1
|
Jones CW, Larson O, Basner M, Dinges DF. The dynamic responses of mood and sleep physiology to chronic sleep restriction and subsequent recovery sleep. Sleep 2024; 47:zsae091. [PMID: 38602131 PMCID: PMC11381564 DOI: 10.1093/sleep/zsae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Healthy sleep of sufficient duration preserves mood and disturbed sleep is a risk factor for a range of psychiatric disorders. As adults commonly experience chronic sleep restriction (SR), an enhanced understanding of the dynamic relationship between sleep and mood is needed, including whether susceptibility to SR-induced mood disturbance differs between sexes. To address these gaps, data from N = 221 healthy adults who completed one of the two multi-day laboratory studies with identical 9-day SR protocols were analyzed. Participants randomized to the SR (n = 205) condition underwent 5 nights of SR to 4 hours of time-in-bed and were then randomized to one of the seven sleep doses that ranged from 0 to 12 hours in 2 hours increments; participants randomized to the control (n = 16) condition received 10 hours time-in-bed on all study nights. The Profile of Mood States (POMS) was used to assess mood every 2 hours during wakefulness and markers of sleep homeostasis (EEG slow-wave activity (SWA)) were derived via polysomnography. Mood progressively deteriorated across SR with marked disturbances in somatic mood components. Altered sleep physiology contributed to mood disturbance whereby increased EEG SWA was associated with increased POMS Total Mood Disturbance scores, a finding specific to males. The mood was restored in a dose-response fashion where improvements were greater with longer sleep doses. These findings suggest that when lifestyle and environmental factors are inhibited in the laboratory, the affective consequences of chronic sleep loss are primarily somatic mood disturbances. Altered sleep homeostasis may contribute to mood disturbance, yet sleep-dependent mechanisms may be sex-specific.
Collapse
Affiliation(s)
- Christopher W Jones
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Larson
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Palatine E, Phillips ML, Soehner AM. The effect of slow wave sleep deprivation on mood in adolescents with depressive symptoms: A pilot study. J Affect Disord 2024; 354:347-355. [PMID: 38479512 DOI: 10.1016/j.jad.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND There is an urgent need for safe, rapid-acting treatment strategies for adolescent depression. In depressed adults, slow wave sleep deprivation (SWSD) improved next-day mood without disrupting sleep duration, but SWSD has not been tested in adolescents. In a pilot study, the aim was to assess the effect of SWSD on sleep physiology and mood outcomes (depression, rumination, anhedonia) among adolescents with depressive symptoms. METHODS Sixteen adolescents (17.44 ± 1.46 yr, 12 female) completed three nights of polysomnographic sleep recording: Baseline, SWSD, and Recovery nights. Acoustic stimulation (tones of random pitch, duration, and volume) suppressed slow wave sleep (SWS) in real-time during SWSD. After each night, depression, rumination, and anhedonia severity were assessed. RESULTS SWSD successfully suppressed SWS, increased N2, and had minimal impact on Rapid Eye Movement (REM), nocturnal awakenings, and total sleep time. While SWSD did not improve depression or anhedonia severity overall, lower baseline non-REM alpha activity and greater SWS rebound during recovery sleep correlated with SWSD-related reduction in clinician-rated depression severity. Next-day rumination severity decreased after SWSD, with sustained improvements following recovery sleep. However, rumination improvement was not associated with SWS suppression, but rather reduction in total sleep time and REM in exploratory correlation models. LIMITATIONS Small sample size and large proportion of females. CONCLUSION SWSD did not improve depression in adolescents overall but a subset with low non-REM alpha activity and intact homeostatic sleep regulation may benefit from this approach. Findings from this pilot study also suggest that partial sleep deprivation may be a beneficial therapeutic strategy for rumination in adolescents.
Collapse
Affiliation(s)
- Elise Palatine
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Ghaderi AH, Brown EC, Clark DL, Ramasubbu R, Kiss ZHT, Protzner AB. Functional brain network features specify DBS outcome for patients with treatment resistant depression. Mol Psychiatry 2023; 28:3888-3899. [PMID: 37474591 DOI: 10.1038/s41380-023-02181-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Deep brain stimulation (DBS) has shown therapeutic benefits for treatment resistant depression (TRD). Stimulation of the subcallosal cingulate gyrus (SCG) aims to alter dysregulation between subcortical and cortex. However, the 50% response rates for SCG-DBS indicates that selection of appropriate patients is challenging. Since stimulation influences large-scale network function, we hypothesized that network features can be used as biomarkers to inform outcome. In this pilot project, we used resting-state EEG recorded longitudinally from 10 TRD patients with SCG-DBS (11 at baseline). EEGs were recorded before DBS-surgery, 1-3 months, and 6 months post surgery. We used graph theoretical analysis to calculate clustering coefficient, global efficiency, eigenvector centrality, energy, and entropy of source-localized EEG networks to determine their topological/dynamical features. Patients were classified as responders based on achieving a 50% or greater reduction in Hamilton Depression (HAM-D) scores from baseline to 12 months post surgery. In the delta band, false discovery rate analysis revealed that global brain network features (segregation, integration, synchronization, and complexity) were significantly lower and centrality of subgenual anterior cingulate cortex (ACC) was higher in responders than in non-responders. Accordingly, longitudinal analysis showed SCG-DBS increased global network features and decreased centrality of subgenual ACC. Similarly, a clustering method separated two groups by network features and significant correlations were identified longitudinally between network changes and depression symptoms. Despite recent speculation that certain subtypes of TRD are more likely to respond to DBS, in the SCG it seems that underlying brain network features are associated with ability to respond to DBS. SCG-DBS increased segregation, integration, and synchronizability of brain networks, suggesting that information processing became faster and more efficient, in those patients in whom it was lower at baseline. Centrality results suggest these changes may occur via altered connectivity in specific brain regions especially ACC. We highlight potential mechanisms of therapeutic effect for SCG-DBS.
Collapse
Affiliation(s)
- Amir Hossein Ghaderi
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
- Arden University Berlin, 10963, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin, Germany
- Berlin Institute of Health, 10117, Berlin, Germany
| | - Darren Laree Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada.
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Associations between Heart Rate Variability and Brain Activity during a Working Memory Task: A Preliminary Electroencephalogram Study on Depression and Anxiety Disorder. Brain Sci 2022; 12:brainsci12020172. [PMID: 35203935 PMCID: PMC8870686 DOI: 10.3390/brainsci12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/02/2023] Open
Abstract
Heart rate variability (HRV) has been suggested to reflect executive function and related neural activity. Executive dysfunction has been suggested to play an important role in the pathophysiology of emotional disorders. The purpose of this study was to investigate whether HRV showed a significant correlation with electroencephalogram (EEG) during a working memory performance in patients with depressive or anxiety disorder. A retrospective analysis was conducted with data from 61 patients with depressive disorder (43 women and 18 men) and 59 patients with anxiety disorder (35 women and 24 men). HRV was measured in the resting state, and EEG was recorded in the resting state and during the execution of a working memory task. It was performed in patients with depressive and anxiety disorder, and the paired sample t-test between resting state and task performance, as well as the partial correlation analysis between HRV and EEG, was conducted. Both depressed and anxious patients showed weaker beta relative power during the working memory task compared to the rest period. The resting-state EEG did not correlate with HRV parameters in both groups. In depressed patients, HRV showed a positive correlation with delta power during the task and a negative correlation with beta relative power during the task. In patients with anxiety disorder, HRV showed a significant positive correlation with theta power of the right frontal region during the task. Our results suggest that HRV would be related to executive-function-related neural activity in patients with depressive or anxiety disorder. Future studies with more subjects, including healthy controls, are needed to verify the correlation between HRV and EEG and to come up with a more comprehensive picture of neurobiological changes in emotional disorders.
Collapse
|
5
|
Boland C, Jalihal V, Organ C, Oak K, McLean B, Laugharne R, Woldman W, Beck R, Shankar R. EEG Markers in Emotionally Unstable Personality Disorder-A Possible Outcome Measure for Neurofeedback: A Narrative Review. Clin EEG Neurosci 2021; 52:254-273. [PMID: 32635758 DOI: 10.1177/1550059420937948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objectives. There is growing evidence for the use of biofeedback (BF) in affective disorders, dissocial personality disorder, and in children with histories of abuse. Electroencephalogram (EEG) markers could be used as neurofeedback in emotionally unstable personality disorder (EUPD) management especially for those at high risk of suicide when emotionally aroused. This narrative review investigates the evidence for EEG markers in EUPD. Methods. PRISMA guidelines were used to conduct a narrative review. A structured search method was developed and implemented in collaboration with an information specialist. Studies were identified via 3 electronic database searches of MEDLINE, Embase, and PsycINFO. A predesigned inclusion/exclusion criterion was applied to selected papers. A thematic analysis approach with 5 criteria was used. Results. From an initial long list of 5250 papers, 229 studies were identified and screened, of which 44 met at least 3 of the predesigned inclusion criteria. No research to date investigates EEG-based neurofeedback in EUPD. A number of different EEG biomarkers are identified but there is poor consistency between studies. Conclusions. The findings heterogeneity may be due to the disorder complexity and the variable EEG related parameters studied. An alternative explanation may be that there are a number of different neuromarkers, which could be clustered together with clinical symptomatology, to give new subdomains. Quantitative EEGs in particular may be helpful to identify more specific abnormalities. EEG standardization of neurofeedback protocols based on specific EEG abnormalities detected may facilitate targeted use of neurofeedback as an intervention in EUPD.
Collapse
Affiliation(s)
- Cailín Boland
- Saint James's Hospital, Dublin, Ireland.,8809Trinity College Dublin, Dublin, Ireland
| | | | | | - Katy Oak
- 8028Royal Cornwall Hospitals Trust, Truro, UK
| | | | - Richard Laugharne
- 7491Cornwall Partnership NHS Foundation Trust, Truro, UK.,151756Exeter Medical School, Exeter, UK
| | | | - Randy Beck
- Institute of Functional Neuroscience, Perth, Western Australia, Australia
| | - Rohit Shankar
- 7491Cornwall Partnership NHS Foundation Trust, Truro, UK.,151756Exeter Medical School, Exeter, UK
| |
Collapse
|
6
|
Zangani C, Casetta C, Saunders AS, Donati F, Maggioni E, D’Agostino A. Sleep abnormalities across different clinical stages of Bipolar Disorder: A review of EEG studies. Neurosci Biobehav Rev 2020; 118:247-257. [DOI: 10.1016/j.neubiorev.2020.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
|
7
|
Hasanzadeh F, Mohebbi M, Rostami R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J Neural Eng 2020; 17:026010. [DOI: 10.1088/1741-2552/ab7613] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Rantamäki T, Kohtala S. Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects. Pharmacol Rev 2020; 72:439-465. [DOI: 10.1124/pr.119.018697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Goldschmied JR, Cheng P, Armitage R, Deldin PJ. A preliminary investigation of the role of slow-wave activity in modulating waking EEG theta as a marker of sleep propensity in major depressive disorder. J Affect Disord 2019; 257:504-509. [PMID: 31319342 PMCID: PMC6743727 DOI: 10.1016/j.jad.2019.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Both EEG slow-wave activity (SWA) during sleep and EEG theta activity during waking have been shown to increase with extended waking, and decrease following sleep, suggesting that both are markers of sleep propensity. In individuals with major depressive disorder (MDD), however, altered patterns of SWA have been noted, suggesting that sleep homeostasis is dysregulated. This study aimed to examine if slow-wave disruption would alter sleep propensity differently in healthy controls (HC) and those with MDD. METHODS 25 individuals (13 diagnosed with MDD and 12 HC) participated. Following one night of adaptation sleep, participants underwent one night of baseline sleep, and one night of selective slow-wave disruption by auditory stimuli. In the evening, before sleep, and in the morning following sleep, waking EEG was recorded from participants in an upright position, with eyes open. RESULTS Repeated measures ANOVA revealed a significant three-way interaction, such that AM theta activity was significantly lower following slow-wave disruption in those with MDD, but not in HC. Additionally, SWA was not correlated with theta activity in MDD. LIMITATIONS These data are based on a relatively small sample size of unmedicated individuals with MDD. CONCLUSIONS These data may suggest that SWA plays a differential role in the homeostatic regulation of sleep in HC, and in MDD, and provide additional evidence that the presence of SWA may be maladaptive in MDD.
Collapse
Affiliation(s)
- Jennifer R. Goldschmied
- Center for Sleep & Circadian Neurobiology, University of Pennsylvania, 125 S.31st St, Philadelphia, PA 19104, United States
| | - Philip Cheng
- Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Rd, Novi MI 48377, United States.
| | - Roseanne Armitage
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, United States.
| | - Patricia J. Deldin
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW In this review, we aim to integrate the most recent research highlighting alterations in sleep slow-wave activity (SWA), and impairments in neuroplasticity in major depressive disorder (MDD) into a novel model of disorder maintenance. RECENT FINDINGS Sleep homeostasis has been shown to be impaired in MDD, with a subset of individuals also demonstrating impaired SWA. SWA is considered a marker of the homeostatic regulation of sleep, and is implicated in the downscaling of synaptic strength in the context of maintaining homeostatic plasticity. Individuals with MDD have been shown to exhibit impairments in both neural plasticity such as loss of dendritic branching, and synaptic plasticity such as decreased long-term potentiation-dependent learning and memory. Alterations in the homeostatic regulation of sleep, SWA, and synaptic plasticity in MDD suggest an underlying impairment in the modulation of synaptic strength. One candidate mechanism for this impairment is AMPA receptor trafficking.
Collapse
|
11
|
Jones BJ, Fitzroy AB, Spencer RMC. Emotional Memory Moderates the Relationship Between Sigma Activity and Sleep-Related Improvement in Affect. Front Psychol 2019; 10:500. [PMID: 30915002 PMCID: PMC6423070 DOI: 10.3389/fpsyg.2019.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
Sleep is essential for regulating mood and affect, and it also consolidates emotional memories. The mechanisms underlying these effects may overlap. Here, we investigated whether the influence of sleep on affect may be moderated by emotional memory consolidation. Young adults viewed 45 negative and 45 neutral pictures before taking an afternoon nap measured with polysomnography. Following the nap period, participants viewed the same pictures intermixed with novel ones and indicated whether they remembered each picture. Affect was measured with the Positive and Negative Affect Schedule (PANAS) at baseline before the initial picture viewing task, immediately following the initial picture viewing task, and following the nap. The ratio of positive to negative affect declined over the task period and recovered over the nap period. When controlling for pre-nap affect, NREM sigma activity significantly predicted post-nap affect. Memory for negative pictures moderated this relationship such that a positive association between sigma activity and affect occurred when memory was low but not when memory was high. These results indicate that emotional memory consolidation influences the relationship between nap physiology and mood.
Collapse
Affiliation(s)
- Bethany J Jones
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States.,Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, United States
| | - Ahren B Fitzroy
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States.,Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, United States.,Department of Psychology and Education, Mount Holyoke College, South Hadley, MA, United States
| | - Rebecca M C Spencer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States.,Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Goldschmied JR, Cheng P, Hoffmann R, Boland EM, Deldin PJ, Armitage R. Effects of slow-wave activity on mood disturbance in major depressive disorder. Psychol Med 2019; 49:639-645. [PMID: 29807554 PMCID: PMC6472262 DOI: 10.1017/s0033291718001332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Studies have demonstrated that decreases in slow-wave activity (SWA) predict decreases in depressive symptoms in those with major depressive disorder (MDD), suggesting that there may be a link between SWA and mood. The aim of the present study was to determine if the consequent change in SWA regulation following a mild homeostatic sleep challenge would predict mood disturbance. METHODS Thirty-seven depressed and fifty-nine healthy adults spent three consecutive nights in the sleep laboratory. On the third night, bedtime was delayed by 3 h, as this procedure has been shown to provoke SWA. The Profile of Mood States questionnaire was administered on the morning following the baseline and sleep delay nights to measure mood disturbance. RESULTS Results revealed that following sleep delay, a lower delta sleep ratio, indicative of inadequate dissipation of SWA from the first to the second non-rapid eye movement period, predicted increased mood disturbance in only those with MDD. CONCLUSIONS These data demonstrate that in the first half of the night, individuals with MDD who have less SWA dissipation as a consequence of impaired SWA regulation have greater mood disturbance, and may suggest that appropriate homeostatic regulation of sleep is an important factor in the disorder.
Collapse
Affiliation(s)
- Jennifer R Goldschmied
- Center for Sleep & Circadian Neurobiology, University of Pennsylvania,125 S.31st St, Philadelphia, PA 19104,USA
| | - Philip Cheng
- Sleep Disorders and Research Center, Henry Ford Health System,39450 W 12 Mile Rd, Novi MI 48377,USA
| | - Robert Hoffmann
- Department of Psychiatry,University of Michigan,4250 Plymouth Rd, Ann Arbor, MI 48109,USA
| | - Elaine M Boland
- Behavioral Health Service,Cpl. Michael J. Crescenz VA Medical Center,3900 Woodland Ave., Philadelphia, PA 19104,USA
| | - Patricia J Deldin
- Department of Psychiatry,University of Michigan,4250 Plymouth Rd, Ann Arbor, MI 48109,USA
| | - Roseanne Armitage
- Department of Psychiatry,University of Michigan,4250 Plymouth Rd, Ann Arbor, MI 48109,USA
| |
Collapse
|
13
|
Ma Y, Yeung A, Yang AC, Peng CK, Clain A, Alpert J, Fava M, Yeung AS. The Effects of Tai Chi on Sleep Quality in Chinese American Patients With Major Depressive Disorder: A Pilot Study. Behav Sleep Med 2018; 16:398-411. [PMID: 27676270 DOI: 10.1080/15402002.2016.1228643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This pilot study evaluated the effects of Tai Chi training on sleep quality (primary outcomes), and depression and social functioning levels (secondary outcomes) among patients with depression. PARTICIPANTS Sixteen depressed Chinese patients. METHODS Participants received 1-hr Tai Chi training sessions 2 times per week for 10 weeks. Patients' subjective sleep quality ratings, objective sleep quality measurements, and depression and social functioning levels were measured before, during, and after the intervention. RESULTS Sleep quality and depression outcomes improved significantly. Patients reported improved Pittsburgh Sleep Quality Index (PSQI) scores (9.6 ± 3.3 to 6.6 ± 5.2, p = 0.016), and cardiopulmonary coupling (CPC) analysis of electrocardiogram (ECG) showed decreased stable sleep onset latency (75.7 ± 100.6 to 20.9 ± 18.0, p = 0.014), increased stable sleep percentages (31.5 ± 18.7 to 46.3 ± 16.9, p = 0.016), and decreased unstable sleep percentages (45.3 ± 20.1 to 30.6 ± 16.5, p = 0.003). Patients also reported decreased Hamilton Rating Scale for Depression (HAM-D-17; 20.1 ± 3.7 to 7.8 ± 5.9, p < 0.001) and Beck Depression Inventory (BDI) scores (22.3 ± 9.1 to 11.1 ± 10.6, p = 0.006). Significant correlations were found between the changes in subjective sleep assessments ΔPSQI and ΔHAM-D-17 (r = 0.6, p = 0.014), and ΔPSQI and ΔBDI (r = 0.62, p = 0.010). Correlations between changes in objective sleep measurements and changes in depression symptoms were low and not significant. CONCLUSIONS Tai Chi training improved sleep quality and mood symptoms among depressed patients.
Collapse
Affiliation(s)
- Yan Ma
- a Division of Interdisciplinary Medicine and Biotechnology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts.,b Sleep Center, Eye Hospital, China Academy of Chinese Medical Sciences , Beijing , China
| | | | - Albert C Yang
- a Division of Interdisciplinary Medicine and Biotechnology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts.,d Department of Psychiatry , Taipei Veterans General Hospital , Taipei City , Taiwan.,e School of Medicine, National Yang-Ming University , Taipei City , Taiwan
| | - Chung-Kang Peng
- a Division of Interdisciplinary Medicine and Biotechnology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts
| | - Alisabet Clain
- f Depression Clinical and Research Program , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts
| | - Jonathan Alpert
- f Depression Clinical and Research Program , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts
| | - Maurizio Fava
- f Depression Clinical and Research Program , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts
| | - Albert S Yeung
- f Depression Clinical and Research Program , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts.,g Department of Behavioral Health , South Cove Community Health Center , Boston , Massachusetts
| |
Collapse
|
14
|
Soehner AM, Kaplan KA, Saletin JM, Talbot LS, Hairston IS, Gruber J, Eidelman P, Walker MP, Harvey AG. You'll feel better in the morning: slow wave activity and overnight mood regulation in interepisode bipolar disorder. Psychol Med 2018; 48:249-260. [PMID: 28625231 PMCID: PMC5736461 DOI: 10.1017/s0033291717001581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sleep disturbances are prominent correlates of acute mood episodes and inadequate recovery in bipolar disorder (BD), yet the mechanistic relationship between sleep physiology and mood remains poorly understood. Using a series of pre-sleep mood inductions and overnight sleep recording, this study examined the relationship between overnight mood regulation and a marker of sleep intensity (non-rapid eye movement sleep slow wave activity; NREM SWA) during the interepisode phase of BD. METHODS Adults with interepisode BD type 1 (BD; n = 20) and healthy adult controls (CTL; n = 23) slept in the laboratory for a screening night, a neutral mood induction night (baseline), a happy mood induction night, and a sad mood induction night. NREM SWA (0.75-4.75 Hz) was derived from overnight sleep EEG recordings. Overnight mood regulation was evaluated using an affect grid pleasantness rating post-mood induction (pre-sleep) and the next morning. RESULTS Overnight mood regulation did not differ between groups following the sad or happy inductions. SWA did not significantly change for either group on the sad induction night compared with baseline. In BD only, SWA on the sad night was related to impaired overnight negative mood regulation. On the happy induction night, SWA increased relative to baseline in both groups, though SWA was not related to overnight mood regulation for either group. CONCLUSIONS These findings indicate that SWA disruption may play a role in sustaining negative mood state from the previous night in interepisode BD. However, positive mood state could enhance SWA in bipolar patients and healthy adults.
Collapse
Affiliation(s)
- A M Soehner
- Department of Psychiatry,University of Pittsburgh School of Medicine,Pittsburgh, PA,USA
| | - K A Kaplan
- Department of Psychiatry,Stanford University School of Medicine,Stanford, CA,USA
| | - J M Saletin
- Department of Psychiatry and Human Behavior,Alpert Medical School of Brown University,Providence, RI,USA
| | - L S Talbot
- San Francisco Veterans Affairs Medical Center,San Francisco, CA,USA
| | - I S Hairston
- School of Behavioral Sciences, Academic College of Tel Aviv - Jaffa,Jaffa,Israel
| | - J Gruber
- Department of Psychology,University of Colorado,Boulder, Boulder, CO,USA
| | - P Eidelman
- Cognitive Behavior Therapy and Science Center,Oakland, CA,USA
| | - M P Walker
- Department of Psychology,University of California,Berkeley, Berkeley, CA,USA
| | - A G Harvey
- Department of Psychology,University of California,Berkeley, Berkeley, CA,USA
| |
Collapse
|
15
|
Chao CT, Lai HJ, Tsai HB, Yang SY, Huang JW. Frail phenotype is associated with distinct quantitative electroencephalographic findings among end-stage renal disease patients: an observational study. BMC Geriatr 2017; 17:277. [PMID: 29197341 PMCID: PMC5712101 DOI: 10.1186/s12877-017-0673-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Background Frailty is prevalent among patients with end-stage renal disease (ESRD) and is associated with an increased risk of cognitive impairment. However, apart from its influence on cognition, it is currently unknown whether frailty affects subtler cerebral function in patients with ESRD. Methods Patients with ESRD were prospectively enrolled, with clinical features and laboratory data recorded. The severity of frailty among these patients with ESRD was ascertained using the previously validated simple FRAIL scale, and was categorized as none-to-mild and moderate-to-severe frailty. All participants underwent quantitative electroencephalography (EEG), with band powers documented following the generation of the delta to alpha ratio (DAR) and delta/theta to alpha/beta ratio (DTABR). EEG results were then compared between groups of different levels of frailty. Results In this cohort, (mean age: 68.9 ± 10.4 years, 37% male, 3.4 ± 3 years of dialysis), 20, 60, 40, 17, and 6% patients exhibited positivity in the fatigue, resistance, ambulation, illness, and loss-of-body-weight domains, respectively, with 45.7% being none to mildly frail and 54.3% being moderately to severely frail. Those with mild frailty had a significantly higher delta power compared to those with more severe frailty, involving all topographic sites. Patients with ESRD and severe frailty had significantly lower global, left frontal, left temporo-occipital, and right temporo-occipital DAR and DTABR, except in the right frontal area, and tended to have central accentuation of alpha, beta, and theta power, and more homogeneous DTABR and DAR distribution compared to the findings in those with mild frailty. Conclusions Frailty in patients with ESRD can have subtler neurophysiological influences, presenting as altered EEG findings, which warrant our attention.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital Bei-Hu branch, Taipei, Taiwan.,Department of Medicine, National Taiwan University Hospital Jin-Shan branch, New Taipei City, Taiwan.,Graduate Institute of Toxicology, School of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, NO.7, Chung-Shan South Road, Zhong-Zheng district, Taipei, 100, Taiwan.,Community and Geriatric Medicine Research Center, National Taiwan University Hospital BeiHu branch, Taipei, Taiwan
| | - Hsin-Jung Lai
- Department of Medicine, National Taiwan University Hospital Jin-Shan branch, New Taipei City, Taiwan.,Department of Neurology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hung-Bin Tsai
- Department of Internal Medicine, National Taiwan University Hospital, NO.7, Chung-Shan South Road, Zhong-Zheng district, Taipei, 100, Taiwan
| | - Shao-Yo Yang
- Department of Internal Medicine, National Taiwan University Hospital, NO.7, Chung-Shan South Road, Zhong-Zheng district, Taipei, 100, Taiwan.
| | - Jenq-Wen Huang
- Department of Internal Medicine, National Taiwan University Hospital, NO.7, Chung-Shan South Road, Zhong-Zheng district, Taipei, 100, Taiwan
| | | |
Collapse
|
16
|
Zhang MQ, Li R, Wang YQ, Huang ZL. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments. Neural Plast 2017; 2017:5870735. [PMID: 29181202 PMCID: PMC5664320 DOI: 10.1155/2017/5870735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022] Open
Abstract
Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient's quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Jones BJ, Schultz KS, Adams S, Baran B, Spencer RMC. Emotional bias of sleep-dependent processing shifts from negative to positive with aging. Neurobiol Aging 2016; 45:178-189. [PMID: 27459938 DOI: 10.1016/j.neurobiolaging.2016.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 11/15/2022]
Abstract
Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being.
Collapse
Affiliation(s)
- Bethany J Jones
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01002
| | - Kurt S Schultz
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01002
- Commonwealth Honors College, University of Massachusetts, Amherst, MA 01002
| | - Sydney Adams
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01002
- Commonwealth Honors College, University of Massachusetts, Amherst, MA 01002
| | - Bengi Baran
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01002
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01002
| |
Collapse
|
18
|
Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev 2015; 30:53-62. [PMID: 26803484 DOI: 10.1016/j.smrv.2015.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023]
Abstract
Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide.
Collapse
|