1
|
Wakeford AGP, Nye JA, Morin EL, Mun J, Meyer JS, Goodman M, Howell LL, Sanchez MM. Alterations in adolescent brain serotonin (5HT) 1A, 5HT 2A, and dopamine (D) 2 receptor systems in a nonhuman primate model of early life adversity. Neuropsychopharmacology 2024; 49:1227-1235. [PMID: 38671147 PMCID: PMC11224234 DOI: 10.1038/s41386-023-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 04/28/2024]
Abstract
Stress affects brain serotonin (5HT) and dopamine (DA) function, and the effectiveness of 5HT and DA to regulate stress and emotional responses. However, our understanding of the long-term impact of early life adversity (ELA) on primate brain monoaminergic systems during adolescence is scarce and inconsistent. Filling this gap in the literature is critical, given that the emergence of psychopathology during adolescence has been related to deficits in these systems. Here, we use a translational nonhuman primate (NHP) model of ELA (infant maltreatment by the mother) to examine the long-term impact of ELA on adolescent 5HT1A, 5HT2A and D2 receptor systems. These receptor systems were chosen based on their involvement in stress/emotional control, as well as reward and reinforcement. Rates of maternal abuse, rejection, and infant's vocalizations were obtained during the first three postnatal months, and hair cortisol concentrations obtained at 6 months postnatal were examined as early predictors of binding potential (BP) values obtained during adolescence using positron emission tomography (PET) imaging. Maltreated animals demonstrated significantly lower 5HT1A receptor BP in prefrontal cortical areas as well as the amygdala and hippocampus, and lower 5HT2A receptor BP in striatal and prefrontal cortical areas. Maltreated animals also demonstrated significantly lower D2 BP in the amygdala. None of the behavioral and neuroendocrine measurements obtained early in life predicted any changes in BP data. Our findings suggest that early caregiving experiences regulate the development of brain 5HT and DA systems in primates, resulting in long-term effects evident during adolescence.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jerrold S Meyer
- Department of Psychological & Brain Sciences, University of Massachusetts, 441 Tobin Hall, Amherst, MA, 01003, USA
| | - Mark Goodman
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
2
|
Fowler N, Mikhail ME, Neale M, Keel PK, Katzman DK, Sisk CL, Burt SA, Klump KL. Between- and within-person effects of stress on emotional eating in women: a longitudinal study over 49 days. Psychol Med 2023; 53:5167-5176. [PMID: 37650340 PMCID: PMC10471857 DOI: 10.1017/s0033291722002185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/24/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Stress is associated with binge eating and emotional eating (EE) cross-sectionally. However, few studies have examined stress longitudinally, limiting understanding of how within-person fluctuations in stress influence EE over time and whether stress is a risk factor or consequence of EE. Additionally, little is known regarding how the biological stress response relates to EE. METHODS We used an intensive, longitudinal design to examine between-person and within-person effects of major life stress, daily stress, and cortisol on EE in a population-based sample of women (N = 477; ages 15-30; M = 21.8; s.d. = 3.0) from the Michigan State University Twin Registry. Participants reported past year major life stress, then provided daily ratings of EE and stress for 49 consecutive days. Hair cortisol concentration (HCC) was collected as a longitudinal biological stress measure. RESULTS Women reported greater EE when they experienced greater mean stress across days (between-person effects) or greater stress relative to their own average on a given day (within-person effects). Daily stress was more strongly associated with EE than major life stress. However, the impact of daily stress on EE was amplified in women with greater past year major life stress. Finally, participants with lower HCC had increased EE. CONCLUSIONS Findings confirm longitudinal associations between stress and EE in women, and highlight the importance of within-person shifts in stress in EE risk. Results also highlight HCC as a novel biological stress measure that is significantly associated with EE and may overcome limitations of prior physiological stress response indicators.
Collapse
Affiliation(s)
- Natasha Fowler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Megan E. Mikhail
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Neale
- Department of Psychiatry, Human Genetics, and Psychology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pamela K. Keel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Debra K. Katzman
- Division of Adolescent Medicine, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl L. Sisk
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - S. Alexandra Burt
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelly L. Klump
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Kovacs-Balint ZA, Raper J, Richardson R, Gopakumar A, Kettimuthu KP, Higgins M, Feczko E, Earl E, Ethun KF, Li L, Styner M, Fair D, Bachevalier J, Sanchez MM. The role of puberty on physical and brain development: A longitudinal study in male Rhesus Macaques. Dev Cogn Neurosci 2023; 60:101237. [PMID: 37031512 PMCID: PMC10114189 DOI: 10.1016/j.dcn.2023.101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
This study examined the role of male pubertal maturation on physical growth and development of neurocircuits that regulate stress, emotional and cognitive control using a translational nonhuman primate model. We collected longitudinal data from male macaques between pre- and peri-puberty, including measures of physical growth, pubertal maturation (testicular volume, blood testosterone -T- concentrations) and brain structural and resting-state functional MRI scans to examine developmental changes in amygdala (AMY), hippocampus (HIPPO), prefrontal cortex (PFC), as well as functional connectivity (FC) between those regions. Physical growth and pubertal measures increased from pre- to peri-puberty. The indexes of pubertal maturation -testicular size and T- were correlated at peri-puberty, but not at pre-puberty (23 months). Our findings also showed ICV, AMY, HIPPO and total PFC volumetric growth, but with region-specific changes in PFC. Surprisingly, FC in these neural circuits only showed developmental changes from pre- to peri-puberty for HIPPO-orbitofrontal FC. Finally, testicular size was a better predictor of brain structural maturation than T levels -suggesting gonadal hormones-independent mechanisms-, whereas T was a strong predictor of functional connectivity development. We expect that these neural circuits will show more drastic pubertal-dependent maturation, including stronger associations with pubertal measures later, during and after male puberty.
Collapse
Affiliation(s)
- Z A Kovacs-Balint
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - J Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Dept. of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - R Richardson
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - A Gopakumar
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - K P Kettimuthu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - M Higgins
- Office of Nursing Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA
| | - E Feczko
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN 55414, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| | - E Earl
- Dept. of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - K F Ethun
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - L Li
- Dept. of Pediatrics, Emory University, Atlanta, GA 30322, USA; Marcus Autism Center; Children's Healthcare of Atlanta, GA, USA
| | - M Styner
- Dept. of Psychiatry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - D Fair
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN 55414, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| | - J Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - M M Sanchez
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Dept. of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Dos Reis LFC, Cerdeira CD, Gagliano GS, de Figueiredo ABT, Ferreira JH, Castro AP, Souza RLM, Marques MJ. Alternate-day fasting, a high-sucrose/caloric diet and praziquantel treatment influence biochemical and behavioral parameters during Schistosoma mansoni infection in male BALB/c mice. Exp Parasitol 2022; 240:108316. [PMID: 35787384 DOI: 10.1016/j.exppara.2022.108316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Schistosoma mansoni-induced granulomas result in severe damage to the host's liver, as well as neurological and metabolic disorders. We evaluated the biochemical and behavioral changes during schistosomiasis under three diet protocols: ad libitum (AL), alternate-day fasting (ADF) and a high-sucrose/caloric diet (HSD). Healthy male BALB/c mice were divided into noninfected, matched infected and infected/treated [praziquantel (PZQ)] groups. Caloric intake and energy efficiency coefficients associated with diets were measured. Behavioral (exploratory and locomotor) and biochemical (glucose, triglycerides, total cholesterol, AST, ALT, ALP, and γ-GT) tests and histological analysis were performed. Fifteen weeks postinfection, HSD and PZQ promoted weight gain, with higher caloric consumption than ADF (p < 0.05), reflecting serum glucose levels and lipid profiles. HSD and PZQ prevented liver dysfunction (AST and ALT) and significantly prevented increases in granuloma area (p < 0.05). HSD and PZQ also significantly improved mouse physical performance in exploratory and locomotor behavior (p < 0.05), reversing the impaired motivation caused by infection. These findings showed that ADF worsened the course of S. mansoni infection, while HSD and PZQ, even with synergistic effects, prevented and/or attenuated biochemical and behavioral impairment from infection.
Collapse
Affiliation(s)
- Luis F C Dos Reis
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Cláudio D Cerdeira
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil.
| | - Guilherme S Gagliano
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, UNIFAL-MG, Alfenas, Minas Gerais (MG), Brazil
| | - Ana B T de Figueiredo
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Juliana H Ferreira
- Department of Physiology, University of Sao Paulo, São Paulo (SP), Brazil
| | - Aline P Castro
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Raquel L M Souza
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Marcos J Marques
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| |
Collapse
|
5
|
Simons ND, Michopoulos V, Wilson M, Barreiro LB, Tung J. Agonism and grooming behaviour explain social status effects on physiology and gene regulation in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210132. [PMID: 35000435 PMCID: PMC8743879 DOI: 10.1098/rstb.2021.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Variation in social status predicts molecular, physiological and life-history outcomes across a broad range of species, including our own. Experimental studies indicate that some of these relationships persist even when the physical environment is held constant. Here, we draw on datasets from one such study-experimental manipulation of dominance rank in captive female rhesus macaques-to investigate how social status shapes the lived experience of these animals to alter gene regulation, glucocorticoid physiology and mitochondrial DNA phenotypes. We focus specifically on dominance rank-associated dimensions of the social environment, including both competitive and affiliative interactions. Our results show that simple summaries of rank-associated behavioural interactions are often better predictors of molecular and physiological outcomes than dominance rank itself. However, while measures of immune function are best explained by agonism rates, glucocorticoid-related phenotypes tend to be more closely linked to affiliative behaviour. We conclude that dominance rank serves as a useful summary for investigating social environmental effects on downstream outcomes. Nevertheless, the behavioural interactions that define an individual's daily experiences reveal the proximate drivers of social status-related differences and are especially relevant for understanding why individuals who share the same social status sometimes appear physiologically distinct. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Noah D. Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis B. Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1
| |
Collapse
|
6
|
Nechipurenko YD, Reyes RCG, Caceres JLH. Hypothesis on Pollution of Neuronal Membranes, Epilepsy and Ketogenic Diet. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Chen EY, Eickhoff SB, Giovannetti T, Smith DV. Obesity is associated with reduced orbitofrontal cortex volume: A coordinate-based meta-analysis. Neuroimage Clin 2020; 28:102420. [PMID: 32961404 PMCID: PMC7509458 DOI: 10.1016/j.nicl.2020.102420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Neural models of obesity vary in their focus upon prefrontal and striatal differences. Animal and human studies suggest that differential functioning of the orbitofrontal cortex is associated with obesity. However, meta-analyses of functional neuroimaging studies have not found a clear relationship between the orbitofrontal cortex and obesity. Meta-analyses of structural imaging studies of obesity have shown mixed findings with regards to an association with reduced orbitofrontal cortex gray matter volume. To clarify these findings, we conducted a meta-analysis of 25 voxel-based morphometry studies, and found that greater body mass index is associated with decreased gray matter volume in the right orbitofrontal cortex (Brodmanns' areas 10 and 11), where family-wise corrected p < .05, N = 7,612. Use of the right orbitofrontal cortex as a seed in a Neurosynth Network Coactivation analysis showed that this region is associated with activity in the left frontal medial cortex, left temporal lobe, right precuneus cortex, posterior division of the left middle temporal gyrus, and right frontal pole. When Neurosynth Network Coactivation results were submitted as regions of interest in the Human Connectome Project data, we found that greater body mass index was associated with greater activity in left frontal medial cortex response to the Gambling Task, where p < .05, although this did not survive Bonferroni-correction. Our findings highlight the importance of the orbitofrontal cortex structure and functioning in neural models of obesity. Exploratory analyses suggest more studies are needed that examine the functional significance of reduced orbitofrontal cortex gray matter volume in obesity, and the effect of age and weight changes on this relationship using longitudinal designs.
Collapse
Affiliation(s)
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany
| | | | | |
Collapse
|
8
|
Godfrey JR, Pincus M, Kovacs-Balint Z, Feczko E, Earl E, Miranda-Dominguez O, Fair DA, Jones SR, Locke J, Sanchez MM, Wilson ME, Michopoulos V. Obesogenic diet-associated C-reactive protein predicts reduced central dopamine and corticostriatal functional connectivity in female rhesus monkeys. Brain Behav Immun 2020; 88:166-173. [PMID: 32240763 PMCID: PMC7416544 DOI: 10.1016/j.bbi.2020.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
Alterations in dopamine (DA) signaling and reductions in functional connectivity (FC; a measure of temporal correlations of activity between different brain regions) within dopaminergic reward pathways are implicated in the etiology of psychopathology and have been associated with increased concentrations of inflammatory markers, including C-reactive protein. Peripheral and central inflammatory cytokines that have been shown to disrupt DA signaling and corticostriatal FC are associated with C-reactive protein, an acute phase reactant that is used translationally as a marker of systemic inflammation. One factor that can significantly increase systemic inflammation to produce neuroadaptations in reward pathways is a diet that results in fat mass accumulation (e.g. obesogenic diet). The current study in female rhesus monkeys maintained in a standard laboratory chow (n = 18) or on obesogenic diet (n = 16) for 12-months tested the hypothesis that an obesogenic diet would alter central DA and homovanillic acid (HVA) concentrations, and be associated with increased CRP concentrations and decreased FC between corticostriatal regions at 12-months following dietary intervention. We specifically assessed FC between the nucleus accumbens (NAcc) and two sub-regions of the prefrontal cortex (PFC) previously associated with CRP concentrations, the ventromedial PFC (vmPFC) and the orbitofrontal cortex (OFC), which are also involved in emotional and motivational salience assessment, and in goal-directed behavior, impulse control and the salience/value of food, respectively. Results showed that CSF DA concentrations were decreased (p = 0.002), HVA:DA ratios were increased (p = 0.016), and body mass index was increased (p = 0.047) over the 12-months of consuming an obesogenic diet. At 12-months, females maintained in the obesogenic diet exhibited higher CRP concentrations than females consuming chow-only (p = 0.008). Linear regression analyses revealed significant CRP by dietary condition interactions on DA concentrations (β = -5.10; p = 0.017) and HVA:DA ratios (β = 5.14; p = 0.029). Higher CRP concentrations were associated with lower CSF DA concentrations (r = -0.69; p = 0.004) and greater HVA:DA ratios only in females maintained in the obesogenic dietary condition (r = 0.58; p = 0.024). Resting-state magnetic resonance neuroimaging (rs-fMRI) in a subset of females from each diet condition (n = 8) at 12-months showed that higher CRP concentrations were associated decreased FC between the NAcc and subregions of the prefrontal cortex (PFC; p's < 0.05). Decreased FC between the NAcc and PFC subregions were also associated with lower concentrations of DA and greater HVA:DA ratios (p's < 0.05). Overall, these data suggest that increased inflammatory signaling driving heightened CRP levels may mediate the adverse consequences of obesogenic diets on DA neurochemistry and corticostriatal connectivity.
Collapse
Affiliation(s)
| | | | | | - Eric Feczko
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Eric Earl
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | | - Damien A. Fair
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Atlanta, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Atlanta, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
9
|
Vega-Torres JD, Azadian M, Rios-Orsini RA, Reyes-Rivera AL, Ontiveros-Angel P, Figueroa JD. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front Neurosci 2020; 14:562. [PMID: 32694970 PMCID: PMC7338851 DOI: 10.3389/fnins.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that diet-induced obesity disrupts corticolimbic circuits underlying emotional regulation. Studies directed at understanding how obesity alters brain and behavior are easily confounded by a myriad of complications related to obesity. This study investigated the early neurobiological stress response triggered by an obesogenic diet. Furthermore, this study directly determined the combined impact of a short-term obesogenic diet and adolescence on critical behavioral and molecular substrates implicated in emotion regulation and stress. METHODS Adolescent (postnatal day 31) or adult (postnatal day 81) Lewis rats were fed for 1 week with an experimental Western-like high-saturated fat diet (WD, 41% kcal from fat) or a matched control diet (CD, 13% kcal from fat). We used the acoustic fear-potentiated startle (FPS) paradigm to determine the effects of the WD on cued fear conditioning and fear extinction. We used c-Fos mapping to determine the functional influence of the diet and stress on corticolimbic circuits. RESULTS We report that 1-week WD consumption was sufficient to induce fear extinction deficits in adolescent rats, but not in adult rats. We identify fear-induced alterations in corticolimbic neuronal activation and demonstrate increased prefrontal cortex CRHR1 messenger RNA (mRNA) levels in the rats that consumed the WD. CONCLUSION Our findings demonstrate that short-term consumption of an obesogenic diet during adolescence heightens behavioral and molecular vulnerabilities associated with risk for anxiety and stress-related disorders. Given that fear extinction promotes resilience and that fear extinction principles are the foundation of psychological treatments for posttraumatic stress disorder (PTSD), understanding how obesogenic environments interact with the adolescent period to affect the acquisition and expression of fear extinction memories is of tremendous clinical relevance.
Collapse
Affiliation(s)
- Julio D. Vega-Torres
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matine Azadian
- Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Perla Ontiveros-Angel
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
10
|
Reding KM, Styner MM, Wilson ME, Toufexis D, Sanchez MM. Social subordination alters estradiol-induced changes in cortico-limbic brain volumes in adult female rhesus monkeys. Psychoneuroendocrinology 2020; 114:104592. [PMID: 32023501 PMCID: PMC7178918 DOI: 10.1016/j.psyneuen.2020.104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
Women have a higher risk of developing stress-related disorders compared to men and the experience of a stressful life event is a potent risk-factor. The rodent literature suggests that chronic exposure to stressors as well as 17β-estradiol (E2) can result in alterations in neuronal structure in corticolimbic brain regions, however the translation of these data to humans is limited by the nature of the stressor experienced and issues of brain homology. To address these limitations, we used a well-validated rhesus monkey model of social subordination to examine effects of E2 treatment on subordinate (high stress) and dominant (low stress) female brain structure, including regional gray matter and white matter volumes using structural magnetic resonance imaging. Our results show that one month of E2 treatment in ovariectomized females, compared to control (no) treatment, decreased frontal cortex gray matter volume regardless of social status. In contrast, in the cingulate cortex, an area associated with stress-induced emotional processing, E2 decreased grey matter volume in subordinates but increased it in dominant females. Together these data suggest that physiologically relevant levels of E2 alter cortical gray matter volumes in females after only one month of treatment and interact with chronic social stress to modulate these effects on brain structure.
Collapse
Affiliation(s)
| | - Martin M. Styner
- Department of Psychiatry, University of North Carolina – Chapel Hill
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Emory University,,Department of Psychiatry & Behavioral Sciences, Emory University
| | - Donna Toufexis
- Department of Psychological Science, University of Vermont
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Emory University,,Department of Psychiatry & Behavioral Sciences, Emory University
| |
Collapse
|
11
|
Deng W, Guan G, Xiao C, Qu G, Xue J, Qin C, Han H, Wang Y. Construction of a comprehensive observer-based scale assessing aging-related health and functioning in captive rhesus macaques. Aging (Albany NY) 2019; 11:6892-6903. [PMID: 31498777 PMCID: PMC6756902 DOI: 10.18632/aging.102219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
Abstract
Aging-related health and functioning are difficult to quantify in humans and nonhuman primates. We constructed an observer-based scale for daily application in assessing the aging-related health and functioning of rhesus macaques. Ten items referring to an aging appearance, musculoskeletal aging and aging-related eating behavior were selected through a panel consensus. The Aging-related Health and Functioning Scale (AHFS) was constructed based on these scored items form 57 healthy rhesus macaques. High reliability of the AHFS was shown based on Cronbach’s alpha coefficient (0.877). The structure of the AHFS was validated by three exploratory factors. The largest factor, whose four components were dietary uptake, iliac muscle mass, hair condition and fragility, and sex, explained 50.5% of the variation in aging-related health and functioning scores. The second factor, involving age, tooth loss and tooth wear, explained 15.5% of the variation. The lowest-ranking factor comprised only facial redness and accounted for 10% of the variation. A hierarchical cluster analysis validated the good applicability of the scale in distinct samples. From these scale-scored results, complicated aging phenomena observed in humans, including the sex-survival paradox and the calorie-related health-survival paradox, were both demonstrated in rhesus macaques. Therefore, the AHFS provides a valuable approach for aging-related research.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Guoying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chong Xiao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Guangjin Qu
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhong Wang
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Lee YH, Kim M, Lee M, Shin D, Ha DS, Park JS, Kim YB, Choi HJ. Food Craving, Seeking, and Consumption Behaviors: Conceptual Phases and Assessment Methods Used in Animal and Human Studies. J Obes Metab Syndr 2019; 28:148-157. [PMID: 31583379 PMCID: PMC6774451 DOI: 10.7570/jomes.2019.28.3.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
What drives us to eat? It is one of the most fundamental questions in the obesity research field which have been investigated for centuries. Numerous novel in vivo technologies in the neuroscience field allows us to reevaluate the multiple components and phases of food-related behaviors. Focused on the cognitive, executive, behavioral and temporal aspects, food-related behaviors can be distinguished into appetitive phase (food craving→food seeking) and consummatory phase (food consumption). Food craving phase is an internal state or stage in which the animal has the motivation to eat the food but there is no actual food specific behaviors or actions. Food seeking phase entails repeated behaviors with a food searching purpose until the animal discovers the food (or food-related cue) and the approach behavior stage after the discovery of food. Food consumption phase is the step that the animal grabs, chews and intake the food. This review will specifically focus on characteristics and evaluation methods for each phase of food-related behavior in rodent, non-human primates and human.
Collapse
Affiliation(s)
- Young Hee Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Meelim Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Miwoo Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Dongju Shin
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Soo Ha
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Joon Seok Park
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - You Bin Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon,
Korea
| |
Collapse
|
13
|
Kovacs-Balint Z, Feczko E, Pincus M, Earl E, Miranda-Dominguez O, Howell B, Morin E, Maltbie E, LI L, Steele J, Styner M, Bachevalier J, Fair D, Sanchez M. Early Developmental Trajectories of Functional Connectivity Along the Visual Pathways in Rhesus Monkeys. Cereb Cortex 2019; 29:3514-3526. [PMID: 30272135 PMCID: PMC6644858 DOI: 10.1093/cercor/bhy222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/23/2018] [Accepted: 08/19/2018] [Indexed: 12/30/2022] Open
Abstract
Early social interactions shape the development of social behavior, although the critical periods or the underlying neurodevelopmental processes are not completely understood. Here, we studied the developmental changes in neural pathways underlying visual social engagement in the translational rhesus monkey model. Changes in functional connectivity (FC) along the ventral object and motion pathways and the dorsal attention/visuo-spatial pathways were studied longitudinally using resting-state functional MRI in infant rhesus monkeys, from birth through early weaning (3 months), given the socioemotional changes experienced during this period. Our results revealed that (1) maturation along the visual pathways proceeds in a caudo-rostral progression with primary visual areas (V1-V3) showing strong FC as early as 2 weeks of age, whereas higher-order visual and attentional areas (e.g., MT-AST, LIP-FEF) show weak FC; (2) functional changes were pathway-specific (e.g., robust FC increases detected in the most anterior aspect of the object pathway (TE-AMY), but FC remained weak in the other pathways (e.g., AST-AMY)); (3) FC matures similarly in both right and left hemispheres. Our findings suggest that visual pathways in infant macaques undergo selective remodeling during the first 3 months of life, likely regulated by early social interactions and supporting the transition to independence from the mother.
Collapse
Affiliation(s)
- Z Kovacs-Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Feczko
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - M Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - O Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - B Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Maltbie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - L LI
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - J Steele
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - M Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - J Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - D Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Wakeford AG, Morin EL, Bramlett SN, Howell LL, Sanchez MM. A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 2018; 9:188-198. [PMID: 30450384 PMCID: PMC6236515 DOI: 10.1016/j.ynstr.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023] Open
Abstract
Adolescence represents a developmental stage in which initiation of drug use typically occurs and is marked by dynamic neurobiological changes. These changes present a sensitive window during which perturbations to normative development lead to alterations in brain circuits critical for stress and emotional regulation as well as reward processing, potentially resulting in an increased susceptibility to psychopathologies. The occurrence of early life stress (ELS) is related to a greater risk for the development of substance use disorders (SUD) during adolescence. Studies using nonhuman primates (NHP) are ideally suited to examine how ELS may alter the development of neurobiological systems modulating the reinforcing effects of drugs, given their remarkable neurobiological, behavioral, and developmental homologies to humans. This review examines NHP models of ELS that have been used to characterize its effects on sensitivity to drug reinforcement, and proposes future directions using NHP models of ELS and drug abuse in an effort to develop more targeted intervention and prevention strategies for at risk clinical populations. ELS has long-lasting neurobiological and behavioral consequences. ELS is a major risk factor for the initiation of adolescent drug use. Sex differences are apparent in the consequences of ELS, including drug use. Nonhuman primate models of ELS are critical for understanding ELS effects on neurobiology and risk for adolescent drug use.
Collapse
Affiliation(s)
- Alison G.P. Wakeford
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
- Corresponding author. Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States.
| | - Elyse L. Morin
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Sara N. Bramlett
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Leonard L. Howell
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Mar M. Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| |
Collapse
|