J, Kerr‐Gaffney J, Simic M, Nicholls D, Mandy W, Williams S, Tchanturia K. Examining the relationship between autistic spectrum disorder characteristics and structural brain differences seen in anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2022; 30:459-473. [PMID: 35570362 PMCID: PMC9546313 DOI: 10.1002/erv.2910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Cortical differences have been reported in Anorexia Nervosa (AN) compared with healthy controls (HC); however, it is unclear if Autism Spectrum Disorder (ASD) characteristics are related to these cortical differences. The aim of this study was to examine if structural measures were correlated to ASD traits in AN. In total 184 female participants participated in the study; 57 acutely underweight AN participants (AAN), 59 weight-restored participants (WR) and 68 HC. Participants underwent structural magnetic resonance imaging as well as completing the Autism Diagnostic Observation schedule, second edition to examine ASD characteristics. Group differences in curvature, gyrification, surface area, thickness, global grey matter and white matter were measured. Correlation and regression analysis were conducted to examine the relationship between cortical measures and ASD characteristics. Two decreased gyrification clusters in the right post central and supramarginal gyrus and decreased global grey matter were observed in the AAN group compared to HC and WR. No correlations between ASD traits and structural measures existed. Our results suggest structural differences seen in individuals with AN do not appear to be related to ASD characteristics.
Collapse
Affiliation(s)
- Daniel Halls
- King's College London (KCL), Institute of PsychiatryPsychology and Neuroscience (IoPPN)Psychological MedicineLondonUK
| | - Jenni Leppanen
- King's College LondonCentre for Neuroimaging SciencesLondonUK
| | - Jess Kerr‐Gaffney
- King's College London (KCL), Institute of PsychiatryPsychology and Neuroscience (IoPPN)Psychological MedicineLondonUK
| | - Mima Simic
- South London and Maudsley NHS Foundation TrustLondonUK
| | | | - William Mandy
- Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | - Steven Williams
- King's College LondonCentre for Neuroimaging SciencesLondonUK
| | - Kate Tchanturia
- King's College London (KCL), Institute of PsychiatryPsychology and Neuroscience (IoPPN)Psychological MedicineLondonUK
- South London and Maudsley NHS Foundation TrustLondonUK
- Psychology DepartmentIllia State UniversityTbilisiGeorgia
| |
Collapse
|
6
|
Cascino G, Canna A, Russo AG, Monaco F, Esposito F, Di Salle F, Monteleone P, Monteleone AM. Childhood maltreatment is associated with cortical thinning in people with eating disorders. Eur Arch Psychiatry Clin Neurosci 2022; 273:459-466. [PMID: 35852616 PMCID: PMC10070200 DOI: 10.1007/s00406-022-01456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
Abstract
Childhood maltreatment (CM) is a non-specific risk factor for eating disorders (ED) and is associated with a greater severity in their clinical presentation and poorer treatment outcome. These data suggest that maltreated people with ED may be biologically other than clinically different from non-maltreated people. The aim of the present study was to investigate cortical thickness (CT), a possible biomarker of neurodevelopment, in people with ED with or without history of CM and in healthy women. Twenty-four healthy women, 26 with anorexia nervosa and 24 with bulimia nervosa underwent a 3T MRI scan. All participants filled in the childhood trauma questionnaire. All neuroimaging data were processed by FreeSurfer. Twenty-four participants with ED were identified as maltreated and 26 participants with ED as non-maltreated. All healthy women were non-maltreated. Compared to healthy women, maltreated people with ED showed lower CT in the left rostral anterior cingulate gyrus, while compared to people with ED without history of CM showed lower CT values in the left superior frontal and in right caudal middle frontal and superior parietal gyri. No significant differences emerged in CT measures between healthy women and people with ED without history of CM. The present findings show for the first time that in adult people with ED childhood maltreatment is associated with cortical thinning in areas implicated in the modulation of brain processes that are acknowledged to play a role in the psychopathology of ED.
Collapse
Affiliation(s)
- Giammarco Cascino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy.
| | - Antonietta Canna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Gerardo Russo
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | | | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | | |
Collapse
|
7
|
Sader M, Williams JHG, Waiter GD. A meta-analytic investigation of grey matter differences in anorexia nervosa and autism spectrum disorder. EUROPEAN EATING DISORDERS REVIEW 2022; 30:560-579. [PMID: 35526083 PMCID: PMC9543727 DOI: 10.1002/erv.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Recent research reports Anorexia Nervosa (AN) to be highly dependent upon neurobiological function. Some behaviours, particularly concerning food selectivity are found in populations with both Autism Spectrum Disorder (ASD) and AN, and there is a proportionally elevated number of anorexic patients exhibiting symptoms of ASD. We performed a systematic review of structural MRI literature with the aim of identifying common structural neural correlates common to both AN and ASD. Across 46 ASD publications, a meta‐analysis of volumetric differences between ASD and healthy controls revealed no consistently affected brain regions. Meta‐analysis of 23 AN publications revealed increased volume within the orbitofrontal cortex and medial temporal lobe, and adult‐only AN literature revealed differences within the genu of the anterior cingulate cortex. The changes are consistent with alterations in flexible reward‐related learning and episodic memory reported in neuropsychological studies. There was no structural overlap between ASD and AN. Findings suggest no consistent neuroanatomical abnormality associated with ASD, and evidence is lacking to suggest that reported behavioural similarities between those with AN and ASD are due to neuroanatomical structural similarities. Findings related to neuroanatomical structure in AN/ASD demonstrate overlap and require revisiting. Meta‐analytic findings show structural increase/decrease versus healthy controls (LPFC/MTL/OFC) in AN, but no clusters found in ASD. The neuroanatomy associated with ASD is inconsistent, but findings in AN reflect condition‐related impairment in executive function and sociocognitive behaviours.
Collapse
Affiliation(s)
- Michelle Sader
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justin H G Williams
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E. Cortical Complexity Estimation Using Fractal Dimension: A Systematic Review of the Literature on Clinical and Nonclinical Samples. Eur J Neurosci 2022; 55:1547-1583. [PMID: 35229388 PMCID: PMC9313853 DOI: 10.1111/ejn.15631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022]
Abstract
Fractal geometry has recently been proposed as a useful tool for characterizing the complexity of the brain cortex, which is likely to derive from the recurrence of sulci–gyri convolution patterns. The index used to describe the cortical complexity is called fractal dimensional (FD) and was employed by different research exploring the neurobiological correlates of distinct pathological and nonpathological conditions. This review aims to describe the literature on the application of this index, summarize the heterogeneities between studies and inform future research on this topic. Sixty‐two studies were included in the systematic review. The main research lines concern neurodevelopment, aging and the neurobiology of specific psychiatric and neurological disorders. Overall, the included papers indicate that cortical complexity is likely to reduce during aging and in various pathological processes affecting the brain. Nevertheless, the high heterogeneity between studies strongly prevents the possibility of drawing conclusions. Further research considering this index besides other morphological values is needed to better clarify the role of FD in characterizing the cortical structure. Fractal dimension (FD) is a useful tool for the assessment of cortical complexity. In healthy controls, FD is associated with development, aging and cognition. Alterations in FD have been observed in different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | | | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Alessandro Miola
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Nicolò Trevisan
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Fabio Sambataro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | |
Collapse
|
9
|
Doose A, Hellerhoff I, Tam FI, King JA, Seidel M, Geisler D, Plähn HCI, Roessner V, Akgün K, Ziemssen T, Ehrlich S. Neural and glial damage markers in women after long-term weight-recovery from anorexia nervosa. Psychoneuroendocrinology 2022; 135:105576. [PMID: 34781223 DOI: 10.1016/j.psyneuen.2021.105576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The acute state of anorexia nervosa (AN) is accompanied by increased peripheral concentrations of brain-derived damage markers indicative of ongoing neural and glial damage processes. Although these findings correspond with well-documented structural brain changes in the disorder, it remains unclear whether abnormal levels of brain-derived damage markers persist after long-term weight-recovery from AN. METHODS To address this question, we used single-molecule array (Simoa) technology to measure serum levels of neurofilament light (NF-L), tau protein and glial fibrillary acidic protein (GFAP) in a group of 55 long-term weight-recovered women with a history of AN (recAN) and 55 age-matched healthy controls. Strict exclusion criteria allowed us to control for confounds present in previous studies including most importantly neurological conditions. RESULTS We found not only no group differences but also statistical evidence for equal damage marker levels between groups using Bayesian hypothesis testing. CONCLUSION These results provide evidence for the absence of neuronal and glial damage processes after long-term weight-recovery from AN. Together, our findings are indicative of complete normalization following long-term weight restoration provide hope that recovery from AN halts neuronal damage processes and support the need to test potential candidates for therapeutic interventions including pharmacological neuroprotection.
Collapse
Affiliation(s)
- Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Inger Hellerhoff
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike I Tam
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hans Christian I Plähn
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Morton SU, Leyshon BJ, Tamilia E, Vyas R, Sisitsky M, Ladha I, Lasekan JB, Kuchan MJ, Grant PE, Ou Y. A Role for Data Science in Precision Nutrition and Early Brain Development. Front Psychiatry 2022; 13:892259. [PMID: 35815018 PMCID: PMC9259898 DOI: 10.3389/fpsyt.2022.892259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Eleonora Tamilia
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Michaela Sisitsky
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Imran Ladha
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | | | - P Ellen Grant
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Vidal L, Ortega MA, Alvarez-Mon MA, Álvarez-Mon M, Lahera G. Volumetric Alterations of the Cerebral Cortex in Eating Disorders. J Clin Med 2021; 10:jcm10235480. [PMID: 34884181 PMCID: PMC8658332 DOI: 10.3390/jcm10235480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Eating disorders are relatively frequent psychiatric disorders that can produce serious consequences at the brain level. In an effort to clarify the neurobiological mechanisms of their pathogenesis, some studies have suggested the existence of modifications of the cortical architecture in eating disorders, but it is unknown whether the alterations described are a cause or consequence of eating disorders. The main objective of this systematic review is to collect the evidence available about the volumetric alterations of the cerebral cortex in eating disorders in adults and their apparent relationship with the pathogenesis of the disease. Initially, 91 articles were found by a search that included the terms anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder, gray matter, cortical thickness (CT), and brain volume. To pare down the articles, the following inclusion criteria were applied: (1) cortical thickness and/or gray matter volume (GMV) in patients with anorexia, bulimia nervosa, or binge-eating disorder was the main measure of the study; and (2) the sample was adult patients aged 18–65. The exclusion criteria were as follows: (1) articles that did not analyze cortical thickness or gray matter volume; (2) studies with patients with comorbidities; and (3) studies in patients who did not meet the DSM-IV/DSM-V criteria. In the first phase of selection, we proceeded to read the titles and abstracts as a first screen, thereby excluding 62 studies, followed by a complete critical reading of the 29 remaining articles. In this last phase, nine studies were excluded because they did not specify the eating disorder subtype, they included adolescents, or they did not measure GMV or CT. Finally, after the above systematic selection process, 20 articles were included in this review. Despite the methodological heterogeneity of the studies, there was some agreement between them. They showed an overall reduction in GMV in eating disorders, as well as alterations in certain regions of the cerebral cortex. Some of the most often mentioned cortical areas were the frontal, cingulate, and right orbitofrontal cortices, the precuneus, the right insula, and some temporoparietal gyri in cases of AN, with greater cortical involvement in frontotemporal and medial orbitofrontal regions in BN and binge eating disorder. Likewise, certain cortical regions, such as the left inferior frontal gyrus, the precuneus, the right superior motor area, the cingulate cortex, the insula, and the medial orbitofrontal sulcus, often remained altered after recovery from AN, making them potential cortical areas involved in the etiopathogenesis of AN. A reduction in GMV in specific areas of the CNS can inform us about the neurobiological mechanisms that underlie eating disorders as well as give us a better understanding of their possible consequences at the brain level.
Collapse
Affiliation(s)
- Laura Vidal
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (L.V.); (M.A.A.-M.); (M.Á.-M.); (G.L.)
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (L.V.); (M.A.A.-M.); (M.Á.-M.); (G.L.)
- Ramón y Cajal Institute of Sanitary Researcsh, 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
- Correspondence:
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (L.V.); (M.A.A.-M.); (M.Á.-M.); (G.L.)
- Ramón y Cajal Institute of Sanitary Researcsh, 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (L.V.); (M.A.A.-M.); (M.Á.-M.); (G.L.)
- Ramón y Cajal Institute of Sanitary Researcsh, 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (L.V.); (M.A.A.-M.); (M.Á.-M.); (G.L.)
- Ramón y Cajal Institute of Sanitary Researcsh, 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|
12
|
Collantoni E, Madan CR, Meregalli V, Meneguzzo P, Marzola E, Panero M, D'Agata F, Abbate-Daga G, Tenconi E, Manara R, Favaro A. Sulcal characteristics patterns and gyrification gradient at different stages of Anorexia Nervosa: A structural MRI evaluation. Psychiatry Res Neuroimaging 2021; 316:111350. [PMID: 34384959 DOI: 10.1016/j.pscychresns.2021.111350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Previous research evidenced alterations of different cortical parameters in patients with acute Anorexia Nervosa (AN), but no study to date investigated the morphology of individual sulci and their relationship with other structural indices. Our study aims at exploring the depth and width of 16 major cortical sulci in AN at different stages of the disorder and their relationships with the gyrification gradient. Two samples were included in the study. The first involved 38 patients with acute AN, 20 who fully recovered from AN, and 38 healthy women (HW); the second included 16 patients with AN and 16 HW. Sulcal width and depth were estimated for 16 sulci and outlined with a factorial analysis. An anterior-posterior gradient of gyrification was also extracted. Compared to HW, patients with acute AN displayed higher width and depth values in specific cortical sulci, and an altered gyrification gradient in areas encompassing the Central Sulcus, and Parieto-Temporal and Frontal Lobe regions. Sulcal width negatively correlated with gyrification gradient in areas where these values are altered in AN patients. Our results suggest the presence of alterations in sulcal morphology with a pattern similar to the gyrification gradient one and which seems to be related with malnutrition.
Collapse
Affiliation(s)
| | | | | | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Enrica Marzola
- Department of Neuroscience, University of Turin, Torino, Italy
| | - Matteo Panero
- Department of Neuroscience, University of Turin, Torino, Italy
| | | | | | - Elena Tenconi
- Department of Neurosciences, University of Padua, Padova, Italy; Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Renzo Manara
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy; Padua Neuroscience Center, University of Padua, Padova, Italy
| |
Collapse
|
13
|
Remberk B, Niwiński P, Brzóska-Konkol E, Borowska A, Papasz-Siemieniuk A, Brągoszewska J, Bażyńska AK, Szostakiewicz Ł, Herman A. Ectodermal disturbance in development shared by anorexia and schizophrenia may reflect neurodevelopmental abnormalities. Brain Behav 2021; 11:e2281. [PMID: 34510800 PMCID: PMC8553323 DOI: 10.1002/brb3.2281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/25/2021] [Accepted: 06/27/2021] [Indexed: 12/25/2022] Open
Abstract
Minor physical abnormalities (MPA) are subtle dysmorphic features of bodily structures that have little or no impact on function. Most MPA develop during the first gestational trimester and are considered as important indicators of neuroectodermal deficiencies emerging during early brain development. A higher frequency of MPA was confirmed in schizophrenia patients and their relatives, when compared to controls. These findings are consistent with the neurodevelopmental model of schizophrenia. A neurodevelopmental component amongst other risk factors has also been recently proposed for anorexia nervosa (AN). The current study aimed to assess MPA frequency in adolescent inpatients with either schizophrenia spectrum disorders (SSD) or AN as compared to healthy controls (HC). The Waldrop Scale was used for assessing MPA. The mean MPA total score and mean head subscore was significantly higher in both test groups than in HC. There were no statistically significant differences between SSD and AN groups. The MPA profile (not frequency) was similar in all three groups. This finding is consistent both with widely acknowledged neurodevelopmental schizophrenia hypothesis as well as with more recent neurodevelopmental model of AN. Nevertheless, the findings should not be overgeneralized and further studies are warranted.
Collapse
Affiliation(s)
| | - Piotr Niwiński
- Psychological and Pedagogical Counselling Centre no 7, Warsaw, Poland
| | | | - Anna Borowska
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | | | | | - Anna Herman
- Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Brodrick BB, Adler-Neal AL, Palka JM, Mishra V, Aslan S, McAdams CJ. Structural brain differences in recovering and weight-recovered adult outpatient women with anorexia nervosa. J Eat Disord 2021; 9:108. [PMID: 34479625 PMCID: PMC8414694 DOI: 10.1186/s40337-021-00466-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Anorexia nervosa is a complex psychiatric illness that includes severe low body weight with cognitive distortions and altered eating behaviors. Brain structures, including cortical thicknesses in many regions, are reduced in underweight patients who are acutely ill with anorexia nervosa. However, few studies have examined adult outpatients in the process of recovering from anorexia nervosa. Evaluating neurobiological problems at different physiological stages of anorexia nervosa may facilitate our understanding of the recovery process. METHODS Magnetic resonance imaging (MRI) images from 37 partially weight-restored women with anorexia nervosa (pwAN), 32 women with a history of anorexia nervosa maintaining weight restoration (wrAN), and 41 healthy control women were analyzed using FreeSurfer. Group differences in brain structure, including cortical thickness, areas, and volumes, were compared using a series of factorial f-tests, including age as a covariate, and correcting for multiple comparisons with the False Discovery Rate method. RESULTS The pwAN and wrAN cohorts differed from each other in body mass index, eating disorder symptoms, and social problem solving orientations, but not depression or self-esteem. Relative to the HC cohort, eight cortical thicknesses were thinner for the pwAN cohort; these regions were predominately right-sided and in the cingulate and frontal lobe. One of these regions, the right pars orbitalis, was also thinner for the wrAN cohort. One region, the right parahippocampal gyrus, was thicker in the pwAN cohort. One volume, the right cerebellar white matter, was reduced in the pwAN cohort. There were no differences in global white matter, gray matter, or subcortical volumes across the cohorts. CONCLUSIONS Many regional structural differences were observed in the pwAN cohort with minimal differences in the wrAN cohort. These data support a treatment focus on achieving and sustaining full weight restoration to mitigate possible neurobiological sequela of AN. In addition, the regions showing cortical thinning are similar to structural changes reported elsewhere for suicide attempts, anxiety disorders, and autistic spectrum disorder. Understanding how brain structure and function are related to clinical symptoms expressed during the course of recovering from AN is needed.
Collapse
Affiliation(s)
- Brooks B Brodrick
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9070, USA
| | - Adrienne L Adler-Neal
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
| | - Jayme M Palka
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
| | | | - Sina Aslan
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
- Advance MRI LLC, Frisco, TX, 75034, USA
| | - Carrie J McAdams
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA.
| |
Collapse
|
15
|
Hagan KE, Bohon C. Subcortical brain volume and cortical thickness in adolescent girls and women with binge eating. Int J Eat Disord 2021; 54:1527-1536. [PMID: 34061404 PMCID: PMC9044118 DOI: 10.1002/eat.23563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Alterations in brain structure have been implicated in the onset and acute phases of several forms of psychopathology. However, there is a dearth of research investigating brain structure in persons with binge eating, contributing to poor understanding of mechanisms associated with binge eating. METHOD Adolescent girls and women (aged 14-35 years) with binge eating (n = 56) and group age-matched girls and women without binge eating (n = 26) completed structural magnetic resonance imaging (MRI) scans and interview-based and self-report assessments of eating disorder and general psychopathology. MRI data were processed using FreeSurfer. Analysis of covariance tested mean differences in subcortical volume and cortical thickness of a priori selected regions of interest between binge-eating and non-binge-eating groups, controlling for age, body mass index, purging frequency, depression, and medication use. Exploratory partial correlations tested associations between brain structure and eating disorder symptoms within participants with binge eating. RESULTS We did not observe differences in regional subcortical volume and cortical thickness between girls and women with and without binge eating. Within participants with binge eating, severity of attitudinal eating disorder symptoms was inversely associated with caudal middle frontal gyrus, right precentral gyrus, right postcentral gyrus, superior parietal, left inferior parietal thickness, and left accumbens volume; however, these associations would not survive multiple-comparison corrections. DISCUSSION Correlations between attitudinal eating disorder symptoms and frontoparietal thinning may represent a state marker of binge eating. Future research could investigate whether frontoparietal thinning worsens with illness duration or persists beyond binge eating cessation.
Collapse
Affiliation(s)
- Kelsey E. Hagan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Wang Y, Khorashad BS, Feusner JD, Savic I. Cortical Gyrification in Transgender Individuals. Cereb Cortex 2021; 31:3184-3193. [PMID: 33718960 PMCID: PMC8324983 DOI: 10.1093/cercor/bhaa412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Gender incongruence (GI) is characterized by a feeling of estrangement from the own body in the context of self. GI is often described in people who identify as transgender. The underlying mechanisms are unknown. Data from MRI measurements and tests of own body perception triggered us to pose a model that GI in transgender persons (TGI) could be associated with a disconnection within the brain circuits mediating the perception of own body as self. This is a departure from a previous model of sex atypical cerebral dimorphism, introducing a concept that better accords with a core feature of TGI. The present MRI study of 54 hormone naive transmen (TrM), 38 transwomen (TrW), 44 cismen and 41 ciswomen show that cortical gyrification, a metric that reflects early maturation of cerebral cortex, is significantly lower in transgender compared with cisgender participants. This reduction is limited to the occipito-parietal cortex and the sensory motor cortex, regions encoding own body image and body ownership. Moreover, the cortical gyrification correlated inversely with own body-self incongruence in these regions. These novel data suggest that GI in TGI may originate in the neurodevelopment of body image encoding regions. The results add potentially to understanding neurobiological contributors to gender identity.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm 171 77, Sweden
- MR Physics, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Behzad S Khorashad
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jamie D Feusner
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ivanka Savic
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095-6975, USA
| |
Collapse
|
17
|
Differential longitudinal changes of neuronal and glial damage markers in anorexia nervosa after partial weight restoration. Transl Psychiatry 2021; 11:86. [PMID: 33558486 PMCID: PMC7870648 DOI: 10.1038/s41398-021-01209-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Atrophic brain changes in acute anorexia nervosa (AN) are often visible to the naked eye on computed tomography or magnetic resonance imaging scans, but it remains unclear what is driving these effects. In neurological diseases, neurofilament light (NF-L) and tau protein have been linked to axonal damage. Glial fibrillary acidic protein (GFAP) has been associated with astroglial injury. In an attempt to shed new light on factors potentially underlying past findings of structural brain alterations in AN, the current study investigated serum NF-L, tau protein, and GFAP levels longitudinally in AN patients undergoing weight restoration. Blood samples were obtained from 54 acutely underweight, predominantly adolescent female AN patients and 54 age-matched healthy control participants. AN patients were studied in the severely underweight state and again after short-term partial weight restoration. Group comparisons revealed higher levels of NF-L, tau protein, and GFAP in acutely underweight patients with AN compared to healthy control participants. Longitudinally, a decrease in NF-L and GFAP but not in tau protein levels was observed in AN patients upon short-term partial weight restoration. These results may be indicative of ongoing neuronal and astroglial injury during the underweight phase of AN. Normalization of NF-L and GFAP but not tau protein levels may indicate an only partial restoration of neuronal and astroglial integrity upon weight gain after initial AN-associated cell damage processes.
Collapse
|
18
|
Bang L, Tamnes CK, Norbom LB, Thomassen RA, Holm JS, Skotte LH, Juliusson PB, Mejlaender-Evjensvold M, Rø Ø. Associations of age, body mass index and biochemical parameters with brain morphology in patients with anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2020; 29:74-85. [PMID: 33125776 DOI: 10.1002/erv.2803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Accumulating evidence shows that patients with anorexia nervosa (AN) have globally reduced brain mass, including lower cortical volume and thickness, which largely normalizes following weight restoration. The underlying mechanisms for these processes are unknown, and how age and severity of emaciation are associated with brain morphology in AN is poorly understood. We investigated associations of age, body mass index (BMI) and biochemical parameters with brain morphology among patients in treatment. METHOD We included 85 patients (94% female) aged 12-48 (mean = 23) years with quality controlled magnetic resonance imaging (MRI) data. T1-weighted MRI images, clinical characteristics and biochemical parameters were retrospectively collected from hospital records. Brain morphology was measured using FreeSurfer, and associations investigated using regression models and correlations. RESULTS Controlling for BMI, age showed significant associations with brain morphology generally concordant with typical brain developmental patterns. Controlling for age, BMI showed significant positive associations with cortical volume and thickness. There were no significant interaction effects between age and BMI. None of the biochemical parameters correlated significantly with brain morphology. CONCLUSION Our findings suggest the presence of typical neurodevelopmental patterns in AN. Importantly, we showed that severity of emaciation is related to brain morphology reductions, underscoring the importance of weight restoration.
Collapse
Affiliation(s)
- Lasse Bang
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christian Krog Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Linn Bonaventure Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Rut Anne Thomassen
- Department of Paediatric Medicine, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Jill Solberg Holm
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Laila Holgersen Skotte
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Registries, Norwegian Institute of Public Health, Bergen, Norway.,Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | | | - Øyvind Rø
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|