1
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Xiao X, Qin S, Cui T, Liu J, Wu Y, Zhong Y, Yang C. Bacillus licheniformis suppresses Clostridium perfringens infection via modulating inflammatory response, antioxidant status, inflammasome activation and microbial homeostasis in broilers. Poult Sci 2024; 103:104222. [PMID: 39241614 PMCID: PMC11406086 DOI: 10.1016/j.psj.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Pathogenic bacteria infection, especially Clostridium perfringens (C. perfringens), markedly threatened the health of animals, and further caused huge economic loss. In this study, Bacillus licheniformis HJ0135 (BL) was used. Oxford cup bacteriostatic test and inhibitory rate test were conducted to evaluate the antibacterial ability of BL. Results showed the strongest inhibitory role of BL on C. perfringens (P < 0.05). Afterwards, 540 one-day-old yellow-feather broilers (32.7 ± 0.2 g) were randomly allocated into 3 groups, including CON group (basal diet), CP group (basal diet + 1 × 109 CFU C. perfringens in gavage), and BL + CP group (basal diet containing 7.5 × 106 CFU/g BL + 1 × 109 CFU C. perfringens in gavage). At d 70, broilers in the CP and BL + CP groups were treated with C. perfringens by continuously oral administration for 5 d. The experiment lasted for 75 d. The serum, immune organs, jejunal mucosa, and cecal contents were collected for analysis. In vivo experiment showed that BL supplementation markedly improved (P < 0.05) BW, ADG, thymus index, serum immunoglobins and antioxidases, reduced feed conversion ratio (FCR) and serum pro-inflammatory cytokines of C. perfringens-infected broilers. Furthermore, the increased jejunal injury and levels of pro-inflammatory cytokines, decreased gene expressions of tight junction proteins in the jejunal mucosa were significantly alleviated (P < 0.05) by BL. More importantly, the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was inhibited (P < 0.05) by BL to further attenuate jejunal damage. Besides, BL supplementation markedly increased (P < 0.05) the cecal isobutyric acid and isovaleric acid. Microbial analysis showed that BL changed the composition and relative abundances of microbiota in the cecal contents (P < 0.05), especially the short chain fatty acids (SCFAs)-producing bacteria including Eubacterium_coprostanoligenes_group, Megamonas, Faecalibacterium, and Lactobacillus, which further protected against C. perfringens-induced jejunal inflammation in broilers. Our study laid a theoretical basis for the application of probiotics in lessening C. perfringens-related diseases in poultry farming.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Liu X, Ji Y, Miao Z, Lv H, Lv Z, Guo Y, Nie W. Effects of baicalin and chlorogenic acid on growth performance, slaughter performance, antioxidant capacity, immune function and intestinal health of broilers. Poult Sci 2024; 103:104251. [PMID: 39244784 PMCID: PMC11407039 DOI: 10.1016/j.psj.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed to investigate the effects of baicalin and chlorogenic acid (BC) on growth performance, intestinal barrier function, antioxidant capacity, intestinal microbiota, and mucosal metabolism in broilers. A total of 720 twenty-one-day-old broilers were randomly allocated into 3 groups, with 6 replicates per group and 40 chickens per replicate. They were fed a basal diet (Con group) or a basal diet supplemented with 250 or 400 mg/kg BC (BC250 and BC400 groups) for 40 consecutive days. The results revealed that 250 mg/kg BC significantly increased 60-d body weight and average daily gain during 39 to 60 d (P < 0.05). Furthermore, Supplementation with 250 mg/kg BC improved the antioxidant capacity and immunity of broilers, as evidenced by increased (P < 0.05) superoxide dismutase and decreased (P < 0.05) malondialdehyde levels in serum and ileum, as well as increased (P < 0.05) immunoglobulin G levels. Supplementation with 250 mg/kg BC enhanced intestinal development by improving intestinal morphology and promoting the proliferation of intestinal crypts. Moreover, Supplementation with 250 mg/kg BC improved (P < 0.05) intestinal permeability, up-regulated (P < 0.05) the expression of tight junction-related genes (Occludin and ZO-1), and down-regulated (P < 0.05) the expression of pro-inflammatory genes (IL-2, IL-8, and IFN-γ). 16S rRNA sequencing revealed significant enrichment of Microbacteriaceae, Micromonosporaceae, Anaerovoracaceae, and Coriobacteriaceae in the BC250 group. Metabolomics showed that 250 mg/kg BC up-regulated the lysosome, foxo signaling pathway, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and oxidative phosphorylation pathways, while down-regulating the biosynthesis of cofactors pathway. In conclusion, supplementing diets with 250 mg/kg BC is recommended to modulate intestinal microbiota, mucosal metabolism, and antioxidant capacity, thereby improving broiler growth performance and intestinal health.
Collapse
Affiliation(s)
- Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang 453003,China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Beijing Centre Biology Co., Ltd., Beijing 102218, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Ismael M, Qayyum N, Gu Y, Na L, Haoyue H, Farooq M, Wang P, Zhong Q, Lü X. Functional Effects of Probiotic Lactiplantibacillus plantarum in Alleviation Multidrug-Resistant Escherichia coli-Associated Colitis in BALB/c Mice Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10356-7. [PMID: 39271561 DOI: 10.1007/s12602-024-10356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Multidrug-resistant Escherichia coli (MDR-E. coli) is a global health concern. Lactic acid bacteria (LAB) are important probiotics that have beneficial effects on health, and in recent years, their influences in preventing foodborne pathogens-induced colitis have attracted much attention. Therefore, this study aimed to investigate the oral administration of Lactiplantibacillus plantarum NWAFU-BIO-BS29 as an emerging approach to alleviate MDR-E. coli-induced colitis in BALB/c mice model. To illustrate the mode of action of NWAFU-BIO-BS29 interventions with the gut microbiota and immune responses, the changes on the colonic mucosal barrier, regulatory of the gene expressions of inflammatory cytokines, re-modulating the intestinal microflora, and changes in physiological parameters were studied. The results indicated that daily supplementation of 200 µL fresh bacteria for 7 days had ameliorated the associated colitis and partially prevented the infection. The modes of action by ameliorating the inflammatory response, which destructed villous and then affected the intestinal barrier integrity, reducing the secretion of interleukins (6 and β) and tumor necrosis factor (TNF-α) in serum by 87.88-89.93%, 30.73-35.98%, and 19.14-22.32%, respectively, enhancing the expressions of some epithelial integrity-related proteins in the mouse mucous layer of mucins 2 and 3, Claudin-1, and Occludin by 130.00-661.85%, 27.64-57.35%, 75.52-162.51%, and 139.36-177.73%, respectively, and 56.09-73.58% for toll-like receptor (TLR4) in colon tissues. Notably, the mouse gut microbiota analysis showed an increase in the relative abundance of beneficial bacteria, including Lactobacillus, Bacteriodales bacterium, Candidatus Saccharimonas, Enterorhabdus, and Bacilli. Furthermore, the probiotic promoted the proliferation of epithelia and goblet cells by increasing short-chain fatty acids (SCFAs) levels by 19.23-31.39%. In conclusion, L. plantarum NWAFU-BIO-BS29 has potential applications and can be considered a safe dietary supplement to ameliorate the colitis inflammation symptoms of MDR-E. coli infection.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Sudanese Standards and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Li Na
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Han Haoyue
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Farooq
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Panpan Wang
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin Lü
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Fu G, Zhang M, Huang Y, Han R, Qi K, Yin L, Zhao D, Huang Y, Ma T, Wang L. Effects of different addition levels of CHM-JM113 on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. Front Vet Sci 2024; 11:1388173. [PMID: 38812557 PMCID: PMC11133612 DOI: 10.3389/fvets.2024.1388173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of the present study was to investigate the effects of different levels of a Chinese herbal medicine formulation combined with JM113 (CHM-JM113) on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. The AA broiler chicks were randomly allocated to 5 treatments as follows: a basic diet for the control group, the basic diet supplemented with 0.25% CHM-JM113, 0.5% CHM-JM113, 1% CHM-JM113 and 2% CHM-JM113 for the treatment group, respectively. The results showed that the addition of CHM-JM113 to the diet significantly reduced the mortality (p < 0.01) and improved the European Broiler Index (EBI) (p < 0.05), whereas it had no significance on growth performance of AA broilers (p > 0.05). Comparing the control group, 0.5 and 1% CHM-JM113 group significantly improved the organ index of liver, spleen and bursa (p < 0.05). In terms of intestinal morphology and structure, the addition of different levels of CHM-JM113 increased VH and VH/CD ratio, decreased CD in the small intestine compared to the control group, with 1 and 2% of the additive dose being more effective (p < 0.05). Chinese herbal medicine and probiotics as natural antioxidants also significantly increased the content of SOD in serum of 21-day-old broilers (p < 0.01), and significantly decreased the content of MDA in serum (p < 0.01). At 42 days of age, the addition of 1 and 2% CHM-JM113 significantly increased the content of SOD (p < 0.01) and significantly decreased the content of MDA in the organism (p < 0.01), accompanied by a significant increase in T-AOC and CAT content. In the study of the effect of CHM-JM113 on intestinal immunity, compared with the control group, we found that 1% or 2% CHM-JM113 had a better effect on the expression of occludin and claudin-1 in the intestinal segments of broilers (p < 0.05). For the expression of GATA-3, 0.5% CHM-JM113 may have a better effect (p < 0.05). CHM-JM113 may be used as an antibiotic alternative in broiler production.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengyu Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuanyuan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Breeding Branch, Muyuan Foods Co., Ltd., Nanyang, China
| | - Runyu Han
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kaixuan Qi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lidong Yin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongchen Zhao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yueyan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
6
|
Peng ZR, Zhang JG, Zhang JB, Lin XQ, Chen W, Yang YJ, Liu ZZ. Identification and biological characteristics of Enterococcus casseliflavus TN-47 isolated from Monochamus alternatus. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602465 DOI: 10.1099/ijsem.0.006305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
With the widespread use of antibiotics, the incidence of antibiotic resistance in microorganisms has increased. Monochamus alternatus is a trunk borer of pine trees. This study aimed to investigate the in vitro antimicrobial and biological characteristics of Enterococcus casseliflavus TN-47 (PP411196), isolated from the gastrointestinal tract of M. alternatus in Jilin Province, PR China. Among 13 isolates obtained from the insects, five were preliminarily screened for antimicrobial activity. E. casseliflavus TN-47, which exhibited the strongest antimicrobial activity, was identified. E. casseliflavus TN-47 possessed antimicrobial activity against Staphylococcus aureus USA300 and Salmonella enterica serovar Pullorum ATCC 19945. Furthermore, E. casseliflavus TN-47 was sensitive to tetracyclines, penicillins (ampicillin, carbenicillin, and piperacillin), quinolones and nitrofuran antibiotics, and resistant to certain beta-lactam antibiotics (oxacillin, cefradine and cephalexin), macrolide antibiotics, sulfonamides and aminoglycosides. E. casseliflavus TN-47 could tolerate low pH and pepsin-rich conditions in the stomach and grow in the presence of bile acids. E. casseliflavus TN-47 retained its strong auto-aggregating ability and hydrophobicity. This strain did not exhibit any haemolytic activity. These results indicate that E. casseliflavus TN-47 has potential as a probiotic. This study provides a theoretical foundation for the future applications of E. casseliflavus TN-47 and its secondary metabolites in animal nutrition and feed.
Collapse
Affiliation(s)
- Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| |
Collapse
|
7
|
Shen L, Luo H, Fan L, Su Z, Yu S, Cao S, Wu X. Exploration of the immuno-adjuvant effect and mechanism of Anemoside B4 through network pharmacology and experiment verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155302. [PMID: 38176273 DOI: 10.1016/j.phymed.2023.155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hao Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhetong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Liu Y, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Luan F. Extraction, purification, structural features, biological activities, modifications, and applications from Taraxacum mongolicum polysaccharides: A review. Int J Biol Macromol 2024; 259:129193. [PMID: 38191106 DOI: 10.1016/j.ijbiomac.2023.129193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Dandelion (Taraxacum mongolicum Hand.-Mazz), as a famous medicinal and edible plant, has the effects of clearing heat and detoxifying, diuresis, and resolving masses. Phytochemistry investigations revealed that T. mongolicum has various bioactive ingredients, mainly including flavonoids, sterols, polysaccharides, phenolic acids and volatile oils. There is growing evidence have shown that the polysaccharides from T. mongolicum (TMPs) are a class of representative pharmacologically bioactive macromolecules with a variety of biological activities both in vitro and in vivo, such as immunomodulatory, anti-inflammatory, anti-oxidant, anti-tumor, hepatoprotective, hypolipidemic and hypoglycemic, anti-bacterial, regulation of intestinal microbial, and anti-fatigue activities, etc. Additionally, the structural modification and potential applications of TMPs were also outlined. The present review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and potential industry applications of TMPs to support their therapeutic potential and health care functions. Overall, the present review provides a theoretical overview for further development and utilization of TMPs in the fields of pharmaceutical and health food.
Collapse
Affiliation(s)
- Ying Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
9
|
Zhao G, Niu Y, Wang H, Qin S, Zhang R, Wu Y, Xiao X, Xu Y, Yang C. Effects of three different plant-derived polysaccharides on growth performance, immunity, antioxidant function, and cecal microbiota of broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1020-1029. [PMID: 37718500 DOI: 10.1002/jsfa.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND This study investigated the effects of dietary plant polysaccharides on growth performance, immune status and intestinal health in broilers. We randomly divided 960 one-day-old Arbor Acres broiler chicks into four groups. The control (CON) group was fed a basal diet, and the remaining groups were fed a basal diet supplemented with 1000 mg kg-1 Ginseng polysaccharide (GPS), Astragalus polysaccharide (APS), or Salvia miltiorrhiza polysaccharide (SMP) for 42 days. RESULTS Dietary supplementation with SMP significantly increased body weight (BW) at 21 and 42 days of age, average daily gain (ADG) and average daily feed intake (ADFI) during the starter and whole experimental period, decreased the concentrations of interleukin-1 beta (IL-1β), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA), increased the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) and catalase (CAT) activity in the serum (P < 0.05). GPS, APS, and SMP supplementation increased serum levels of immunoglobulins, activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC), and cecal concentrations of acetic acid and propionic acid of broilers (P < 0.05). Furthermore, high-throughput sequencing results showed that the relative abundance of Firmicutes was decreased while the relative abundance of Bacteroidota, Alistipes, and Prevotellaceae_NK3B31_group were increased (P < 0.05) in the GPS, APS, and SMP groups compared with the CON group. CONCLUSION Dietary GPS, APS, and SMP supplementation could improve growth performance, enhance immune function by increasing serum immunoglobulin and regulating cytokines, improve antioxidant function by increasing serum antioxidant enzyme activity, increase volatile fatty acid levels and improve the microbial composition in the cecum of broilers. Dietary SMP supplementation had the optimal effect in this study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiling Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yu Niu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Huixian Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Xiao Xiao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| |
Collapse
|
10
|
Cui Y, Zhao D, Liu K, Mei X, Sun S, Du B, Ding Y. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2. Microbiol Spectr 2024; 12:e0229323. [PMID: 38054717 PMCID: PMC10782996 DOI: 10.1128/spectrum.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.
Collapse
Affiliation(s)
- Yanru Cui
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shanshan Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Fan YM, Zhao QY, Wei YY, Wang HR, Ga Y, Zhang YN, Hao ZH. Qingjie decoction attenuated E.coli-induced diarrhea by regulating energy metabolism and alleviating inflammation based on network analysis and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116806. [PMID: 37460028 DOI: 10.1016/j.jep.2023.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diarrhea is a frequently encountered gastrointestinal complication in clinical practice, and E. coli is one of the main causative agents. Although Qingjie decoction (QJD) has been shown to be highly effective in treating diarrhea by eliminating heat-toxin, the underlying molecular mechanisms and pathways of QJD remain unclear. AIM OF REVIEW The aim of this research was to explore the effects and fundamental mechanism of QJD on diarrhea induced by E.coli in rats. MATERIALS AND METHODS Initially, we used UHPLC-MS/MS analysis to identify the chemical composition of QJD. Then, we constructed a visualization network using network pharmacology. Next, we utilized metabolomics to identify differentially expressed metabolites of QJD that are effective in treating diarrhea. RESULTS The chemical composition of QJD was analyzed using UHPLC-MS/MS, which identified a total of 292 components. Using a network pharmacology approach, 127 bioactive compounds of QJD were screened, targeting 171 potential diarrhea treatment targets. TNF-α, IL-6, IL-1β, and CAT were identified as important targets through visualizing the PPI network. Enrichment analysis demonstrated significant enrichment in the TNF signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. QJD showed beneficial effects, such as increased body weight, decreased fecal water content, and reduced inflammatory cell infiltration in the duodenum and colon, as well as maintaining the structure of the duodenum and colon. Metabolomic analysis revealed 32 differentially expressed metabolites in the control, model and QJD-H groups, including glucose, valine, and cysteine. Functional analysis indicated that differential metabolites were related to energy metabolism, including glucose metabolism, TCA cycle, and amino acid metabolism. CONCLUSION QJD significantly increased body weight, decreased water content in feces, relieved inflammatory cell infiltration, maintained the structure of duodenum and colon. Combining network analysis and metabolomics, QJD exerted therapeutic effects by inhibiting inflammation and oxidative stress, regulating glucose metabolism, tricarboxylic acid metabolism, and amino acid metabolism.
Collapse
Affiliation(s)
- Yi-Meng Fan
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qing-Yu Zhao
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuan-Yuan Wei
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Hui-Ru Wang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yan-Nan Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhi-Hui Hao
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
12
|
Tan Z, Chen Y, Zhou Y. Palygorskite improves growth performance and prevents liver damage in avian pathogenic Escherichia coli-challenged broiler chickens at an early age. J Anim Sci 2024; 102:skae302. [PMID: 39373204 PMCID: PMC11525485 DOI: 10.1093/jas/skae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/06/2024] [Indexed: 10/08/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial infection that causes economic losses in the global poultry industry. Palygorskite (PAL) has been shown to enhance growth performance while improving antioxidative and anti-inflammatory properties of broilers. This study evaluated the protective effects of PAL on growth performance and liver function in broilers subjected to APEC challenge. A total of 320 one-day-old male Arbor Acres chicks were divided into 4 groups with 8 replicates of 10 birds each, based on a 2 × 2 factorial arrangement (basal diet or 5 g/kg PAL-supplemented diet) and inoculation (bacterial culture medium or APEC). PAL increased body weight gain (BWG) prior to APEC challenge (P < 0.05). However, APEC caused losses in BWG, feed intake (FI), and feed efficiency, along with increased relative hepatic weight, hepatic pathology scores, and hepatic-cell apoptosis rate (P < 0.05). Compared to normal birds, APEC increased interleukin (IL)-1β, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and nitric oxide (NO) levels, as well as lysozyme (LZM) and myeloperoxidase (MPO) activities, while decreasing total antioxidant capacity (T-AOC) and IL-10 levels, and total superoxide dismutase (T-SOD) and catalase (CAT) activities in both serum and liver, APEC also raised alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, but reduced total protein (TP), albumin (ALB), immunoglobulin (Ig) A, IgG, and IgM levels in serum (P < 0.05). Moreover, APEC increased hepatic mRNA level of IL-1β, IFN-γ, TNF-α, nuclear factor kappa B, and inducible nitric oxide synthase (iNOS), while inhibited mRNA level of IL-10 (P < 0.05). In contrast, PAL increased BWG and FI, and alleviated hepatic-cell apoptosis rate during the challenge period (P < 0.05). Incorporation of PAL reduced triglyceride and NO contents, ALT, and AST activities, while increasing TP, ALB, IL-10, IgG, and IgM levels in serum, enhancing serum T-SOD and CAT activities, elevating hepatic T-AOC and CAT activities, inhibiting hepatic MDA accumulation, and reducing IL-1β levels and LZM activity in both liver and serum (P < 0.05). An interactive effect was found for hepatic TNF-α and iNOS mRNA expression, in which PAL inhibited their mRNA expression in APEC-challenged birds (P < 0.05). Overall, PAL addition partially mitigated the negative impact of the APEC challenge on the growth performance and liver function of broiler chicks at an early age.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| |
Collapse
|
13
|
Tran HL, Chen YS, Hung HW, Shih BL, Lee TY, Yen CH, Lin JB. Diet Supplementation with Prinsepiae Nux Extract in Broiler Chickens: Its Effect on Growth Performance and Expression of Antioxidant, Pro-Inflammatory, and Heat Shock Protein Genes. Animals (Basel) 2023; 14:73. [PMID: 38200804 PMCID: PMC10778437 DOI: 10.3390/ani14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Heat stress significantly undermines the poultry industry by escalating rates of morbidity and mortality and impairing growth performance. Our recent findings indicate that Prinsepiae Nux extract (PNE) effectively stimulates the Nrf2 signaling pathway, a vital element in cellular antioxidant stress responses. This study further explores the prospective benefits of supplementing PNE into poultry feed to enhance broiler growth in heat-stressed conditions. An Nrf2-luciferase reporter assay was developed in a chicken fibroblast cell line, demonstrating that PNE induces Nrf2 activity in a concentration-dependent manner. Real-time RT-PCR results showed that PNE intensifies the expression of Nrf2-responsive targets such as Ho1 and Nqo1 in chicken fibroblasts. A total of 160 one-day-old Arbor Acres broiler chicks were randomly assigned into four groups, each receiving a basal diet supplemented with either 0% (control), 0.1% PNE, 1% PNE, or commercial electrolyte for 35 days. Broilers were raised in an environment where the ambient temperature exceeded 30 °C for approximately seven hours each day, fluctuating between 26 and 34 °C, which is known to induce mild heat stress. The findings reveal that a 1% PNE supplement led to a significant decrease in the feed conversion ratio (FCR) compared to the control group. Moreover, chickens supplemented with 1% PNE exhibited a substantial increase in hepatic mRNA expression of antioxidant genes, such as Nqo1, Gclc, Sod2, Cat, and heat shock protein-related genes including Hsp90 and Hsf1, and a decrease in pro-inflammatory cytokine genes Il-6 and Il-1β. Consequently, PNE holds potential as a feed supplement to strengthen the antioxidant defenses of broilers and build heat stress resilience in the poultry industry.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
| | - His-Wen Hung
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Bor-Ling Shih
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Tsung-Yu Lee
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jeng-Bin Lin
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| |
Collapse
|
14
|
Wang L, Li W, Li X, Liu J, Chen Y. Antimicrobial Activity and Mechanisms of Walnut Green Husk Extract. Molecules 2023; 28:7981. [PMID: 38138470 PMCID: PMC10745604 DOI: 10.3390/molecules28247981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Walnut green husks (WGHs), by-products of walnut production, are believed to possess antimicrobial properties, making them a potential alternative to antibiotics. In this study, the antibacterial activities of three extracts, derived from WGH, against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli were investigated, and the antibacterial mechanisms of an anhydrous ethanol extract of WGH (WGHa) were examined. The results showed that WGHa exhibited inhibitory effects on all tested bacteria. The ultrahigh-performance liquid chromatography-tandem mass spectrometry analysis revealed that the major active compounds present in WGHa were terpenoids, phenols, and flavonoids. Treatment with WGHa resulted in the leakage of intracellular ions and alkaline phosphatase; a reduction in intracellular ATP content, ATPase activity, and nucleic acid content; as well as cellular metabolic viability. The transmission electron microscopy images showed varying degrees of cell deformation and membrane damage following WGHa treatment. The transcriptome sequencing and differentially expressed gene enrichment analyses revealed an up-regulation in pathways associated with RNA degradation, translation, protein export, and oxidative phosphorylation. Conversely, pathways involved in cell movement and localization, as well as cell wall organization and carbohydrate transport, were found to be down-regulated. These findings suggest that WGHa alters cell membrane permeability and causes damage to the cell wall. Additionally, WGHa interferes with cellular energy metabolism, compromises RNA integrity, and induces DNA replication stress, consequently inhibiting the normal growth and proliferation of bacteria. These findings unveiled the antimicrobial mechanisms of WGHa, highlighting its potential application as an antibiotic alternative.
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (W.L.); (X.L.); (J.L.)
| |
Collapse
|
15
|
Yu J, Hong C, Yin L, Ping Q, Hu G. Antimicrobial activity of phenyllactic acid against Klebsiella pneumoniae and its effect on cell wall membrane and genomic DNA. Braz J Microbiol 2023; 54:3245-3255. [PMID: 37728681 PMCID: PMC10689709 DOI: 10.1007/s42770-023-01126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023] Open
Abstract
As Klebsiella pneumoniae (KP) has acquired high levels of resistance to multiple antibiotics, it is considered a worldwide pathogen of concern, and substitutes for traditional antibiotics are urgently needed. 3-Phenyllactic acid (PLA) has been reported to have antimicrobial activity against food-borne bacteria. However, there was no experiment evidence for the exact antibacterial effect and mechanism of PLA kills pathogenic KP. In this study, the Oxford cup method indicated that PLA is effective to KP with a minimum inhibitory concentration of 2.5 mg/mL. Furthermore, PLA inhibited the growth and biofilm formation of in a time- and concentration-dependent manner. In vivo, PLA could significantly increase the survival rate of infected mice and reduce the pathological tissue damage. The antibacterial mode of PLA against KP was further explored. Firstly, scanning electron microscopy illustrated the disruption of cellular ultrastructure caused by PLA. Secondly, measurement of leaked alkaline phosphatase demonstrated that PLA disrupted the cell wall integrity of KP and flow cytometry analysis with propidium iodide staining suggested that PLA damaged the cell membrane integrity. Finally, the results of fluorescence spectroscopy and agarose gel electrophoresis demonstrated that PLA bound to genomic DNA and initiated its degradation. The anti-KP mode of action of PLA was attributed to the destruction of the cell wall, membrane, and genomic DNA binding. These findings suggest that PLA has great potential applications as antibiotic substitutes in feed additives against KP infection in animals.
Collapse
Affiliation(s)
- Jianyun Yu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Chunli Hong
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Longfei Yin
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Qingbo Ping
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Gaowei Hu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
16
|
Tian Y, Zhang J, Li F, Wang A, Yang Z, Li J. Dietary supplementation with different alternative to in-feed antibiotic improves growth performance of broilers during specific phases. Poult Sci 2023; 102:102919. [PMID: 37494806 PMCID: PMC10393815 DOI: 10.1016/j.psj.2023.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
The effects of substituting Bacillus subtilis, Astragalus membranaceus, and enzymes for aureomycin to improve the growth performance of broilers during specific phases were studied to develop alternatives to in-feed antibiotics and decrease drug residues in meat food and antibiotic resistance. Six hundred one-day-old broilers were randomly assigned to 5 groups. Broilers in the control group were supplied with basal diets (CT), and those in the remaining 4 groups were supplied with feed containing aureomycin premix (AU), B. subtilis powder (BS), A. membranaceus root powder (AM), and enzyme compound powder (EN), respectively. Compared to the control group, broilers in the other groups exhibited better growth performance during different phases. Microbial analysis of cecal contents suggested that treatment with BS or EN significantly increased the abundance of Lactobacillus or Bifidobacteria but inhibited Escherichia coli or Clostridium welchii; however, these bacteria were suppressed by AU treatment except C. welchii. The digestibility of the feed in vitro was significantly enhanced by adding BS or EN to the feed, consistent with findings for growth performance. In conclusion, dietary supplementation with 3 additives could improve the growth performance of broilers during specific phases. Future studies should focus on designing suitable schedules to partially replace in-feed antibiotics.
Collapse
Affiliation(s)
- Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenghua Li
- Research and Development Center of Shandong Soocom Animal Remedy Co., Ltd., Jinan, 250306, China
| | - Anguo Wang
- Research and Development Center of Shandong Soocom Animal Remedy Co., Ltd., Jinan, 250306, China
| | - Zhiqiang Yang
- Shandong Institute of Modern Chinese Veterinary Medicine Industry Development, Jinan, 250306, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
17
|
Mao J, Wang Y, Duan T, Yin N, Dong C, Ren X, Liu N, An X, Qi J. Effect of fermented dandelion on productive performance, meat quality, immune function, and intestinal microbiota of broiler chickens. BMC Vet Res 2023; 19:178. [PMID: 37773158 PMCID: PMC10540353 DOI: 10.1186/s12917-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dandelion has a great potential to be used as feed additive. Using microbial fermentation technology to degrade cell walls is conducive to enable better release of bioactive compounds of dandelion. This study intended to explore the effect of fermented dandelion (FD) on production performance, meat quality, immune function, and intestinal microbiota of broiler chickens. One-hundred and twenty 1-day-old male Arbor Acres broiler chickens were randomly allotted into three treatments: CON (basal diet, control), LFD and HFD (basal diet with 500 and 1000 mg/kg FD, respectively), with five replicates of eight birds each. The experiment lasted for 42 days. RESULTS The results showed that birds in HFD group had increased ADG during 1-21 days (P < 0.05). On day 21, the bursa of Fabricius index of birds in LFD group was higher (P < 0.05), while the serum contents of IFN-γ and TNF-ɑ were lower in HFD group (P < 0.05). FD supplementation decreased the observed_species, shannon, chao1 and ace indexes (P < 0.05) as well as the abundance of Bacteroidota, Bacteroides, and Alistipes (P < 0.05). Birds in HFD group had higher abundance of Firmicutes and lower abundance of Verrucomicrobiota (P < 0.05). LFD group had lower abundance of unidentified_bacteria (P < 0.05). On day 42, the abdominal fat yield of HFD group was decreased (P < 0.05). Birds in LFD group had lower L* and b* values of breast muscle (P < 0.05), while higher spleen index. The CAT activities of breast muscle of FD groups were higher (P < 0.05). CONCLUSION In summary, dietary FD supplementation at 1000 mg/kg improved production performance and immune function and modulated microbiota composition in ileum of broiler chickens. FD can be supplemented in the diet to enhance performance and health of broiler chickens, of which 1000 mg/kg FD is more effective.
Collapse
Affiliation(s)
- Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China.
| | - Ting Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Chenlin Dong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xuerong Ren
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| |
Collapse
|
18
|
Cerdó T, Nieto-Ruíz A, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Suárez A, Bermúdez MG, Campoy C. Current Knowledge About the Impact of Maternal and Infant Nutrition on the Development of the Microbiota-Gut-Brain Axis. Annu Rev Nutr 2023; 43:251-278. [PMID: 37603431 DOI: 10.1146/annurev-nutr-061021-025355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prenatal and early postnatal periods are stages during which dynamic changes and the development of the brain and gut microbiota occur, and nutrition is one of the most important modifiable factors that influences this process. Given the bidirectional cross talk between the gut microbiota and the brain through the microbiota-gut-brain axis (MGBA), there is growing interest in evaluating the potential effects of nutritional interventions administered during these critical developmental windows on gut microbiota composition and function and their association with neurodevelopmental outcomes. We review recent preclinical and clinical evidence from animal studies and infant/child populations. Although further research is needed, growing evidence suggests that different functional nutrients affect the establishment and development of the microbiota-gut-brain axis and could have preventive and therapeutic use in the treatment of neuropsychiatric disorders. Therefore, more in-depth knowledge regarding the effect of nutrition on the MGBA during critical developmental windows may enable the prevention of later neurocognitive and behavioral disorders and allow the establishment of individualized nutrition-based programs that can be used from the prenatal to the early and middle stages of life.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Ana Nieto-Ruíz
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Nutrición y Tecnología de los Alimentos, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G Bermúdez
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health, Granada Node, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
19
|
Xu H, Zhang X, Li P, Luo Y, Fu J, Gong L, Lv Z, Guo Y. Effects of Tannic Acid Supplementation on the Intestinal Health, Immunity, and Antioxidant Function of Broilers Challenged with Necrotic Enteritis. Antioxidants (Basel) 2023; 12:1476. [PMID: 37508014 PMCID: PMC10376868 DOI: 10.3390/antiox12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In the experiment, 630 one-day-old Cobb500 male chicks were randomly divided into six treatment groups, with seven replicate cages and with fifteen birds in each cage. The treatment groups were as follows: control group (NC), challenged group (PC), and challenged NE chickens treated with 250, 500, 750, and 1000 mg/kg tannic acid (PTA1, PTA2, PTA3, and PTA4, respectively). To induce NE, coccidia vaccine and Clostridium perfringens were administered on day 19 and days 22-28, respectively. Indexes related to antioxidant, immune, and intestinal health were measured on days 28 and 35. During the infection period, we observed significant increases in fecal water content, D-LA, TNF-α, and malondialdehyde concentrations (p < 0.05). Conversely, significant decreases were noted in chyme pH and in T-AOC, IL-4, and IL-10 concentrations (p < 0.05). The addition of tannic acid exhibited a linear decrease in fecal water content and TNF-α concentration (p < 0.05). Furthermore, tannic acid supplementation resulted in a quadratic curve decrease in D-LA concentration and linear increases in T-AOC, IL-4, and IL-10 (p < 0.05). Cecal microbiological analysis revealed that Ruminococcaceae and Butyricimona were dominant in PTA3. In conclusion, the dietary addition of tannic acid may reduce the negative effects of NE by increasing antioxidant and anti-inflammatory capacity, improving the intestinal barrier, and regulating the intestinal flora.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Jiang S, Yang C, Xiao Y, Zheng S, Jiang Q, Chen J. Effects of Polysaccharides-Rich Extract from Gracilaria lemaneiformis on Growth Performance, Antioxidant Capacity, Immune Function, and Meat Quality in Broiler Chickens. J Poult Sci 2023; 60:2023018. [PMID: 37489144 PMCID: PMC10363415 DOI: 10.2141/jpsa.2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
This study investigated the effects of dietary supplementation with Gracilaria lemaneiformis polysaccharides (GLPs) on the growth performance, antioxidant capacity, immune function, and meat quality of broiler chickens. A total of 320 one-day-old Arbor Acres broiler chicks were individually weighed and randomly assigned to four groups of eight replicate cages (10 broilers per cage). Birds were fed a basal diet supplemented with 0 (control), 1,000, 2,000, or 4,000 mg/kg GLPs. Compared to that of the control group, dietary supplementation with 2,000 mg/kg GLPs linearly increased the average daily weight gain during days 0-42 (P < 0.05) and linearly decreased the feed to gain ratio during days 1-21 and 22-42 (P < 0.05). Broilers fed GLP-supplemented diets showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum superoxide dismutase (P < 0.05), glutathione peroxidase, and catalase activities in the liver, whereas GLP supplementation decreased serum and liver malondialdehyde concentrations (P < 0.05). A linear increase in serum catalase activity was observed following supplementation with 2,000 or 4,000 mg/kg GLPs (P < 0.05). Broilers fed GLP-supplemented diets showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum immunoglobulin (Ig) A, IgG, interleukin (IL)-6, IL-1β, IL-10, and interferon-γ concentrations (P < 0.05), and a trend towards linear improvement in IL-4 levels (P = 0.089). Dietary GLP supplementation increased the Lactobacillus spp. population compared to that of the control group (P < 0.05) and 2,000 and 4,000 mg/kg of GLPs nearly decreased the population of E. coli in the cecum (P = 0.056). Therefore, dietary GLP supplementation may improve broiler growth performance by altering antioxidant capacity, immune function, and the gut microbiota composition. Considering the effects of different doses of GLP on the above parameters, 2,000 mg/kg of GLPs was identified as the best dose.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Animal Science, Xichang University, Xichang,
Sichuan 615013, P.R. China
| | - Chaoyun Yang
- College of Animal Science, Xichang University, Xichang,
Sichuan 615013, P.R. China
| | - Yintao Xiao
- College of Animal Science and Technology, Hunan Agricultural
University, Changsha, Hunan 410128, P.R.China
| | - Saizhen Zheng
- College of Animal Science and Technology, Hunan Agricultural
University, Changsha, Hunan 410128, P.R.China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural
University, Changsha, Hunan 410128, P.R.China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural
University, Changsha, Hunan 410128, P.R.China
| |
Collapse
|
21
|
Deng L, Liu L, Fu T, Li C, Jin N, Zhang H, Li C, Liu Y, Zhao C. Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms 2023; 11:1620. [PMID: 37375122 DOI: 10.3390/microorganisms11061620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study aims to systematically evaluate the safety of a novel L. plantarum LPJZ-658 explored on whole-genome sequence analysis, safety, and probiotic properties assessment. Whole genome sequencing results demonstrated that L. plantarum LPJZ-658 consists of 3.26 Mbp with a GC content of 44.83%. A total of 3254 putative ORFs were identified. Of note, a putative bile saline hydrolase (BSH) (identity 70.4%) was found in its genome. In addition, the secondary metabolites were analyzed, and one secondary metabolite gene cluster was predicted to consist of 51 genes, which verified its safety and probiotic properties at the genome level. Additionally, L. plantarum LPJZ-658 exhibited non-toxic and non-hemolytic activity and was susceptible to various tested antibiotics, indicating that L. plantarum LPJZ-658 was safe for consumption. Moreover, the probiotic properties tests confirm that L. plantarum LPJZ-658 also exhibits tolerance to acid and bile salts, preferably hydrophobicity and auto-aggregation, and excellent antimicrobial activity against both Gram-positive and Gram-negative gastrointestinal pathogens. In conclusion, this study confirmed the safety and probiotic properties of L. plantarum LPJZ-658, suggesting it can be used as a potential probiotic candidate for human and animal applications.
Collapse
Affiliation(s)
- Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Tongyu Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yawen Liu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
22
|
Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory Effects of the Probiotic Clostridium butyricum on Gut Microbes, Intestinal Health, and Growth Performance of Chickens. J Poult Sci 2023; 60:2023011. [PMID: 37143616 PMCID: PMC10150032 DOI: 10.2141/jpsa.2023011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Clostridium butyricum is an important probiotic for chickens and exerts various biological activities, including altering the composition of the intestinal microbiota, competing with other microorganisms for nutrients, improving the integrity of the intestinal mucosal system, changing the intestinal barrier, and improving overall host health. Intestinal microbes also play vital roles in maintaining the intestinal barrier, regulating intestinal health, and promoting chicken growth. During chicken production, chickens are vulnerable to various stressors that have detrimental effects on the intestinal barrier with significant economic consequences. C. butyricum is a known probiotic that promotes intestinal health and produces the short-chain fatty acid butyric acid, which is beneficial for the growth performance of chickens. This review elucidates the development and utilization of C. butyricum to improve intestinal barrier function and growth performance in chickens through its probiotic properties and interactions with intestinal microbes.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Victoria Anthony Uyanga
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xinyu Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| |
Collapse
|
23
|
Luo C, Wang L, Yuan J. Supplemental enzymes and probiotics on the gut health of broilers fed with a newly harvested corn diet. Poult Sci 2023; 102:102740. [PMID: 37186967 DOI: 10.1016/j.psj.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Gut health is important for digestion and absorption of nutrient for animals. The purpose of this study was to investigate the therapeutic effect of enzymes and probiotics alone or in combination on the gut health of broilers fed with newly harvested corn diets. A total of 624 Arbor Acres Plus male broiler chickens were randomly divided into 8 treatment groups (PC: normal corn diet, NC: newly harvested corn diet, DE: NC + glucoamylase, PT: NC + protease, XL: NC + xylanase, BCC: NC + Pediococcus acidilactici BCC-1, DE + PT: NC + glucoamylase + protease, XL+BCC: NC + xylanase + Pediococcus acidilactici BCC-1). Each group was divided into 6 replicates, with 13 birds each. On d 21, intestinal morphological, intestinal tight junction and aquaporins gene expression, cecal short-chain fatty acid concentrations, and microflora were measured. Compared with the newly harvested corn diets (NC), supplemental glucoamylase (DE) significantly increased the relative abundance of Lachnospiraceae (P < 0.05) and decreased the relative abundance of Moraxellaceae (P < 0.05). Supplemental protease (PT) significantly increased the relative abundance of Barnesiella (P < 0.05), but the relative abundance of Campylobacter decreased by 44.4%. Supplemental xylanase (XL) significantly increased the jejunal mRNA expressions of MUC2, Claudin-1, and Occludin (P < 0.01), as well as the cecal digesta contents of acetic acid, butyric acid, and valeric acid (P < 0.01). Supplemental DE combined with PT increased the ileal mRNA expressions of aquaporins (AQP) 2, AQP5, and AQP7 (P < 0.01). Supplemental BCC significantly increased the jejunal villus height and crypt depth (P < 0.01), the jejunal mRNA expressions of MUC2, Claudin-1 and Occludin (P < 0.01), and the relative abundance of Bacteroides (P < 0.05). Supplemental xylanase in combination with BCC significantly increased jejunal villus height and crypt depth (P < 0.01), the ileal mRNA expressions of AQP2, AQP5 and AQP7 (P < 0.01), and the cecal digesta contents of acetic acid, butyric acid, and valeric acid (P < 0.01). This suggests that inclusions of supplemental protease (12,000 U/kg), glucoamylase (60,000 U/kg), or Pediococcus acidilactici BCC-1 (109 cfu/kg) individually or in combination with xylanase (4,800 U/kg) in the newly harvested corn diets can alleviate diarrhea in broilers, and be beneficial for the gut health.
Collapse
Affiliation(s)
- Caiwei Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liqun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Xu H, Fu X, Kong H, Chen F, Chang X, Ding Z, Wang R, Shan Y, Ding S. Ultrasonication significantly enhances grafting efficiency of chitosan-ferulic acid conjugate and improves its film properties under Fenton system. Food Res Int 2023; 164:112327. [PMID: 36737920 DOI: 10.1016/j.foodres.2022.112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ultrasonication (US)-assisted Fenton-system (US-Fenton) with different US time was developed for synthesizing chitosan (CS)-ferulic acid (FA) conjugates. The optimal US-Fenton for a suitable time was selected for preparing a film with CS-FA conjugate and its structural, functional, rheological, and physical properties were also investigated. Compared with Fenton-system, US-Fenton enhanced the grafting ratio of the conjugates, which increased firstly and then decreased as US time. The conjugate obtained by US-Fenton for 1 min (FUS1) possessed the highest grafting ratio (121.28 mg FA/g) and its grafting time was also shortened from 12 h to 1 min contrasted with Fenton grafted method. Structural characterization results showed that FA was conjugated on CS via ester and amide bonds with decreased crystallinity. Scanning electron microscopy and molecular weight analysis indicated that the degradation degree of CS-FA conjugates increased with US time. The DPPH and ABTS radical-scavenging activities of FUS1 were the closest to ascorbic acid, and it also showed the best antibacterial effect among the test conjugates. Accordingly, FUS1 was selected to obtain the film for contrasting with CS film. FUS1 film solution exhibited a decreased viscosity. In comparison to CS film, UV transmittance of FUS1 film approached zero, and its moisture, oxygen, and carbon dioxide permeabilities significantly decreased (P < 0.05). Moreover, its water solubility and tensile strength increased by 58.09% and 25.72% than those of CS film, respectively. Therefore, US-Fenton for 1 min could be a promising method for efficiently preparing active food package materials and FUS1 film possessed broad application prospects.
Collapse
Affiliation(s)
- Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zemin Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
25
|
Li Z, Fang X, Hu X, Li C, Wan Y, Yu D. Amelioration of alcohol-induced acute liver injury in C57BL/6 mice by a mixture of TCM phytochemicals and probiotics with antioxidative and anti-inflammatory effects. Front Nutr 2023; 10:1144589. [PMID: 36960204 PMCID: PMC10027757 DOI: 10.3389/fnut.2023.1144589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Background There are many causes of acute liver injury (ALI), such as alcohol, drugs, infection, and toxic materials, which have caused major health problems around the world. Among these causes, alcohol consumption induced liver injury is a common alcoholic liver disease, which can further lead to liver failure even liver cancer. A number of traditional Chinese medicine (TCM) and TCM derived compounds have been used in treating the liver-associated diseases and combination use of probiotics with TCM phytochemicals has attracted interests for enhanced biological effects. Methods This study investigated the hepatoprotective effect of TCM-probiotics complex (TCMPC) and its underlying mechanism for the treatment of ALI in mice. The TCMPC is composed of TCM phytochemicals puerarin, curcumin, ginsenosides, and 5 lactobacteria strains. We first established a mouse model of alcohol-induced ALI, then the therapeutic effects of TCMPC on alcohol-induced ALI were monitored. A series of measurements have been performed on antioxidation, anti-inflammation, and lipid metabolism regulation. Results The results showed that TCMPC can reduce the level of liver injury biomarkers and regulate oxidative stress. Histopathological results indicated that TCMPC could ameliorate ALI in mice. In addition, it can also significantly reduce the production of inflammatory cytokines caused by ALI. Conclusion Our research has proved the therapeutic effect of TCMPC on alcohol-induced ALI. The potential mechanism of hepatoprotective effects of TCMPC may be related to its antioxidative and anti-inflammatory effects. Our research might provide a new way for liver disease treatment.
Collapse
Affiliation(s)
- Zhiguo Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Congcong Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- *Correspondence: Youzhong Wan,
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Dahai Yu,
| |
Collapse
|
26
|
Chodkowska KA, Iwiński H, Wódz K, Nowak T, Różański H. In Vitro Assessment of Antimicrobial Activity of Phytobiotics Composition towards of Avian Pathogenic Escherichia coli (APEC) and Other E. coli Strains Isolated from Broiler Chickens. Antibiotics (Basel) 2022; 11:antibiotics11121818. [PMID: 36551476 PMCID: PMC9774517 DOI: 10.3390/antibiotics11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli infections (including APEC) in broiler chickens are not only a health and economic problem of the flock, but also a significant health threat to poultry meat consumers. The prophylactic and therapeutic effects of the phytobiotic composition on E. coli in broiler chickens were previously described. However, most of the data were related to the reference strains (for both in vitro and in vivo models). Based on the previous studies in human and animals, E. coli strains seem to be multidrug resistance. This, in turn, makes it necessary to develop effective alternative methods of treating this type of infection already at the stage of poultry production. In the present study, the antibacterial activity against various strains of E. coli (including APEC) was assessed for two innovative phytobiotics mixtures: H1, containing thymol, menthol, linalool, trans-anethole, methyl salicylate, 1,8-cineol, and p-cymene; H2, in addition to compounds from H1, containing terpinen-4-ol and γ-terpinene. The unique mixtures of phytobiotics used in the experiment were effective against various strains of E. coli, also against APEC, isolated from broiler chickens from traditional industrial breeding, as well as against those showing colistin resistance. The minimum inhibitory concentration (MIC) values for these unique mixtures were: For H1 1:512 for APEC and non-APEC E. coli strains isolated from day old chicks (DOCs), 1:512 for non-APEC, and 1:1024 for non-APEC isolated from broilers sample. For mixture H2, MIC for APEC from both type of samples (DOCs and broilers) was 1:1024 and for non-APEC (DOCs and broilers) was 1:512. The results suggest that phytobiotic compositions used in this study can be successfully used as a natural alternative to antibiotics in the treatment of E. coli infections in broiler chickens. The promising results may be a crucial point for further analyses in broiler flocks exposed to E. coli infections and where it is necessary to reduce the level of antibiotics or completely eliminate them, thus reducing the risk of foodborne infections.
Collapse
Affiliation(s)
- Karolina A. Chodkowska
- Krzyżanowski Partners Spółka z o.o., Zakładowa 7, 26-670 Pionki, Poland
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Correspondence: ; Tel.: +48-726220144
| | - Hubert Iwiński
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland
| | - Tomasz Nowak
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland
| | - Henryk Różański
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State University in Krosno, Rynek 1, 38-400 Krosno, Poland
| |
Collapse
|
27
|
Hashem MA, Hassan AEA, Abou-Elnaga HMM, Abdo W, Dahran N, Alghamdi AH, Elmahallawy EK. Modulatory effect of dietary probiotic and prebiotic supplementation on growth, immuno-biochemical alterations, DNA damage, and pathological changes in E. coli-infected broiler chicks. Front Vet Sci 2022; 9:964738. [PMID: 36337201 PMCID: PMC9631445 DOI: 10.3389/fvets.2022.964738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Avian pathogenic Escherichia coli is one of the principal causes of heavy economic losses to the poultry industry. Little is known about the underlying mechanisms, particularly the potential role of immunoglobulin A and the DNA damage, involving the beneficial effects of dietary supplementation of probiotics and prebiotics in avian colibacillosis. The current study investigated the potential effects of probiotic and prebiotic dietary supplementation on E. coli-infected broiler chicks. A total of 120 1-day-old unsexed Hubbard chicks were divided into six groups: Group 1 was considered as a negative control; Group 2 was supplemented with 1 g/kg feed of Lactobacillus plantarum; Group 3 was supplemented with amylase enzyme; Group 4 served as a positive control infected orally by E. coli O78; Group 5 was supplemented with L. plantarum from 1-day-old chicken and then infected orally with E. coli O78; and Group 6 was supplemented with amylase enzyme from 1-day old chicken and then infected orally with E. coli O78. For all examined groups, the experimental period lasted for 42 days. The E. coli-infected group revealed a decrease in body performance parameters with a significant increase in the liver enzymes and renal function tests. The same group recorded a significant decrease in serum total proteins, albumins, and globulins, and the alteration of immunological parameters, antioxidant enzymes, oxidative stress parameters, and comet assay revealed highly damaged DNA in the liver and the intestine. By histopathological examination, a series of histopathological changes in the liver, the kidney, and the intestine were observed. The infected chick pretreated with probiotics or prebiotics demonstrated an improvement in body performance parameters besides a significant decrease in the hepatic enzymes and renal function tests. We noticed that, in treated groups, there was a significant increase in serum total proteins in the serum albumin and globulin levels, immunological parameters, and antioxidant enzymes. Furthermore, DNA damage and histopathological changes within hepatic, renal, and intestinal tissues were markedly diminished in the treated groups compared with the infected group. We concluded that the adverse effects of E. coli could be modulated through the chemopreventive administration of probiotics and prebiotics.
Collapse
Affiliation(s)
- Mohamed A. Hashem
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Azza E. A. Hassan
- Department of Biochemistry, Animal Health Institute, Mansoura, Egypt
| | | | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ali H. Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Al Aqiq, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
28
|
Islam R, Sultana N, Bhakta S, Haque Z, Hasan A, Siddique MP, Islam MR. Modulation of growth performance, gut morphometry, and cecal microbiota in broilers by clove (Syzygium aromaticum) and tulsi (Ocimum sanctum) supplementation. Poult Sci 2022; 102:102266. [PMID: 36370662 PMCID: PMC9660731 DOI: 10.1016/j.psj.2022.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In an epoch of the growing risk of antibiotic resistance, there is a dire need to establish an effective novel feeding practice for broiler nutrition as an alternative to antibiotics. Hence, the aim of the current study was to evaluate the impact of clove powder and tulsi extract on the growth performance, gut morphologic and morphometric indices, and cecal microbial status of broiler, as an alternative to antibiotic growth promoters (AGPs). Sixty day-old chicks of Cobb-500 strain were randomly divided into 4 groups, each having 15 birds. Chicks of the control group (T0) were fed commercial broiler feed with no additional supplementation. The treatment groups were offered commercial broiler feed and received clove powder and tulsi extract with drinking water at the rate of 0.5% + 2% (T1), 1% + 3% (T2), and 1.5% + 4% (T3), respectively. Results showed a nonlinear relationship with the dosage of clove and tulsi. All the growth parameters substantially (P < 0.05) improved in T2 while T1 and T3 showed no significant improvement compared to T0. The final body weight was significantly (P < 0.05) higher in T2. Giblet and offal weights showed no noticeable differences except in the intestine and heart where intestine weight markedly (P < 0.05) decreased in T3 and heart weight significantly (P < 0.05) increased in T1 and T2. Clove and tulsi supplementation substantially improved the villus height and villus surface area of the small intestine in T2 while the large intestine remained mostly unaffected by the treatment. Cecal microbial status significantly improved in all the treatment groups having increased (P < 0.05) Lactobacillus spp. count and decreased (P < 0.05) E. coli count compared to T0. Based on the aforementioned findings, it can be concluded that the combination of clove and tulsi can improve the growth performance and gut health of broilers which is largely dose-dependent and might be supplied as a potential alternative to AGPs.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nasrin Sultana
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Sonali Bhakta
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ziaul Haque
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Alamgir Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
29
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
30
|
Liu H, An M, Si H, Shan Y, Xu C, Hu G, Xie Y, Liu D, Li S, Qiu R, Zhang C, Wu Y. Identification of Cyclic Dipeptides and a New Compound (6-(5-Hydroxy-6-methylheptyl)-5,6-dihydro-2H-pyran-2-one) Produced by Streptomyces fungicidicus against Alternaria solani. Molecules 2022; 27:molecules27175649. [PMID: 36080412 PMCID: PMC9458140 DOI: 10.3390/molecules27175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
As an important microbial resource, Actinomycetes, especially Streptomyces, have important application values in medicine and biotechnology. Streptomyces fungicidicus SYH3 was isolated from soil samples in tomato-growing areas and showed good inhibitory effects on Alternaria solani in tomato. To obtain pure active compounds, SYH3 fermentation broth was subjected to XAD-16 macroporous resin and silica gel column chromatography. Combined with the repeated preparation and separation of preparative high-performance liquid chromatography (HPLC), a total of four monomer compounds were obtained after activity tracking. Compound 4 was identified as a new six-membered lactone ring compound named 6-(5-hydroxy-6-methylheptyl)-5,6-dihydro-2H-pyran-2-one by 1D and 2D nuclear magnetic resonance (NMR) data and mass spectrometry (MS). The other three active compounds belong to the cyclodipeptide, and their half maximal inhibitory concentration (IC50) values against A. solani were 43.4, 42.9, and 30.6 μg/mL, respectively. Compound 4 significantly inhibited the spore germination and induced swollen and deformed local hyphae of A. solani with an IC50 value of 24.9 μg/mL. Compound 4 also had broad-spectrum antifungal activity and had a good antifungal effect on the tested plant-pathogenic fungi. The modes of action of new compound (4) still require further investigation, representing a novel and effective anti-fungal agent for future application.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyang Si
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhang Shan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chuantao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou 646000, China
| | - Gang Hu
- Sichuan Province Tobacco Company, Chengdu 610017, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu 610017, China
| | - Dongyang Liu
- Liangshanzhou Branch of Sichuan Province Tobacco Company, Xichang 615000, China
| | - Shujun Li
- Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Tobacco Research Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Rui Qiu
- Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Tobacco Research Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Chong Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.Z.); (Y.W.)
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.Z.); (Y.W.)
| |
Collapse
|
31
|
Zhang J, Cui X, Zhang M, Bai B, Yang Y, Fan S. The antibacterial mechanism of perilla rosmarinic acid. Biotechnol Appl Biochem 2022; 69:1757-1764. [PMID: 34490944 DOI: 10.1002/bab.2248] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Rosmarinic acid (RosA) is a phenolic acid compound extracted from perilla. In this experiment, the Oxford cup method was used to verify the antibacterial activity of PerillaRosA against Escherichia coli, Staphylococcus aureus, Salmonella, and Bacillus subtilis. By polyacrylamide gel electrophoresis, the effect of RosA on bacterial nucleic acid and bacterial Na+ /K+ -ATP-ase activity, and scanning electron microscope to exploration of its antibacterial mechanism preliminarily. The results showed that RosA had antibacterial properties against all four bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of E. coli were 0.8 and 0.9 mg/ml, respectively. The MIC and MBC of Salmonella were 0.9 and 1.0 mg/ml, respectively. The MIC and MBC of S. aureus and B. subtilis were both 1.0 and 1.1 mg/ml. RosA has the bacteriostasis function, which can destroy bacterial cells and cell proteins and inhibit the activity of Na+ /K+ -ATP-ase in cells.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Xin Cui
- College of Life Science, Shanxi University, Taiyuan, China
| | - Min Zhang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan, China
| | - Yukun Yang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| |
Collapse
|
32
|
Xiang L, Ying Z, Xue M, Xiaoxian P, Xiaorong L, Chunyang L, Yu W, Mingcheng L, Binxian L. A novel Lactobacillus bulgaricus isolate can maintain the intestinal health, improve the growth performance and reduce the colonization of E. coli O157:H7 in broilers. Br Poult Sci 2022; 63:621-632. [PMID: 35383527 DOI: 10.1080/00071668.2022.2062220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed at the effects of a novel Lactobacillus bulgaricus (L. bulgaricus) strain and Enterohemorrhagic Escherichia coli (E. coli) O157: H7 on intestinal flora and growth performance of broilers, and the protective effect of L. bulgaricus on broilers in challenged experiment by E. coli O157: H7.2. In vitro bacteriostatic test showed that the cell-free supernatant (CFS) of L. bulgaricus isolate had obvious inhibitory effect on E. coli O157: H7.3. Eighty 1-day-old male broilers were randomly assigned into 4 treatment groups with 4 replicate per treatment. All group received basic diet in addition to the specific treatments: NC group, gavage with normal saline; In LBP group, gavage with L. bulgaricus isolate (1×109 CFU/mL) during the whole process, and challenged with E. coli O157: H7 (3×109 CFU/mL); EC group, gavage with E. coli O157: H7 (3×109 CFU/mL); LB Group, gavage with L. bulgaricus isolate. At the age of 21 days, broilers were weighed and feed conversion ratio (FCR) was calculated. Cecum and cecal contents, ileum and feces samples were taken after slaughter.4. The challenge of E. coli O157: H7 resulted in an increase in TLR-4, NF-κB and IL-8 mRNA in cecal tissue, a decrease in Villus: crypt ratio in ileum, a decrease in overall diversity of intestinal microflora and a poor FCR.5. The L. bulgaricus isolate decreased the mRNA expression of TLR-4, NF-κB and IL-8 induced by E. coli O157: H7, reduced the content of E. coli O157: H7 in the cecum of broilers, increased the Villus: crypt ratio, increased the abundance of beneficial bacteria and overall diversity of intestinal microflora, made good FCR.6. The L. bulgaricus isolate can maintain the intestinal health, improve the growth performance of broilers and reduce the colonization of E. coli O157:H7 in the cecum.
Collapse
Affiliation(s)
- Li Xiang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Zhang Ying
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Meng Xue
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Pei Xiaoxian
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Liu Xiaorong
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Lan Chunyang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Wang Yu
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Mingcheng
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Binxian
- Dept. of Clinical Microbiology, Associated Hospital, Beihua University, Jilin, Jilin 132013, China
| |
Collapse
|
33
|
Zhang Q, Pan Y, Wang M, Sun L, Xi Y, Li M, Zeng Q. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak ( Bos grunniens). PeerJ 2022; 10:e13177. [PMID: 35368335 PMCID: PMC8973462 DOI: 10.7717/peerj.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine endometritis is an inflammatory disease of the uterus that occurs after parturition and can result in the destruction of uterine microecology, disruption of hormone secretion, and even infertility. Problems such as antibiotic residues, pathogen resistance, and microbiota dysbiosis caused by conventional antibiotic therapy cannot be ignored. According to the microecological balance theory, probiotics have the potential to prevent or cure endometritis in cattle. Probiotics can positively influence host physiology by regulating microecological imbalance, modulating immunity, and antagonizing pathogens. Since some probiotics contribute to host health only in their specific natural niches, lactic acid bacteria (LAB) from the vagina may have better potential to fight against vaginal and uterine infection. The yak (Bos grunniens) is an ancient and primitive livestock animal that is adapted to high altitude and harsh environments (cold, nutritional deficiencies, and hypoxia). However, to our knowledge, there have been no studies on yak vaginal LAB. Therefore, the purpose of this study was to isolate vaginal LAB from yak, evaluate and compare the probiotic potential and safety of the isolates, and help establish the probiotics library that can be used in the prevention and/or treatment of endometritis. Twenty-five vaginal swabs were collected from healthy yak and cultured in deMan, Rogosa, and Sharpe (MRS) broth. Tentative LAB strains were preliminarily determined through calcium dissolving zone and morphological identification, and the strains were then identified using 16S rRNA gene sequencing. The probiotics of the isolates were detected using cell aggregation, hydrophobicity, resistance to acid and bile salt, adhesion, and antibacterial activities. Additionally, antimicrobial susceptibility, hemolytic activity, and detection of potential virulence factors were determined in order to confirm the safety of these strains. Five isolates were identified: Leuconostoc mesenteroides, Lactobacillus plantarum, Enterococcus hirae, Lacticaseibacillus camelliae, and Lactobacillus mucosae. All isolates had certain growth resistance, aggregation ability, effective antimicrobial potency against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium, were sensitive to most antibiotics, and could effectively adhere to bovine endometrial epithelial cells (BEECs). None of the isolates showed hemolytic activity or harbored virulence factors. Our results indicated that the five isolates have considerable potential as probiotics that can be used to prevent and/or treat bovine endometritis. We speculate that a mixture of YD6, YD9, and YD25 may yield better results, although this would require extensive experiments to verify.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liang Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
34
|
Effects of Bacillus methylotrophicus SY200 Supplementation on Growth Performance, Antioxidant Status, Intestinal Morphology, and Immune Function in Broiler Chickens. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09924-6. [PMID: 35150396 DOI: 10.1007/s12602-022-09924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
The present study was focused on evaluating the effects of Bacillus methylotrophicus SY200 in broiler production. A total of 120 healthy 7-day-old broiler chicks were randomly assigned to four dietary treatments, which included basal diet supplemented with 0%, 0.10%, 0.25%, or 0.50% (w/w) B. methylotrophicus SY200 preparation (1.0 × 109 cfu/g), regarded as negative control group (NC), low-dose group (BML), medium-dose group (BMM), and high-dose group (BMH), respectively. Each treatment was fed the corresponding experimental diet for 35 days. Results showed that dietary supplementation of B. methylotrophicus SY200 could improve broiler weight gain, especially the finisher phase. Further studies suggested that a certain amount of B. methylotrophicus SY200 enhanced the broiler antioxidant status and improved the morphological development of jejunum. Besides, dietary supplementation of B. methylotrophicus SY200 especially in 0.50% levels significantly increased the relative weight of immune organs and Newcastle disease virus antibody titer, similarly, increased mRNA expression levels of claudin-1, claudin-3, zonula occluden-1, and zonula occluden-2 were observed in the jejunum of BMM group. Moreover, B. methylotrophicus SY200 also showed beneficial effects in improving broilers microbiota homeostasis by increasing the number of beneficial bacteria. Conclusively, B. methylotrophicus SY200 could effectively improve the antioxidant status, modulate the intestinal structure, enhance the intestinal mucosal barrier function, and regulate the immune function of broilers, which finally improves the performance of the chicken in the finisher period.
Collapse
|
35
|
Qi C, Peng X, Yuan S, Zhang M, Xu X, Cheng X. Evaluation of the Antibacterial and Anti-Inflammatory Effects of a Natural Products-Containing Toothpaste. Front Cell Infect Microbiol 2022; 12:827643. [PMID: 35223552 PMCID: PMC8867695 DOI: 10.3389/fcimb.2022.827643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fluoride-containing toothpaste is daily used in toothbrush. Some compounds derived from natural herbs that have antibacterial and anti-inflammatory activities has attracted increasing attention as potential supplements for the control of oral diseases. In this paper, a natural product mixture (NPM-8) containing eight herbs extracts was added to toothpaste, and its antibacterial and anti-inflammatory effects were investigated. The results showed that NPM-8-containing toothpaste exhibited superior and faster inhibitory and bactericidal effects against S. mutans, S. sanguinis and P. gingivalis than that of the NPM-8-free toothpaste. NPM-8-containing toothpaste significantly reduced the biomass of single-species or three-species biofilms. The cytotoxicity of the NPM-8-containing toothpaste was similar to that of the conventional fluoride toothpaste and CHX. The NPM-8-containing toothpaste could significantly inhibit IL-1β and IL-6 production in HGE cells and exhibited a better anti-inflammatory effect than that of the NPM-8-free toothpaste. In conclusion, NPM-8-containing fluoride toothpaste is superior to conventional fluoride toothpaste in regard to their antibacterial, antibiofilm, and anti-inflammatory properties. NPM-8-containing toothpaste also has good biocompatibility and is safe for daily use. It indicates that NPM-8 is a promising natural product mixture in oral health.
Collapse
Affiliation(s)
- Cai Qi
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shaotang Yuan
- MHOME (Guangzhou) Industrial Co., Ltd, Guangzhou, China
| | | | - Xin Xu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xin Xu, ; Xingqun Cheng,
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xin Xu, ; Xingqun Cheng,
| |
Collapse
|
36
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
37
|
Boronin V, Semenov V, Simurzina E, Luzova A, Ivanova R. Application of a complex probiotic preparation based on B. subtilis and B. licheniformis in the technology of edible eggs' production. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper highlights the study results on the usage effectiveness of the domestic complex probiotic preparation Immunoflor developed by PC KROS Farm LLC on Dekalb White egg cross chickens in the production of edible eggs. The work was carried out in the conditions of the agricultural production cooperative "Gornomariyskaya Poultry Farm" of the Republic of Mari El. During the experiment, it was found that eggs from laying hens with the highest weight and more close to the ideal shape were obtained in the 1st and 2nd experimental groups. Indicators of weight, elastic shell strain, albumen index were higher in the experimental groups relative to the control. By the end of the productive period, the yolk index was higher in the 1st and 2nd experimental groups than in the control by 0.12 and 0.7%, respectively. An increase in the albumen height and the indicator of Haugh units was noted in the eggs of the 1st and 2nd experimental groups relative to the control. It was found that egg mass loss decreased when they were stored for 14 days. Thus, the weight of eggs increased and their morphological indicators improved against the background of using a complex probiotic preparation in young poultry.
Collapse
|
38
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|