1
|
Mallick S, Kenney E, Eleftherianos I. The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase. Int J Mol Sci 2024; 25:7970. [PMID: 39063211 PMCID: PMC11277151 DOI: 10.3390/ijms25147970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-β (TGF-β) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-β superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-β pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease.
Collapse
Affiliation(s)
| | | | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA; (S.M.); (E.K.)
| |
Collapse
|
2
|
Matuska-Łyżwa J, Duda S, Nowak D, Kaca W. Impact of Abiotic and Biotic Environmental Conditions on the Development and Infectivity of Entomopathogenic Nematodes in Agricultural Soils. INSECTS 2024; 15:421. [PMID: 38921136 PMCID: PMC11204376 DOI: 10.3390/insects15060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Many organisms, including beneficial entomopathogenic nematodes (EPNs), are commonly found in the soil environment. EPNs are used as biopesticides for pest control. They have many positive characteristics and are able to survive at sites of application for a long time, producing new generations of individuals. The occurrence of populations depends on many environmental parameters, such as temperature, moisture, soil texture, and pH. Extreme temperatures result in a decrease in the survival rate and infectivity of EPNs. Both high humidity and acidic soil pH reduce populations and disrupt the biological activity of EPNs. Nematodes are also exposed to anthropogenic agents, such as heavy metals, oil, gasoline, and even essential oils. These limit their ability to move in the soil, thereby reducing their chances of successfully finding a host. Commonly used fertilizers and chemical pesticides are also a challenge. They reduce the pathogenicity of EPNs and negatively affect their reproduction, which reduces the population size. Biotic factors also influence nematode biology. Fungi and competition limit the reproduction and survival of EPNs in the soil. Host availability enables survival and affects infectivity. Knowledge of the influence of environmental factors on the biology of EPNs will allow more effective use of the insecticidal capacity of these organisms.
Collapse
Affiliation(s)
- Joanna Matuska-Łyżwa
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland; (S.D.); (D.N.); (W.K.)
| | | | | | | |
Collapse
|
3
|
Li J, Fu N, Ge S, Ren L, Luo Y. Physiological Measurements and Transcriptomics Reveal the Fitness Costs of Monochamus saltuarius to Bursaphelenchus xylophilus. Int J Mol Sci 2024; 25:4906. [PMID: 38732123 PMCID: PMC11084816 DOI: 10.3390/ijms25094906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.
Collapse
Affiliation(s)
- Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Ningning Fu
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China;
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| |
Collapse
|
4
|
Jiao Z, Chen M, Zhao W, Wu Y, Guo G. Serine protease mediates Ovomermis sinensis-inhibited host immune responses by inducing apoptosis: implications for successful parasitism and host mortality. PEST MANAGEMENT SCIENCE 2024; 80:1968-1980. [PMID: 38105114 DOI: 10.1002/ps.7931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mermithid nematodes are entomopathogens that parasitize and kill insect hosts and are used for biological control. It is widely believed that mermithid nematodes kill their host upon nematode emergence, unlike other parasites that depend on virulence factors. In this study, we disproved this theory by demonstrating that the mermithid nematode Ovomermis sinensis mediates host mortality by serine protease-induced apoptosis. RESULTS Successful parasitism of O. sinensis increased with the infection rate, and the inhibition of host immunity by O. sinensis increased with the parasitic load. A serine protease was identified from the host hemolymph. This protease belongs to the trypsin-like serine protease family, which is an apoptosis-inducing serine protease. Specifically, Os-sp was highly expressed only during the parasitic stage and could be induced by host hemocytes and the fat body. Importantly, host immune effectors (melanization, phenoloxidase activity, and encapsulation) were suppressed by the recombinant protein rOs-sp that induced apoptosis of hemocytes and fat body in a dose-dependent manner, which contributes to host death. CONCLUSION Serine protease mediates O. sinensis-inhibited host immune responses by inducing apoptosis that is lethal to the insect host. Our findings have broader implications for understanding the mechanism of successful parasitism and killing of host by nematodes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Mingming Chen
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yuanming Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Huynh T, O'Halloran D, Hawdon J, Eleftherianos I. The nematode parasite Steinernema hermaphroditum is pathogenic to Drosophila melanogaster larvae without activating their immune response. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000944. [PMID: 37822685 PMCID: PMC10562934 DOI: 10.17912/micropub.biology.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Entomopathogenic nematodes are commonly used to control insect pest populations in the field. They also contribute substantially to understanding the molecular basis of nematode pathogenicity and insect anti-nematode immunity. Here, we tested the effect of the entomopathogenic nematode Steinernema hermaphroditum on the survival and immune signaling regulation of Drosophila melanogaster wild type larvae. Our results indicate that S. hermaphroditum infective juveniles are pathogenic toward D. melanogaster larvae, but they fail to activate certain immune pathway readout genes. These findings imply that S. hermaphroditum employs mechanisms that allow these parasitic nematodes to interfere with the D. melanogaster immune system.
Collapse
Affiliation(s)
- Tien Huynh
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Damien O'Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Stephano MA, Mayengo MM, Irunde JI, Kuznetsov D. Sensitivity analysis and parameters estimation for the transmission of lymphatic filariasis. Heliyon 2023; 9:e20066. [PMID: 37810166 PMCID: PMC10559806 DOI: 10.1016/j.heliyon.2023.e20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Lymphatic filariasis is a neglected tropical disease which poses public health concern and socio-economic challenges in developing and low-income countries. In this paper, we formulate a deterministic mathematical model for transmission dynamics of lymphatic filariasis to generate data by white noise and use least square method to estimate parameter values. The validity of estimated parameter values is tested by Gaussian distribution method. The residuals of model outputs are normally distributed and hence can be used to study the dynamics of Lymphatic filariasis. After deriving the basic reproduction number, R 0 by the next generation matrix approach, the Partial Rank Correlation Coefficient is employed to explore which parameters significantly affect and most influential to the model outputs. The analysis for equilibrium states shows that the Lymphatic free equilibrium is globally asymptotically stable when the basic reproduction number is less a unity and endemic equilibrium is globally asymptotically stable when R 0 ≥ 1 . The findings reveal that rate of human infection, recruitment rate of mosquitoes increase the average new infections for Lymphatic filariasis. Moreover, asymptomatic individuals contribute significantly in the transmission of Lymphatic filariasis.
Collapse
Affiliation(s)
- Mussa A. Stephano
- School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O.BOX 447 Arusha, Tanzania
- Mkwawa University College of Education, Department of Mathematics, Physics and Informatics, P.O.Box 2513, Iringa, Tanzania
| | - Maranya M. Mayengo
- School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O.BOX 447 Arusha, Tanzania
| | - Jacob I. Irunde
- Mkwawa University College of Education, Department of Mathematics, Physics and Informatics, P.O.Box 2513, Iringa, Tanzania
| | - Dmitry Kuznetsov
- School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O.BOX 447 Arusha, Tanzania
| |
Collapse
|
7
|
Li F, Zhu Q, Dai M, Shu Q, Li X, Guo X, Wang Y, Wei J, Liu W, Dai Y, Li B. Tachinid parasitoid Exorista japonica affects the utilization of diet by changing gut microbial composition in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22011. [PMID: 36938839 DOI: 10.1002/arch.22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 05/16/2023]
Abstract
Changes in both intake and digestion of feed have been demonstrated in the host following parasitization. However, its regulatory mechanism has not been clarified. In this study, silkworms and Exorista japonica were used as research objects to analyze the effect of parasitism on the midgut immune system of the silkworm. After being parasitized, the expressions of antimicrobial peptide (AMP) genes of silkworms showed a fluctuating trend of first upregulation and then downregulation, while phenoloxidase and lysozyme activities were inhibited. To study the possible impact of the downregulation of AMP genes on intestinal microorganisms, the characteristics of the intestinal microbial population of silkworms on the third day of parasitism were analyzed. The relative abundance of Firmicutes, Proteobacteria, and Bacteroidota decreased, while that of Actinobacteriota increased. The increased abundance of conditionally pathogenic bacteria Serratia and Staphylococcus might lead to a decrease in the amount of silkworm ingestion. Meanwhile, the abundance of Acinetobacter, Bacillus, Pseudomonas, and Enterobacter promotes an increase in the digestion of nutrients. This study indicated that the imbalance of intestinal microbial homeostasis caused by parasitism may affect the absorption and digestion of nutrients by the host. Collectively, our findings provided a new clue for further exploring the mechanism of nutrient transport among the host, parasitoid, and intestinal microorganisms.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Liu
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Yan Dai
- Suzhou Taihu Snow Silk Co., Ltd, Suzhou, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
10
|
Sun Q, Zhang X, Ouyang Y, Yu P, Man Y, Guo S, Liu S, Chen Y, Wang Y, Tan X. Appressoria Formation in Phytopathogenic Fungi Suppressed by Antimicrobial Peptides and Hybrid Peptides from Black Soldier Flies. Genes (Basel) 2023; 14:genes14051096. [PMID: 37239456 DOI: 10.3390/genes14051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 μM, 43 μM, and 43 μM for M. oryzae, while 51 μM, 49 μM, and 44 μM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 μM and 22 μM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.
Collapse
Affiliation(s)
- Qianlong Sun
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Ying Ouyang
- College of Plant Science, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Pingzhong Yu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yilong Man
- Agricultural Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Sizhen Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
11
|
Li ET, Wu HJ, Wang ZM, Li KB, Zhang S, Cao YZ, Yin J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. PEST MANAGEMENT SCIENCE 2023; 79:1660-1673. [PMID: 36565065 DOI: 10.1002/ps.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combining the entomopathogenic nematode (EPN), Heterorhabditis beicherriana LF strain, and Bacillus thuringiensis (Bt) HBF-18 strain is a practical strategy to manage the larvae of Holotrichia parallela Motschulsky (white grubs). However, the mechanisms underlying the larval defense response to this combined biocontrol strategy are unknown. RESULTS The activities of some antioxidant enzymes (SOD, POD, CAT) and some detoxifying enzymes (AChE, P-450, CarE, GST) in grubs showed an activation-inhibition trend throughout the EPN-Bt exposure time course. Eight potentially key antioxidant and detoxifying enzyme genes in response to EPN-Bt infection were identified from the midgut of grubs through RNA sequencing. After silencing CAT, CarE18, and GSTs1, the enzyme activities were significantly decreased by 30.29%, 68.80%, and 34.63%, respectively. Meanwhile, the mortality of grubs was increased by 18.40%, 46.30%, and 42.59% after exposure to EPN-Bt for 1 day. Interestingly, the PI3K/Akt signaling pathway was significantly enriched in KEGG enrichment analysis, and the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), cap 'n' collar isoform-C (CncC), kelch-like ECH-associated protein 1 (Keap1), and CarE18 were all up-regulated when exposed to EPN-Bt for 1 day. Furthermore, RNAi-mediated PI3K silencing showed a similar down-regulated trend between PI3K/Akt/CncC and CarE18. Moreover, silencing PI3K rendered grubs more susceptible to EPN-Bt and accelerated symbiotic bacteria multiplication in grubs. CONCLUSION These results suggest that the PI3K/Akt/CncC pathway mediates the expression of CarE18 and participates in the defense response of H. parallela larvae against EPN-Bt infection. Our data provide valuable insights into the design of appropriate management strategies for this well-known agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Ardpairin J, Subkrasae C, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Entomopathogenic nematodes isolated from agricultural areas of Thailand and their activity against the larvae of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Acta Trop 2023; 240:106842. [PMID: 36702446 DOI: 10.1016/j.actatropica.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis have been considered to be effective biological control agents for several insects. In this study, we isolated and identified EPNs from soil samples in agricultural areas of northern Thailand and evaluated their efficacy for controlling larvae of three mosquito vector species, Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. A total of 51 of 1,000 soil samples were positive (5.1% prevalence) for EPNs, which were identified through sequencing of the rDNA and ITS to 37 Steinernema isolates (3.7%) and 14 Heterorhabditis isolates (1.4%). For the bioassay, the larvae of mosquitoes were exposed to Steinernema surkhetense (eALN6.3_TH), Steinernema lamjungense (eALN11.5_TH), Heterorhabditis indica (eACM14.2_TH) and Heterorhabditis bacteriophora (eALN18.2_TH). Heterorhabditis bacteriophora showed the highest efficacy against Ae. aegypti and Cx. quinquefasciatus. At 96 h after exposure, the mortality rates were 60.0 and 91.7%, respectively. The EPNs were observed in the dead mosquito larvae, which were mostly found in the thorax followed by the head and abdomen. Some EPNs were dead with melanization, and some were able to survive in the cavity of mosquito larvae. Our results show the low prevalence of EPN in agricultural areas of Thailand. Moreover, H. bacteriophora may be considered an alternative biocontrol agent for managing and controlling these vector mosquitoes.
Collapse
Affiliation(s)
- Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000 Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000 Thailand.
| |
Collapse
|
13
|
Sanda NB, Hou Y. The Symbiotic Bacteria- Xenorhabdus nematophila All and Photorhabdus luminescens H06 Strongly Affected the Phenoloxidase Activation of Nipa Palm Hispid, Octodonta nipae (Coleoptera: Chrysomelidae) Larvae. Pathogens 2023; 12:pathogens12040506. [PMID: 37111392 PMCID: PMC10142170 DOI: 10.3390/pathogens12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Symbiotic bacteria form a mutualistic relationship with nematodes and are pathogenic to many insect pests. They kill insects using various strategies to evade or suppress their humoral and cellular immunity. Here we evaluate the toxic effects of these bacteria and their secondary metabolites on the survival and phenoloxidase (PO) activation of Octodonta nipae larvae using biochemical and molecular methods. The results show P. luminescens H06 and X. nematophila All treatments caused significant reductions in the number of O. nipae larvae in a dose-dependent manner. Secondly, the O. nipae immune system recognizes symbiotic bacteria at early and late stages of infection via the induction of C-type lectin. Live symbiotic bacteria significantly inhibit PO activity in O. nipae whereas heat-treated bacteria strongly increase PO activity. Additionally, expression levels of four O. nipae proPhenoloxidase genes following treatment with P. luminescens H06 and X. nematophila All were compared. We found that the expression levels of all proPhenoloxidase genes were significantly down-regulated at all-time points. Similarly, treatments of O. nipae larvae with metabolites benzylideneacetone and oxindole significantly down-regulated the expression of the PPO gene and inhibited PO activity. However, the addition of arachidonic acid to metabolite-treated larvae restored the expression level of the PPO gene and increased PO activity. Our results provide new insight into the roles of symbiotic bacteria in countering the insect phenoloxidase activation system.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Gwarzo Road, Kano 3011, Nigeria
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Chu X, Jiang D, Yu L, Li M, Wu S, Zhang F, Hu X. Heterologous Expression and Bioactivity Determination of Monochamus alternatus Antibacterial Peptide Gene in Komagataella phaffii (Pichia pastoris). Int J Mol Sci 2023; 24:ijms24065421. [PMID: 36982491 PMCID: PMC10049621 DOI: 10.3390/ijms24065421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Insects have evolved to form a variety of complex natural compounds to prevent pathogen infection in the process of a long-term attack and defense game with various pathogens in nature. Antimicrobial Peptides (AMPs) are important effector molecules of the insect immune response to the pathogen invasion involved in bacteria, fungi, viruses and nematodes. The discovery and creation of new nematicides from these natural compounds is a key path to pest control. A total of 11 AMPs from Monochamus alternatus were classified into 3 categories, including Attacin, Cecropin and Defensin. Four AMP genes were successfully expressed by Komagataella phaffii KM71. The bioassay results showed that the exogenous expressed AMPs represented antimicrobial activity against Serratia (G−), Bacillus thuringiensis (G+) and Beauveria bassiana and high nematicide activity against Bursaphelenchus xylophilus. All four purified AMPs’ protein against B. xylophilus reached LC50 at 3 h (LC50 = 0.19 mg·mL−1 of MaltAtt-1, LC50 = 0.20 mg·mL−1 of MaltAtt-2 and MaltCec-2, LC50 = 0.25 mg·mL−1 of MaltDef-1). Furthermore, the AMPs could cause significant reduction of the thrashing frequency and egg hatching rate, and the deformation or fracture of the body wall of B. xylophilus. Therefore, this study is a foundation for further study of insect biological control and provides a theoretical basis for the research and development of new insecticidal pesticides.
Collapse
Affiliation(s)
- Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-18350068276
| |
Collapse
|
15
|
Trejo-Meléndez VJ, Méndez-López TT, Contreras-Garduño J. The Coincidental Evolution of Virulence Partially Explains the Virulence in a Generalist Entomopathogenic. Acta Parasitol 2023:10.1007/s11686-023-00663-4. [PMID: 36806112 DOI: 10.1007/s11686-023-00663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE The parasites' virulence is labile after jumping to a new host species, and it might derivate in gaining virulence against a new host as a side effect of living in a non-host environment (coincidental evolution of virulence hypothesis). METHODS To test this hypothesis, we monitored the experimental evolution of the Rhabditis regina nematode for over 290 generations (4 years) in three environments (strains): (1) the natural host, Phyllophaga polyphylla, (2) an alternate host, Tenebrio molitor, and (3) saprophytic medium (beef; the food that may provide evidence for the coincidental evolution of virulence). Each strain was exposed to P. polyphylla, T. molitor, or Galleria mellonella. We compared the host survival and immune response (proPO, PO, and lytic activity) of infected versus uninfected hosts. RESULTS The saprophytic nematodes gained virulence only against G. mellonella. However, the P. polyphylla strain was more effective in killing P. polyphylla than T. molitor, and the T. molitor strain was more effective against T. molitor than P. polyphylla. Additionally, one dauer larva was sufficient to kill the hosts. Finally, the immune response did not differ between the challenged and control groups. CONCLUSION The coincidental evolution of virulence partially explains our results, but they might also support the short-sighted hypothesis. Additionally, we found evidence for immunomodulation because nematodes passed unnoticed to the immune response. It is crucial to analyze the virulence of entomopathogens from the point of view of the evolution of virulence to be aware of potential scenarios that might limit biological control.
Collapse
Affiliation(s)
- Víctor José Trejo-Meléndez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, CDMX, Mexico
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, Mexico
| | - Texca T Méndez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, CDMX, Mexico
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, Mexico
| | - Jorge Contreras-Garduño
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
16
|
van Nouhuys S, Harris DC, Hajek AE. Population level interactions between an invasive woodwasp, an invasive nematode and a community of native parasitoids. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.96599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Parasitic nematodes and hymenopteran parasitoids have been introduced and used extensively to control invasive Eurasian Sirex noctilio woodwasps in pine plantations in the Southern Hemisphere where no members of this community are native. Sirex noctilio has more recently invaded North America where Sirex-associated communities are native. Sirex noctilio and its parasitic nematode, Deladenus siricidicola, plus six native hymenopteran woodwasp parasitoids in New York and Pennsylvania, were sampled from 204 pines in 2011–2019. Sirex noctilio had become the most common woodwasp in this region and the native parasitoids associated with the native woodwasps had expanded their host ranges to use this invader. We investigated the distributions of these species among occupied trees and the interactions between S. noctilio and natural enemies as well as among the natural enemies. Sirex noctilio were strongly aggregated, with a few of the occupied trees hosting hundreds of woodwasps. Nematode parasitism was positively associated with S. noctilio density, and negatively associated with the density of rhyssine parasitoids. Parasitism by the parasitoid Ibalia leucospoides was positively associated with host (S. noctilio) density, while parasitism by the rhyssine parasitoids was negatively associated with density of S. noctilio. Thus, most S. noctilio come from a few attacked trees in a forest, and S. noctilio from those high-density trees experienced high parasitism by both the invasive nematode and the most abundant native parasitoid, I. l. ensiger. There is little evidence for direct competition between the nematodes and parasitoids. The negative association occurring between rhyssine parasitoids and I. l. ensiger suggests rhyssines may suffer from competition with I. l. ensiger which parasitize the host at an earlier life stage. In addition to direct competition with the native woodwasp Sirex nigricornis for suitable larval habitat within weakened trees, the large S. noctilio population increases the parasitoid and nematode populations, which may increase parasitism of S. nigricornis.
Collapse
|
17
|
Xiao Z, Yao X, Bai S, Wei J, An S. Involvement of an Enhanced Immunity Mechanism in the Resistance to Bacillus thuringiensis in Lepidopteran Pests. INSECTS 2023; 14:151. [PMID: 36835720 PMCID: PMC9965922 DOI: 10.3390/insects14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.
Collapse
|
18
|
Li X, Zhang B, Zou J, Li Q, Liu J, Cai S, Akutse KS, You M, Lin S. Immune Responses and Transcriptomic Analysis of Nilaparvata lugens against Metarhizium anisopliae YTTR Mediated by Rice Ragged Stunt Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:345. [PMID: 36679058 PMCID: PMC9865581 DOI: 10.3390/plants12020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae YTTR could induce the expression changes of immune-related genes. However, most of the immune genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms -related genes' responses. In addition, the presence of RRSV could render the interplay between BPH and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune response mechanisms of RRSV-mediated BPH to M. anisopliae infection.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jiaxing Zou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Qianqian Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jianli Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Shouping Cai
- Fujian Key Laboratory of Forest Cultivation and Forest Products Processing and Utilization, Fujian Academy of Forestry, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
19
|
Hlávková D, Skoková Habuštová O, Půža V, Vinokurov K, Kodrík D. Role of adipokinetic hormone in the Colorado potato beetle, Leptinotarsa decemlineata infected with the entomopathogenic nematode Steinernema carpocapsae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109466. [PMID: 36108997 DOI: 10.1016/j.cbpc.2022.109466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The effects of the entomopathogenic nematode Steinernema carpocapsae on the Colorado potato beetle (CPB) Leptinotarsa decemlineata and the involvement of adipokinetic hormone (AKH) in the responsive reactions were examined in this study. It was observed that nematode application doubled the amount of AKH (Peram-CAH-I and Peram-CAH-II) in the central nervous system of L. decemlineata, indicating mobilization of anti-stress reactions in the body. Furthermore, the external co-application of Peram-CAH-II with the nematode significantly increased beetle mortality (5.6 and 1.8 times, 1 and 2 days after application, respectively). The mechanism underlying this phenomenon was investigated. As the effect on gut characteristics was equivocal, it was assumed that the nematodes profited from the observed mobilization of metabolites from the fat body into the Peram-CAH-II-induced hemolymph. This phenomenon supplied nematodes with a more nutrient-dense substrate on which they propagated. Furthermore, Peram-CAH-II lowered vitellogenin expression in the fat body, particularly in males, thus limiting the anti-pathogen defense capacity of the protein. However, there could be other possible mechanisms underpinning this chain of events. The findings could be theoretically intriguing but could also aid in developing real insect pest control methods in the future.
Collapse
Affiliation(s)
- Daniela Hlávková
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Oxana Skoková Habuštová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Vladimír Půža
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Konstantin Vinokurov
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Lalitha K, Nithya K, Bharathi BG, Venkatesan S, Shivakumar MS. Long-term storage does not affect the infectivity of entomopathogenic nematodes on insect hosts. Appl Microbiol Biotechnol 2022; 107:419-431. [DOI: 10.1007/s00253-022-12309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
|
21
|
Li S, Liu F, Kang Z, Li X, Lu Y, Li Q, Pang Y, Zheng F, Yin X. Cellular immune responses of the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae), to the entomopathogenic fungus, Beauveria bassiana (Hypocreales: Cordycipitaceae). J Invertebr Pathol 2022; 194:107826. [PMID: 36075444 DOI: 10.1016/j.jip.2022.107826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
The yellow peach moth (YPM), Conogethes punctiferalis, is a destructive insect pest of maize in eastern China and adapts to diverse environments, especially against pathogens. In insects, innate immunity comprising both humoral and cellular defense responses, is the primary defense against invading microbial pathogens. In this study, we identified five types of circulating hemocytes from the hemolymph of YPM larvae and analyzed their alterations and functions in immune responses to the infection of Beauveria bassiana, an entomopathogenic fungus infesting many lepidopteran species. The identified hemocytes included prohemocytes, plasmatocytes, granulocytes, spherulocytes and oenocytoids. Significant decreases of total and differential hemocyte counts were recorded over time in larvae, after they were injected with B. bassiana conidia. Additionally, hemocyte-mediated phagocytosis and nodulation were initiated in the hemolymph of larvae from the B. bassiana conidia challenge. The introduction of DEAE-Sepharose Fast Flow beads stained with Congo red also induced a strong encapsulation response in the larval hemolymph. Our observations unravel the occurrence of phagocytosis, nodulation and encapsulation in the hemocoel of YPM larvae to fight against the fungal infection, and offer the first insight into the YPM immune system.
Collapse
Affiliation(s)
- Shaohua Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Fanghua Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; College of Life Science, Hebei University, Baoding 071002, China
| | - Zhiwei Kang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; College of Life Science, Hebei University, Baoding 071002, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yunshun Pang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Fangqiang Zheng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| | - Xiangchu Yin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
22
|
F H Strassert J, Rodríguez-Rojas A, Kuropka B, Krahl J, Kaya C, Pulat HC, Nurel M, Saroukh F, Radek R. Nephridiophagids (Chytridiomycota) reduce the fitness of their host insects. J Invertebr Pathol 2022; 192:107769. [PMID: 35597279 DOI: 10.1016/j.jip.2022.107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Nephridiophagids are unicellular fungi (Chytridiomycota), which infect the Malpighian tubules of insects. While most life cycle features are known, the effects of these endobionts on their hosts remain poorly understood. Here, we present results on the influence of an infection of the cockroach Blattella germanica with Nephridiophaga blattellae (Ni = Nephridiophaga-infected) on physical, physiological, and reproductive fitness parameters. Since the gut nematode Blatticola blattae is a further common parasite of B. germanica, we included double infected cockroaches (N+Ni = nematode plus Ni) in selected experiments. Ni individuals had lower fat reserves and showed reduced mobility. The lifespan of adult hosts was only slightly affected in these individuals but significantly shortened when both Nephridiophaga and nematodes were present. Ni as well as N+Ni females produced considerably less offspring than parasite-free (P-free) females. Immune parameters such as the number of hemocytes and phenoloxidase activity were barely changed by Nephridiophaga and/or nematode infections, while the ability to detoxify pesticides decreased. Quantitative proteomics from hemolymph of P-free, Ni, and N+Ni populations revealed clear differences in the expression profiles. For Ni animals, for example, the down-regulation of fatty acid synthases corroborates our finding of reduced fat reserves. Our study clearly shows that an infection with Nephridiophaga (and nematodes) leads to an overall reduced host fitness.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Evolutionary and Integrative Ecology, Berlin, Germany.
| | - Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany; Internal Medicine - Vetmeduni Vienna, 1210 Vienna, Austria
| | - Benno Kuropka
- Protein Biochemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Joscha Krahl
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Cem Kaya
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Hakan-Can Pulat
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Mehmed Nurel
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Fatma Saroukh
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Renate Radek
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Swart Z, Duong TA, Wingfield BD, Postma A, Slippers B. The relevance of studying insect-nematode interactions for human disease. Pathog Glob Health 2022; 116:140-145. [PMID: 34726122 PMCID: PMC9090338 DOI: 10.1080/20477724.2021.1996796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Vertebrate-parasitic nematodes cause debilitating, chronic infections in millions of people worldwide. The burden of these so-called 'neglected tropical diseases' is often carried by poorer socioeconomic communities in part because research on parasitic nematodes and their vertebrate hosts is challenging and costly. However, complex biological and pathological processes can be modeled in simpler organisms. Here, we consider how insight into the interactions between entomopathogenic nematodes (EPN), their insect hosts and bacterial symbionts may reveal novel treatment targets for parasitic nematode infections. We argue that a combination of approaches that target nematodes, as well as the interaction of pathogens with insect vectors and bacterial symbionts, offer potentially effective, but underexplored opportunities.
Collapse
Affiliation(s)
- Zorada Swart
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Tuan A. Duong
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Alisa Postma
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| |
Collapse
|
24
|
Okakpu OK, Dillman AR. Review of the Role of Parasitic Nematode Excretory/Secretory Proteins in Host Immunomodulation. J Parasitol 2022; 108:199-208. [DOI: 10.1645/21-33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ogadinma K. Okakpu
- University of California, Riverside 900 University Avenue, Riverside, California 92521
| | - Adler R. Dillman
- University of California, Riverside 900 University Avenue, Riverside, California 92521
| |
Collapse
|
25
|
Subkrasae C, Ardpairin J, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Molecular identification and phylogeny of Steinernema and Heterorhabditis nematodes and their efficacy in controlling the larvae of Aedes aegypti, a major vector of the dengue virus. Acta Trop 2022; 228:106318. [PMID: 35063414 DOI: 10.1016/j.actatropica.2022.106318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is the mosquito vector of several arboviruses, especially the dengue virus. Aedes aegypti strain resistant to chemical insecticides have been reported worldwide. To tackle this, an entomopathogenic nematode (EPN) may be an alternative bio-control agent. To this end, this study aims to isolate, identify, and analyze the phylogeny of EPNs in Thailand and evaluate their efficacy for controlling the Ae. aegypti larvae. From 12 provinces in Thailand, soil samples were randomly collected, with 118 out of 1,100 them being positive for EPNs (10.73% prevalence) in genera Steinernema (4.46%) and Heterorhabditis (6.27%). Then, molecular discrimination of these two genus was performed based on the sequencing and phylogenetic analysis of the 28S rDNA and internal transcribed spacer regions. The most abundant species of EPN were Heterorhabditis indica, with minor species of Heterorhabditis sp. SGmg3, H. baujardi, S. surkhetense, S. kushidai, S. siamkayai, Steinernema sp. YNd80, Steinernema sp. YNc215, S. guangdongense, and S. huense. The larvicidal activity of five selected EPN isolates were tested against Ae. aegypti. Ten larvae of Ae. aegypti were incubated with different concentration (80, 160, 320, and 640 IJs/larva) of the infective juveniles of EPN in a 24-well and 6-well plates for 4 days. The mortality rates of the larvae were observed daily. Steinernema surkhetense (ePYO8.5_TH) showed the potential to kill mosquito larvae, with the highest mortality rate of 92 ± 9.37% and 89 ± 9.91% after it was treated with 640 IJs/larva in a 24-well plate and 1600 IJs/larva in a 6-well plate, respectively. There is an abundant distribution of EPNs across the country, and S. surkhetense ePYO8.5_TH may be used as a biocontrol agent against Ae. aegypti larvae.
Collapse
Affiliation(s)
- Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
26
|
Parihar RD, Dhiman U, Bhushan A, Gupta PK, Gupta P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front Microbiol 2022; 13:790339. [PMID: 35422783 PMCID: PMC9002308 DOI: 10.3389/fmicb.2022.790339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.
Collapse
Affiliation(s)
| | | | - Anil Bhushan
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Kumar Gupta
- Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Black JL, Clark MK, Sword GA. Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. PLoS One 2022; 17:e0263620. [PMID: 35134064 PMCID: PMC8824330 DOI: 10.1371/journal.pone.0263620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Insect immune responses to multiple pathogen groups including viruses, bacteria, fungi, and entomopathogenic nematodes have traditionally been documented in model insects such as Drosophila melanogaster, or medically important insects such as Aedes aegypti. Despite their potential importance in understanding the efficacy of pathogens as biological control agents, these responses are infrequently studied in agriculturally important pests. Additionally, studies that investigate responses of a host species to different pathogen groups are uncommon, and typically focus on only a single time point during infection. As such, a robust understanding of immune system responses over the time of infection is often lacking in many pest species. This study was conducted to understand how 3rd instar larvae of the major insect pest Helicoverpa zea responded through the course of an infection by four different pathogenic groups: viruses, bacteria, fungi, and entomopathogenic nematodes; by sampling at three different times post-inoculation. Physiological immune responses were assessed at 4-, 24-, and 48-hours post-infection by measuring hemolymph phenoloxidase concentrations, hemolymph prophenoloxidase concentrations, hemocyte counts, and encapsulation ability. Transcriptional immune responses were measured at 24-, 48-, and 72-hours post-infection by quantifying the expression of PPO2, Argonaute-2, JNK, Dorsal, and Relish. This gene set covers the major known immune pathways: phenoloxidase cascade, siRNA, JNK pathway, Toll pathway, and IMD pathway. Our results indicate H. zea has an extreme immune response to Bacillus thuringiensis bacteria, a mild response to Helicoverpa armigera nucleopolyhedrovirus, and little-to-no detectable response to either the fungus Beauveria bassiana or Steinernema carpocapsae nematodes.
Collapse
Affiliation(s)
- Joseph L. Black
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Mason K. Clark
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
28
|
Ozakman Y, Raval D, Eleftherianos I. Activin and BMP Signaling Activity Affects Different Aspects of Host Anti-Nematode Immunity in Drosophila melanogaster. Front Immunol 2021; 12:795331. [PMID: 35003118 PMCID: PMC8727596 DOI: 10.3389/fimmu.2021.795331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The multifaceted functions ranging from cellular and developmental mechanisms to inflammation and immunity have rendered TGF-ß signaling pathways as critical regulators of conserved biological processes. Recent studies have indicated that this evolutionary conserved signaling pathway among metazoans contributes to the Drosophila melanogaster anti-nematode immune response. However, functional characterization of the interaction between TGF-ß signaling activity and the mechanisms activated by the D. melanogaster immune response against parasitic nematode infection remains unexplored. Also, it is essential to evaluate the precise effect of entomopathogenic nematode parasites on the host immune system by separating them from their mutualistic bacteria. Here, we investigated the participation of the TGF-ß signaling branches, activin and bone morphogenetic protein (BMP), to host immune function against axenic or symbiotic Heterorhabditis bacteriophora nematodes (parasites lacking or containing their mutualistic bacteria, respectively). Using D. melanogaster larvae carrying mutations in the genes coding for the TGF-ß extracellular ligands Daw and Dpp, we analyzed the changes in survival ability, cellular immune response, and phenoloxidase (PO) activity during nematode infection. We show that infection with axenic H. bacteriophora decreases the mortality rate of dpp mutants, but not daw mutants. Following axenic or symbiotic H. bacteriophora infection, both daw and dpp mutants contain only plasmatocytes. We further detect higher levels of Dual oxidase gene expression in dpp mutants upon infection with axenic nematodes and Diptericin and Cecropin gene expression in daw mutants upon infection with symbiotic nematodes compared to controls. Finally, following symbiotic H. bacteriophora infection, daw mutants have higher PO activity relative to controls. Together, our findings reveal that while D. melanogaster Dpp/BMP signaling activity modulates the DUOX/ROS response to axenic H. bacteriophora infection, Daw/activin signaling activity modulates the antimicrobial peptide and melanization responses to axenic H. bacteriophora infection. Results from this study expand our current understanding of the molecular and mechanistic interplay between nematode parasites and the host immune system, and the involvement of TGF-ß signaling branches in this process. Such findings will provide valuable insight on the evolution of the immune role of TGF-ß signaling, which could lead to the development of novel strategies for the effective management of human parasitic nematodes.
Collapse
|
29
|
Skowronek M, Sajnaga E, Kazimierczak W, Lis M, Wiater A. Screening and Molecular Identification of Bacteria from the Midgut of Amphimallon solstitiale Larvae Exhibiting Antagonistic Activity against Bacterial Symbionts of Entomopathogenic Nematodes. Int J Mol Sci 2021; 22:ijms222112005. [PMID: 34769435 PMCID: PMC8584744 DOI: 10.3390/ijms222112005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) are a group of organisms capable of infecting larvae of insects living in soil, including representatives of the family Scarabaeidae. Their insecticidal activity is related to the presence of symbiotic bacteria Xenorhabdus spp. or Photorhabdus spp. in the alimentary tract, which are released into the insect body, leading to its death caused by bacterial toxins and septicemia. Although the antibacterial activities of symbionts of entomopathogenic nematodes have been well described, there is insufficient knowledge of the interactions between these bacteria and microorganisms that naturally inhabit the alimentary tract of insects infested by nematodes. In this study, 900 bacterial strains isolated from midgut samples of Amphimallon solstitiale larvae were tested for their antagonistic activity against the selected five Xenorhabdus and Photorhabdus species. Cross-streak tests showed significant antibacterial activity of 20 isolates. These bacteria were identified as Bacillus [Brevibacterium] frigoritolerans, Bacillus toyonensis, Bacillus wiedmannii, Chryseobacterium lathyri, Chryseobacterium sp., Citrobacter murliniae, Enterococcus malodoratus, Paenibacillus sp., Serratia marcescens and Serratia sp. Since some representatives of the intestinal microbiota of A. solstitiale are able to inhibit the growth of Xenorhabdus and Photorhrhabdus bacteria in vitro, it can be assumed that this type of bacterial interaction may occur at certain stages of insect infection by Steinernema or Heterorhabditis nematodes.
Collapse
Affiliation(s)
- Marcin Skowronek
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
- Correspondence: (M.S.); (A.W.)
| | - Ewa Sajnaga
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Magdalena Lis
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
- Correspondence: (M.S.); (A.W.)
| |
Collapse
|
30
|
Meraj S, Mohr E, Ketabchi N, Bogdanovic A, Lowenberger C, Gries G. Time- and tissue-specific antimicrobial activity of the common bed bug in response to blood feeding and immune activation by bacterial injection. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104322. [PMID: 34644597 DOI: 10.1016/j.jinsphys.2021.104322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Unlike almost all hematophagous insects, common bed bugs, Cimex lectularius, are not known to transmit pathogens to humans. To help unravel the reasons for their lack of vector competence, we studied the time- and tissue-dependent expression of innate immune factors after blood feeding or immune activation through the intrathoracic injection of bacteria. We used minimum inhibitory concentration (MIC1) bioassays and the Kirby-Bauer protocol to evaluate antimicrobial peptide (AMP2) activity in tissue extracts from the midguts or 'rest of body' (RoB3) tissues (containing hemolymph and fat body AMPs) against Gram-positive and Gram-negative bacteria. We compared AMP activity between blood-fed female bed bugs and yellow fever mosquitoes, Aedes aegypti and determined how female and male bed bugs respond to immune challenges, and how long AMP gene expression remains elevated in bed bugs following a blood meal. Blood meal-induced AMP activity is 4-fold stronger in female bed bugs than in female mosquitoes. Male bed bugs have elevated AMP activity within 8 h of a blood meal or an intrathoracic injection with bacteria, with the strongest activity expressed in RoB tissue 24 h after the immune challenge. Female bed bugs have a stronger immune response than males within 24 h of a blood meal. The effects of blood meal-induced elevated AMP activity lasts longer against the Gram-positive bacterium, Bacillus subtilis, than against the Gram-negative bacterium Escherichia coli. Unravelling the specific immune pathways that are activated in the bed bugs' immune responses and identifying the bed bug-unique AMPs might help determine why these insects are not vectors of human parasites.
Collapse
Affiliation(s)
- Sanam Meraj
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.
| | - Emerson Mohr
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Negin Ketabchi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Anastasia Bogdanovic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
31
|
Parks SC, Nguyen S, Nasrolahi S, Bhat C, Juncaj D, Lu D, Ramaswamy R, Dhillon H, Fujiwara H, Buchman A, Akbari OS, Yamanaka N, Boulanger MJ, Dillman AR. Parasitic nematode fatty acid- and retinol-binding proteins compromise host immunity by interfering with host lipid signaling pathways. PLoS Pathog 2021; 17:e1010027. [PMID: 34714893 PMCID: PMC8580252 DOI: 10.1371/journal.ppat.1010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/10/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.
Collapse
Affiliation(s)
- Sophia C. Parks
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Susan Nguyen
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Shyon Nasrolahi
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Chaitra Bhat
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Damian Juncaj
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Dihong Lu
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Harpal Dhillon
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Hideji Fujiwara
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Filgueiras CC, Willett DS. Non-lethal effects of entomopathogenic nematode infection. Sci Rep 2021; 11:17090. [PMID: 34429457 PMCID: PMC8384869 DOI: 10.1038/s41598-021-96270-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
Entomopathogenic nematodes are typically considered lethal parasites of insect hosts. Indeed they are employed as such for biological control of insect pests. The effects of exposure to entomopathogenic nematodes are not strictly limited to mortality, however. Here we explore non-lethal effects of exposure to entomopathogenic nematodes by introducing the relatively non-susceptible pupal stage of Delia antiqua to thirteen different strains. We specifically chose to inoculate the pupal stage because it tends to be more resistant to infection, yet resides in the soil where it could come into contact with EPN biological control agents. We find that there is no significant mortality at the pupal stage, but that there are a host of strain-dependent non-lethal effects during and after the transition to adulthood including altered developmental times and changes in risk of death compared to controls. We also find that exposure to specific strains can reduce risk of mortality. These results emphasize the strain-dependent nature of entomopathogenic nematode infection and highlight the positive and negative ramifications for non-lethal effects for biological control of insect pests. Our work emphasizes the need for strain-specific screening of biological control agents before wide-spread adoption.
Collapse
Affiliation(s)
- Camila C Filgueiras
- Natural Enemy Management and Applications (NEMA) Lab, Department of Biology, UNC Asheville, Asheville, USA.
| | - Denis S Willett
- Applied Chemical Ecology Technology (ACET) Lab, Cornell AgriTech, Cornell University, Ithaca, USA
| |
Collapse
|
33
|
Lulamba TE, Green E, Serepa-Dlamini MH. Photorhabdus sp. ETL Antimicrobial Properties and Characterization of Its Secondary Metabolites by Gas Chromatography-Mass Spectrometry. Life (Basel) 2021; 11:life11080787. [PMID: 34440531 PMCID: PMC8401408 DOI: 10.3390/life11080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Entomopathogenic nematodes (EPNs) are known to be highly pathogenic to insect pests, due to their associated symbiotic bacteria, which produce virulence factors, exo-enzymes and other harmful secondary metabolites to conquer, kill, and degrade their insect hosts. However, these properties are not fully characterized. This study reports on the antimicrobial activities of Photorhabdus sp. strain ETL, symbiotically associated to an insect pathogenic nematode, Heterorhabditis zealandica, against human pathogenic bacteria and toxigenic fungi, as well as the non-targeted profiling of its secondary metabolites (SMs) using gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Fatty acids including 3-eicosene, (E)-; 5-eicosene, (E)-; eicosene; 9-octadecenamide; undecanoic acid with shown antimicrobial activities were detected. This provided more insight on the composition and bioactivities of SMs produced by the Photorhabdus sp.
Collapse
|
34
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Mastore M, Caramella S, Quadroni S, Brivio MF. Drosophila suzukii Susceptibility to the Oral Administration of Bacillus thuringiensis, Xenorhabdus nematophila and Its Secondary Metabolites. INSECTS 2021; 12:insects12070635. [PMID: 34357295 PMCID: PMC8305655 DOI: 10.3390/insects12070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary In recent decades, climate change and the international fruit trade have favored the movement of allochthonous species such as harmful insects into new geographic areas. The settlement of phytophagous insects and vectors in new areas, where potential predators are often lacking, has increased the use of chemical insecticides for their control. The intensive use of these substances represents a serious problem for ecosystems and human health; a possible alternative to chemical control is biological control, i.e., the use of biological insecticides that are compatible with the environment. The aim of our work was to further improve biological control methods for the management of the dipteran Spotted Wing Drosophila, an insect recently introduced in America and Europe, which can damage thin-skinned fruit crops. The methodologies applied are based on the combined use of different entomopathogens, i.e., bacteria, fungi, nematodes, etc., harmful for insects, with the purpose of increasing their effectiveness. The results obtained show that the combined use of two entomopathogenic bacteria increases both the lethality and rapidity of action. From an application viewpoint, studies like this are essential to identify new methods and bioinsecticides and, once transferred to the field, can be crucial to eliminate or, at least, reduce the use of chemicals. Abstract Drosophila suzukii, Spotted Wing Drosophila (SWD), is a serious economic issue for thin-skinned fruit farmers. The invasion of this dipteran is mainly counteracted by chemical control methods; however, it would be desirable to replace them with biological control. All assays were performed with Bacillus thuringiensis (Bt), Xenorhabdus nematophila (Xn), and Xn secretions, administered orally in single or combination, then larval lethality was assessed at different times. Gut damage caused by Bt and the influence on Xn into the hemocoelic cavity was also evaluated. In addition, the hemolymph cell population was analyzed after treatments. The data obtained show that the combined use of Bt plus Xn secretions on larvae, compared to single administration of bacteria, significantly improved the efficacy and reduced the time of treatments. The results confirm the destructive action of Bt on the gut of SWD larvae, and that Bt-induced alteration promotes the passage of Xn to the hemocoel cavity. Furthermore, hemocytes decrease after bioinsecticides treatments. Our study demonstrates that combining bioinsecticides can improve the efficacy of biocontrol and such combinations should be tested in greenhouse and in field in the near future.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Sara Caramella
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
- Correspondence: ; Tel.: +39-0332-421404
| |
Collapse
|
36
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
37
|
Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene 2021; 795:145780. [PMID: 34147570 DOI: 10.1016/j.gene.2021.145780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
The genome sequences of entomopathogenic nematode (EPN) bacteria and their functional analyses can lead to the genetic engineering of the bacteria for use as biocontrol agents. The bacterial symbiont Photorhabdus heterorhabditis strain ETL isolated from an insect pathogenic nematode, Heterorhabditis zealandica strain ETL, collected in the northernmost region of South Africa was studied to reveal information that can be useful in the design of improvement strategies for both effective and liquid production method of EPN-based pesticides. The strain ETL genome was found closely related to the type strain genome of P. australis DSM 17,609 (~60 to 99.9% CDSs similarity), but closely related to the not yet genome-sequenced type strain, P. heterorhabditis. It has a genome size of 4,866,148 bp and G + C content of 42.4% similar to other Photorhabdus. It contains 4,351 protein coding genes (CDSs) of which, at least 84% are shared with the de facto type strain P. luminescens subsp. laumondii TTO1, and has 318 unknown CDSs and the genome has a higher degree of plasticity allowing it to adapt to different environmental conditions, and to be virulent against various insects; observed through genes acquired through horizontal gene transfer mechanisms, clustered regularly interspaced short palindromic repeats, non-determined polyketide- and non-ribosomal peptide- synthase gene clusters, and many genes associated with uncharacterized proteins; which also justify the strain ETL's genes differences (quantity and quality) compared to P. luminescens subsp. laumondii TTO1. The protein coding sequences contained genes with both bio-engineering and EPNs mass production importance, of which numerous are uncharacterized.
Collapse
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
38
|
Polar and neutral lipid composition of the copepod Lernaeocera lusci and its host Merluccius merluccius in relationship with the parasite intensity. Parasitol Res 2021; 120:1979-1991. [PMID: 33987737 DOI: 10.1007/s00436-021-07182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Parasitic copepod Lernaeocera lusci is a common mesoparasite of the hake Merluccius merluccius. Although widely distributed throughout the Mediterranean, little is known about this pathogen. The current study was designed to assess the impact of different L. lusci infection loads on lipid classes and their fatty acid (FA) composition in both parasite and the host organs (gills, liver, and muscle). Results showed a significant decrease in total lipid, neutral lipid (NL), and polar lipid (PL) contents in all analyzed host's organs in relationship with parasite intensity. Gills appeared to be the most impacted organ under the lowest parasite intensity (loss of 50% of NL and PL amounts). At the highest parasitic infection, a loss of about 80% of lipid moieties was recorded in all analyzed organs. Simultaneously, no significant differences were found for the parasite reflecting its ability to sustain an appropriate lipid amount required for its survival and development. Significant changes in the FA composition were recorded in both host and parasite. Particularly, we have noticed that for L. lusci, the intraspecific competition has resulted in an increased level of some essential FA such as C22:6n-3 (docosahexaenoic acid, DHA), C20:5n-3 (eicosapentaenoic acid, EPA), and C20:4n-6 (arachidonic acid, ARA). This probably reflects that in addition to a direct host FA diversion, L. Lusci can modulate its FA composition by increasing the activity of desaturation. Within the host, liver PL appeared to be the less impacted fraction which may mirror an adaptive strategy adopted by the host to preserve the structural and functional integrity of this vital organ.
Collapse
|
39
|
Susceptibility of Drosophila suzukii larvae to the combined administration of the entomopathogens Bacillus thuringiensis and Steinernema carpocapsae. Sci Rep 2021; 11:8149. [PMID: 33854098 PMCID: PMC8046782 DOI: 10.1038/s41598-021-87469-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-native pests are often responsible for serious crop damage. Since Drosophila suzukii has invaded North America and Europe, the global production of soft, thin-skinned fruits has suffered severe losses. The control of this dipteran by pesticides, although commonly used, is not recommended because of the negative impact on the environment and human health. A possible alternative is the use of bio-insecticides, including Bacillus thuringiensis and entomopathogenic nematodes, such as Steinernema carpocapsae. These biological control agents have a fair effectiveness when used individually on D. suzukii, but both have limits related to different environmental, methodological, and physiological factors. In this work, we tested various concentrations of B. thuringiensis and S. carpocapsae to evaluate their efficacy on D. suzukii larvae, when administered individually or in combination by using agar traps. In the combined trials, we added the nematodes after 16 h or concurrently to the bacteria, and assessed larvae lethality from 16 to 48 h. The assays demonstrated a higher efficacy of the combined administration, both time-shifted and concurrent; the obtained data also showed a relevant decrease of the time needed to kill the larvae. Particularly, the maximum mortality rate, corresponding to 79% already at 16 h, was observed with the highest concentrations (0.564 µg/mL of B. thuringiensis and 8 × 102 IJs of S. carpocapsae) in the concurrent trials. This study, conducted by laboratory tests under controlled conditions, is a good starting point to develop a further application step through field studies for the control of D. suzukii.
Collapse
|
40
|
Li E, Qin J, Feng H, Li J, Li X, Nyamwasa I, Cao Y, Ruan W, Li K, Yin J. Immune-related genes of the larval Holotrichia parallela in response to entomopathogenic nematodes Heterorhabditis beicherriana LF. BMC Genomics 2021; 22:192. [PMID: 33731017 PMCID: PMC7967997 DOI: 10.1186/s12864-021-07506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07506-4.
Collapse
Affiliation(s)
- Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Jianhui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Honglin Feng
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Jinqiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaofeng Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
41
|
Texca Tatevari ML, Jorge CG, Luis MC, Ricardo RR. Do entomopathogenic nematodes induce immune priming? Microb Pathog 2021; 154:104844. [PMID: 33691175 DOI: 10.1016/j.micpath.2021.104844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Although the study of immune priming in insects is a growing area of research, its occurrence in various biological models has not been evaluated, and its mechanisms are poorly understood. Whether entomopathogenic nematodes (EPNs) can induce immune priming and what role their virulence might play in it has not been assessed. Here, we tested for the first time: 1) whether a nematode is capable of eliciting immune priming, and 2) whether nematode virulence affects immune priming. Host larvae of Tenebrio molitor were first exposed to one of two EPN strains (low or high virulence). They were then exposed again to a challenge (high) dose of their respective strain, and their survival was recorded. Based on current literature, we expected that host larvae primed with a low-virulence strain would not show immune priming but that those exposed to a high-virulence strain would. Instead, we found that host larvae primed with either strain did not exhibit immune priming. Further, the survival of the hosts primed with the highly virulent strain was significantly reduced relative to the control group, and no measurable immune priming was found, as also indicated by resting metabolic rate (production of CO2). Future research is needed to determine whether virulence-associated bacteria underlie this lowered survival and/or whether another factor, such as immune evasion strategies, is related to these results.
Collapse
Affiliation(s)
- Méndez-López Texca Tatevari
- Posgrado en Ciencias Biológicas, UNAM, Universidad Nacional Autónoma de México, ENES Campus Morelia, Morelia, México; Laboratorio de Ecología Evolutiva, ENES, Unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, México
| | - Contreras-Garduño Jorge
- Laboratorio de Ecología Evolutiva, ENES, Unidad Morelia, UNAM, Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, México
| | - Mendoza-Cuenca Luis
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Ramirez-Romero Ricardo
- Laboratorio de Control Biológico, Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, México.
| |
Collapse
|
42
|
Lara-Reyes N, Jiménez-Cortés JG, Canales-Lazcano J, Franco B, Krams I, Contreras-Garduño J. Insect Immune Evasion by Dauer and Nondauer Entomopathogenic Nematodes. J Parasitol 2021; 107:115-124. [DOI: 10.1645/20-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Nancy Lara-Reyes
- Departamento de Biología, Universidad de Guanajuato, 36050, Guanajuato, Guanajuato, México
| | - J. Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510. México City, México
| | - Jorge Canales-Lazcano
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, 36050, Guanajuato, Guanajuato, México
| | - Indrikis Krams
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, 1004, Latvia
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, 58190, Morelia, México
| |
Collapse
|
43
|
Eleftherianos I, Heryanto C. Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes (Basel) 2021; 12:genes12020202. [PMID: 33573306 PMCID: PMC7911283 DOI: 10.3390/genes12020202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.
Collapse
|
44
|
Stoldt M, Klein L, Beros S, Butter F, Jongepier E, Feldmeyer B, Foitzik S. Parasite Presence Induces Gene Expression Changes in an Ant Host Related to Immunity and Longevity. Genes (Basel) 2021; 12:95. [PMID: 33451085 PMCID: PMC7828512 DOI: 10.3390/genes12010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Most species are either parasites or exploited by parasites, making parasite-host interactions a driver of evolution. Parasites with complex life cycles often evolve strategies to facilitate transmission to the definitive host by manipulating their intermediate host. Such manipulations could explain phenotypic changes in the ant Temnothorax nylanderi, the intermediate host of the cestode Anomotaenia brevis. In addition to behavioral and morphological alterations, infected workers exhibit prolonged lifespans, comparable to that of queens, which live up to two decades. We used transcriptomic data from cestodes and ants of different castes and infection status to investigate the molecular underpinnings of phenotypic alterations in infected workers and explored whether the extended lifespan of queens and infected workers has a common molecular basis. Infected workers and queens commonly upregulated only six genes, one of them with a known anti-aging function. Both groups overexpressed immune genes, although not the same ones. Our findings suggest that the lifespan extension of infected workers is not achieved via the expression of queen-specific genes. The analysis of the cestodes' transcriptome revealed dominant expression of genes of the mitochondrial respiratory transport chain, which indicates an active metabolism and shedding light on the physiology of the parasite in its cysticercoid stage.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| | - Linda Klein
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| | - Sara Beros
- Max Planck Institute for the Biology of Ageing, 50931 Cologne, Germany;
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Molecular Ecology, 60325 Frankfurt, Germany;
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| |
Collapse
|
45
|
Vengateswari G, Arunthirumeni M, Shivakumar MS. Effect of food plants on Spodoptera litura (Lepidoptera: Noctuidae) larvae immune and antioxidant properties in response to Bacillus thuringiensis infection. Toxicol Rep 2020; 7:1428-1437. [PMID: 33134089 PMCID: PMC7585150 DOI: 10.1016/j.toxrep.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of Spodoptera litura (Fabricius) were reared on five host plants, Brassica oleracea, Nicotiana tabacum, Ricinus communis, Gossypium hirsutum, and Arachis hypogaea. The larvae were immunized with Bacillus thuringiensis to observe the immune response. The results of total and differential hemocyte count were increased in B. oleracea, N. tabacum, and R. communis fed S. litura larval hemolymph. Similar results were observed in the parameter of nodulation, melanization, and phenoloxidase. Total protein was higher in R. communis fed larvae. Antioxidant levels like Catalase (CAT), Superoxide dismutase (SOD), Glutathione S- transferase (GST), Peroxidase (POX), Lipid peroxidase (LPO), and Esterase (EST) was found in moreover all plant-feeding insect. High CAT activity was observed 2-6 h in R. communis, G. hirsutum, and A. hypogaea fed S. litura larval midgut and fatbody samples. Increased SOD activity in both midgut and fatbody at 2-12 h of B. oleracea, G. hirsutum, and A. hypogaea fed. GST activity was increased initially 2-6 h in G. hirsutum and A. hypogaea. Increased POX activity was observed initially in all treated groups. Highest LPO observed at 6 h in N. tabacum in both midgut and fatbody. Whereas increased EST activity was observed in N. tabacum and B. oleracea. The results of the present study shows that nature of food influence the immunity against Bt infection. This information can be very useful for incorporating biological control program for insect pest.
Collapse
Affiliation(s)
- Govindaraj Vengateswari
- Molecular Entomology Laboratory, Department of Biotechnology, Periyar University, Salem-11, Tamil Nadu, India
| | - Murugan Arunthirumeni
- Molecular Entomology Laboratory, Department of Biotechnology, Periyar University, Salem-11, Tamil Nadu, India
| | | |
Collapse
|
46
|
Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance In Vitro and in an Insect Model of Infection. Antimicrob Agents Chemother 2020; 64:AAC.01033-20. [PMID: 32661001 DOI: 10.1128/aac.01033-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC β-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.
Collapse
|
47
|
Sarvari M, Mikani A, Mehrabadi M. The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103732. [PMID: 32423863 DOI: 10.1016/j.dci.2020.103732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota modulates various physiologic processes in insects, such as nutrition, metabolic homeostasis, and pathogen exclusion. Maintaining a normal microbiome is an essential element of the gut homeostasis, requiring an extensive network of regulatory immune responses. The molecular mechanisms driving these various effects and the events leading to the establishment of a normal microbiota in insects are still largely unknown. In this study, the NF-kB (IMD and Toll) signaling pathways in the gut of Galleria mellonella and their roles in the regulation of its gut microbes were assessed. For this, the transcript levels of the IMD pathway (Imd and Relish) and the Toll pathway (Spätzle and Dif/Dorsal) genes were analyzed and the results showed that all the genes were expressed in the gut of G. mellonella. Silencing of Relish resulted in reduced expression levels of the IMD pathway genes and antimicrobial peptides (AMPs) followed by overpopulation of gut bacteria. Antibiotics-treated larvae showed lower expression levels of the IMD and Toll pathway genes followed by lower AMPs expression levels. The expression level of caudal decreased in the antibiotics-treated larvae compared with the controls. Together, these data suggest that the IMD and Toll pathways are active in the gut of G. mellonella. The IMD pathway gene, relish functions in the regulation of gut microbes in this insect model.
Collapse
Affiliation(s)
- Mehdi Sarvari
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
48
|
Baniya A, Huguet-Tapia JC, DiGennaro P. A draft genome of Steinernema diaprepesi. J Nematol 2020; 52:1-4. [PMID: 32678527 PMCID: PMC8015292 DOI: 10.21307/jofnem-2020-069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/02/2022] Open
Abstract
Entomopathogenic nematodes within the genus Steinernema are used as biological control agents against significant agricultural pests. Steinernema diaprepesi is native to Florida and very effective in controlling citrus root weevil, a devastating pest of citrus, ornamental plants, and vegetables. Here, we present the draft genome of Steinernema diaprepesi, which is a valuable tool for understanding the efficacy of this nematode as a biological control agent.
Collapse
Affiliation(s)
- Anil Baniya
- Department of Entomology and Nematology, University of Florida , Gainesville FL, 32611
| | - Jose C Huguet-Tapia
- Department of Entomology and Nematology, University of Florida , Gainesville FL, 32611
| | - Peter DiGennaro
- Department of Entomology and Nematology, University of Florida , Gainesville FL, 32611
| |
Collapse
|
49
|
The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling. Microorganisms 2020; 8:microorganisms8070971. [PMID: 32610560 PMCID: PMC7409035 DOI: 10.3390/microorganisms8070971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
The nematode Heterorhabditis bacteriophora, its mutualistic bacterium Photorhabdus luminescens, and the fruit fly Drosophila melanogaster establish a unique system to study the basis of infection in relation to host metabolism. Our previous results indicate that the Transforming Growth Factor β (TGF-β) signaling pathway participates in the D. melanogaster metabolic response against nematode parasitism. However, our understanding of whether the presence of Photorhabdus bacteria in Heterorhabditis nematodes affects the metabolic state of D. melanogaster during infection is limited. Here, we investigated the involvement of TGF-β signaling branches, Activin and Bone Morphogenetic Protein (BMP), in the D. melanogaster metabolic response against axenic (lacking bacteria) or symbiotic (containing bacteria) H. bacteriophora infection. We show that BMP signaling mediates lipid metabolism against axenic or symbiotic H. bacteriophora and alters the size of fat body lipid droplets against symbiotic nematode infection. Also, following symbiotic H. bacteriophora infection, Activin signaling modulates sugar metabolism. Our results indicate that Activin and BMP signaling interact with the D. melanogaster metabolic response to H. bacteriophora infection regardless of the presence or absence of Photorhabdus. These findings provide evidence for the role of TGF-β signaling in host metabolism, which could lead to the development of novel treatments for parasitic diseases.
Collapse
|
50
|
Brivio MF, Mastore M. When Appearance Misleads: The Role of the Entomopathogen Surface in the Relationship with Its Host. INSECTS 2020; 11:E387. [PMID: 32585858 PMCID: PMC7348879 DOI: 10.3390/insects11060387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Currently, potentially harmful insects are controlled mainly by chemical synthetic insecticides, but environmental emergencies strongly require less invasive control techniques. The use of biological insecticides in the form of entomopathogenic organisms is undoubtedly a fundamental resource for the biological control of insect pests in the future. These infectious agents and endogenous parasites generally act by profoundly altering the host's physiology to death, but their success is closely related to the neutralization of the target insect's immune response. In general, entomopathogen parasites, entomopathogenic bacteria, and fungi can counteract immune processes through the effects of secretion/excretion products that interfere with and damage the cells and molecules typical of innate immunity. However, these effects are observed in the later stages of infection, whereas the risk of being recognized and neutralized occurs very early after penetration and involves the pathogen surface components and molecular architecture; therefore, their role becomes crucial, particularly in the earliest pathogenesis. In this review, we analyze the evasion/interference strategies that entomopathogens such as the bacterium Bacillus thuringiensis, fungi, nematocomplexes, and wasps implement in the initial stages of infection, i.e., the phases during which body or cell surfaces play a key role in the interaction with the host receptors responsible for the immunological discrimination between self and non-self. In this regard, these organisms demonstrate evasive abilities ascribed to their body surface and cell wall; it appears that the key process of these mechanisms is the capability to modify the surface, converting it into an immunocompatible structure, or interaction that is more or less specific to host factors.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | | |
Collapse
|