1
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
2
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Auyeung A, Wang HC, Aravagiri K, Knezevic NN. Kynurenine Pathway Metabolites as Potential Biomarkers in Chronic Pain. Pharmaceuticals (Basel) 2023; 16:681. [PMID: 37242464 PMCID: PMC10224279 DOI: 10.3390/ph16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic pain is a pressing medical and socioeconomic issue worldwide. It is debilitating for individual patients and places a major burden on society in the forms of direct medical costs and lost work productivity. Various biochemical pathways have been explored to explain the pathophysiology of chronic pain in order to identify biomarkers that can potentially serve as both evaluators of and guides for therapeutic effectiveness. The kynurenine pathway has recently been a source of interest due to its suspected role in the development and sustainment of chronic pain conditions. The kynurenine pathway is the primary pathway responsible for the metabolization of tryptophan and generates nicotinamide adenine dinucleotide (NAD+), in addition to the metabolites kynurenine (KYN), kynurenic acid (KA), and quinolinic acid (QA). Dysregulation of this pathway and changes in the ratios of these metabolites have been associated with numerous neurotoxic and inflammatory states, many of which present simultaneously with chronic pain symptoms. While further studies utilizing biomarkers to elucidate the kynurenine pathway's role in chronic pain are needed, the metabolites and receptors involved in its processes nevertheless present researchers with promising sources of novel and personalized disease-modifying treatments.
Collapse
Affiliation(s)
- Andrew Auyeung
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Hank C. Wang
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kannan Aravagiri
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
The role of the blood-brain barrier during neurological disease and infection. Biochem Soc Trans 2023; 51:613-626. [PMID: 36929707 DOI: 10.1042/bst20220830] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line brain capillaries. The BBB plays an extremely important role in supporting normal neuronal function by maintaining the homeostasis of the brain microenvironment and restricting pathogen and toxin entry to the brain. Dysfunction of this highly complex and regulated structure can be life threatening. BBB dysfunction is implicated in many neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, and brain infections. Among other mechanisms, inflammation and/or flow disturbances are major causes of BBB dysfunction in neurological infections and diseases. In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to BBB disruption, leading to devastating consequences. While a transient or minor disruption to the barrier function could be tolerated, chronic or a total breach of the barrier can result in irreversible brain damage. It is worth noting that timing and extent of BBB disruption play an important role in the process of any repair of brain damage and treatment strategies. This review evaluates and summarises some of the latest research on the role of the BBB during neurological disease and infection with a focus on the effects of inflammation and flow disturbances on the BBB. The BBB's crucial role in protecting the brain is also the bottleneck in central nervous system drug development. Therefore, innovative strategies to carry therapeutics across the BBB and novel models to screen drugs, and to study the complex, overlapping mechanisms of BBB disruption are urgently needed.
Collapse
|
5
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
6
|
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa. Front Immunol 2022; 12:803475. [PMID: 35095888 PMCID: PMC8792387 DOI: 10.3389/fimmu.2021.803475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders related to neuroinfections are highly prevalent in Sub-Saharan Africa (SSA), constituting a major cause of disability and economic burden for patients and society. These include epilepsy, dementia, motor neuron diseases, headache disorders, sleep disorders, and peripheral neuropathy. The highest prevalence of human immunodeficiency virus (HIV) is in SSA. Consequently, there is a high prevalence of neurological disorders associated with HIV infection such as HIV-associated neurocognitive disorders, motor disorders, chronic headaches, and peripheral neuropathy in the region. The pathogenesis of these neurological disorders involves the direct role of the virus, some antiretroviral treatments, and the dysregulated immune system. Furthermore, the high prevalence of epilepsy in SSA (mainly due to perinatal causes) is exacerbated by infections such as toxoplasmosis, neurocysticercosis, onchocerciasis, malaria, bacterial meningitis, tuberculosis, and the immune reactions they elicit. Sleep disorders are another common problem in the region and have been associated with infectious diseases such as human African trypanosomiasis and HIV and involve the activation of the immune system. While most headache disorders are due to benign primary headaches, some secondary headaches are caused by infections (meningitis, encephalitis, brain abscess). HIV and neurosyphilis, both common in SSA, can trigger long-standing immune activation in the central nervous system (CNS) potentially resulting in dementia. Despite the progress achieved in preventing diseases from the poliovirus and retroviruses, these microbes may cause motor neuron diseases in SSA. The immune mechanisms involved in these neurological disorders include increased cytokine levels, immune cells infiltration into the CNS, and autoantibodies. This review focuses on the major neurological disorders relevant to Africa and neuroinfections highly prevalent in SSA, describes the interplay between neuroinfections, immune system, neuroinflammation, and neurological disorders, and how understanding this can be exploited for the development of novel diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Joseph Nelson Siewe Fodjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Esraa Aly
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
7
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
8
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
9
|
Schubert JJ, Veronese M, Fryer TD, Manavaki R, Kitzbichler MG, Nettis MA, Mondelli V, Pariante CM, Bullmore ET, Turkheimer FE. A Modest Increase in 11C-PK11195-Positron Emission Tomography TSPO Binding in Depression Is Not Associated With Serum C-Reactive Protein or Body Mass Index. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:716-724. [PMID: 33515765 PMCID: PMC8264953 DOI: 10.1016/j.bpsc.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Background Immune mechanisms have been implicated in the pathogenesis of depression. Translocator protein (TSPO)–targeted positron emission tomography (PET) has been used to assess neuroinflammation in major depressive disorder. We aimed to 1) test the hypothesis of significant case-control differences in TSPO binding in the anterior cingulate cortex, prefrontal cortex, and insula regions; and 2) explore the relationship between cerebral TSPO binding and peripheral blood C-reactive protein (CRP) concentration. Methods A total of 51 depressed subjects with Hamilton Depression Rating Scale score >13 (median 17; interquartile range, 16–22) and 25 healthy control subjects underwent dynamic brain 11C-PK11195 PET and peripheral blood immune marker characterization. Depressed subjects were divided into high CRP (>3 mg/L; n = 20) and low CRP (<3 mg/L; n = 31). Results Across the three regions, TSPO binding was significantly increased in depressed versus control subjects (η2p = .09; F1,71 = 6.97, p = .01), which was not influenced by body mass index. The case-control difference was greatest in the anterior cingulate cortex (d = 0.49; t74 = 2.00, p = .03) and not significant in the prefrontal cortex or insula (d = 0.27 and d = 0.36, respectively). Following CRP stratification, significantly higher TSPO binding was observed in low-CRP depression compared with controls (d = 0.53; t54 = 1.96, p = .03). These effect sizes are comparable to prior major depressive disorder case-control TSPO PET data. No significant correlations were observed between TSPO and CRP measures. Conclusions Consistent with previous findings, there is a modest increase in TSPO binding in depressed patients compared with healthy control subjects. The lack of a significant correlation between brain TSPO binding and blood CRP concentration or body mass index poses questions about the interactions between central and peripheral immune responses in the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manfred G Kitzbichler
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
10
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
11
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
12
|
Abdallah AE, Mohareb RM, Ahmed EA. Novel Pyrano[2,3‐
d
]thiazole and Thiazolo[4,5‐
b
]pyridine Derivatives: One‐pot Three‐component Synthesis and Biological Evaluation as Anticancer Agents, c‐Met, and Pim‐1 Kinase Inhibitors. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Ebtsam A. Ahmed
- Department of Chemistry, Faculty of ScienceHelwan University Cairo Egypt
| |
Collapse
|
13
|
Blood-Brain Barrier in Cerebral Malaria: Pathogenesis and Therapeutic Intervention. Trends Parasitol 2019; 35:516-528. [PMID: 31147271 DOI: 10.1016/j.pt.2019.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Cerebral malaria is a life-threatening complication of malaria caused by the parasite Plasmodium falciparum. The growing problem of drug resistance and the dearth of new antiparasitic drugs are a serious threat to the antimalaria treatment regimes. Studies on humans and the murine model have implicated the disruption of the blood-brain barrier (BBB) in the lethal course of the disease. Therefore, efforts to alleviate the BBB dysfunction could serve as an adjunct therapy. Here, we review the mechanisms associated with the disruption of the BBB. In addition, we discuss the current, still limited, knowledge on the contribution of different cell types, microparticles, and the kynurenine pathway in the regulation of BBB dysfunction, and how these molecules could be used as potential new therapeutic targets.
Collapse
|
14
|
Sierro F, Grau GER. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 2019; 10:830. [PMID: 31057552 PMCID: PMC6478768 DOI: 10.3389/fimmu.2019.00830] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Complications from malaria parasite infections still cost the lives of close to half a million people every year. The most severe is cerebral malaria (CM). Employing murine models of CM, autopsy results, in vitro experiments, neuroimaging and microscopic techniques, decades of research activity have investigated the development of CM immunopathology in the hope of identifying steps that could be therapeutically targeted. Yet important questions remain. This review summarizes recent findings, primarily mechanistic insights on the essential cellular and molecular players involved gained within the murine experimental cerebral malaria model. It also highlights recent developments in (a) cell-cell communication events mediated through extracellular vesicles (EVs), (b) mounting evidence for innate immune memory, leading to “trained“ increased or tolerised responses, and (c) modulation of immune cell function through metabolism, that could shed light on why some patients develop this life-threatening condition whilst many do not.
Collapse
Affiliation(s)
- Frederic Sierro
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science, Technology, and Landmark Infrastructure, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
16
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
17
|
Debs S, Cohen A, Hosseini-Beheshti E, Chimini G, Hunt NH, Grau GE. Interplay of extracellular vesicles and other players in cerebral malaria pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1863:325-331. [DOI: 10.1016/j.bbagen.2018.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
|
18
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci Rep 2018; 8:14322. [PMID: 30254272 PMCID: PMC6156580 DOI: 10.1038/s41598-018-32774-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a frequent cause of serious disease in newborns and adults. Epidemiological evidence indicates a strong association between GBS strains belonging to the hypervirulent CC17 clonal complex and the occurrence of meningitis in neonates. We investigate here the role of PbsP, a cell wall plasminogen binding protein, in colonization of the central nervous system by CC17 GBS. Deletion of pbsP selectively impaired the ability of the CC17 strain BM110 to colonize the mouse brain after intravenous challenge, despite its unchanged capacity to persist at high levels in the blood and to invade the kidneys. Moreover, immunization with a recombinant form of PbsP considerably reduced brain infection and lethality. In vitro, pbsP deletion markedly decreased plasmin-dependent transmigration of BM110 through brain microvascular endothelial cells. Although PbsP was modestly expressed in bacteria grown under standard laboratory conditions, pbsP expression was markedly upregulated during in vivo infection or upon contact with cultured brain endothelial cells. Collectively, our studies indicate that PbsP is a highly conserved Plg binding adhesin, which is functionally important for invasion of the central nervous system by the hypervirulent CC17 GBS. Moreover, this antigen is a promising candidate for inclusion in a universal GBS vaccine.
Collapse
|
20
|
Zorec R, Županc TA, Verkhratsky A. Astrogliopathology in the infectious insults of the brain. Neurosci Lett 2018; 689:56-62. [PMID: 30096375 DOI: 10.1016/j.neulet.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022]
Abstract
Astroglia, a heterogeneous type of neuroglia, play key homeostatic functions in the central nervous system (CNS) and represent an important defence system. Impaired homeostatic capacity of astrocytes manifests in diseases and this is mirrored in various astrocyte-based pathological features including reactive astrogliosis, astrodegeneration with astroglial atrophy and pathological remodelling of astrocytes. All of these manifestations are most prominently associated with infectious insults, mediated by bacteria, protozoa and viruses. Here we focus onto neurotropic viruses such as tick-borne encephalitis (TBEV) and Zika virus (ZIKV), both belonging to Flaviviridae and both causing severe neurological impairments. We argue that astrocytes provide a route through which neurotropic infectious agents attack the CNS, since they are anatomically associated with the blood-brain barrier and exhibit aerobic glycolysis, a metabolic specialisation of highly morphologically dynamic cells, which may provide a suitable metabolic milieu for proliferation of infectious agents, including viral bodies.
Collapse
Affiliation(s)
- Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Alexei Verkhratsky
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
21
|
Duan KM, Ma JH, Wang SY, Huang Z, Zhou Y, Yu H. The role of tryptophan metabolism in postpartum depression. Metab Brain Dis 2018; 33:647-660. [PMID: 29307018 DOI: 10.1007/s11011-017-0178-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/26/2017] [Indexed: 01/01/2023]
Abstract
The Postpartum depression (PPD) is the most common postpartum psychiatric disorder, afflicting approximately 10%-20% of new mothers. Clinical symptoms of the PPD include depressive disorder, agitation, insomnia, anxiety and confusion, resulting in an increase in suicidal tendencies, thereby having significant impacts on the puerpera, newborn and their family. A growing body of data indicate a role for alterations in tryptophan metabolism in the PPD. The metabolism of tryptophan produces an array of crucial factors that can differentially regulate key physiological processes linked to the PPD. Importantly, an increase in stress hormones and immune-inflammatory activity drives tryptophan to the production of neuroregulatory kynurenine pathway products and away from the serotonin and melatonin pathways. This links the PPD to other disorders of depressed mood, which are classically associated with decreased serotonin and melatonin, coupled to increases in kynurenine pathway products. Several kynurenine pathway products, such as kynurenic acid and quinolinic acid, can have neuroregulatory effects, with consequences pathological underpinnings of the PPD. The current article reviews the role of alterations in tryptophan metabolism in the PPD.
Collapse
Affiliation(s)
- Kai-Ming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Jia-Hui Ma
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Sai-Ying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| | - ZhengDong Huang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - YingYong Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - HeYa Yu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| |
Collapse
|
22
|
Hosseini-Beheshti E, Grau GER. Extracellular vesicles as mediators of immunopathology in infectious diseases. Immunol Cell Biol 2018; 96:694-703. [PMID: 29577413 DOI: 10.1111/imcb.12044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
In the last decades, extracellular vesicles have emerged as important elements in cell-cell communication and as key players in disease pathogenesis via transmission of their cargo between different cells. Various works have described different subpopulations of these membrane structures, based on their cell of origin, biogenesis, size, biophysical properties and cargo. In addition to their pathophysiological role in the development and progression of different diseases including infectious diseases, neurodegenerative disorders and cancer, extracellular vesicles are now recognized for their potential as novel therapeutic targets and intelligent drug delivery system. Here, we have reviewed the most recent data on different subtypes of extracellular vesicles, focusing on microvesicles and exosomes and their subpopulations, their involvement in immune-mediated pathogenesis of various infectious diseases and their role as potential therapeutic targets.
Collapse
Affiliation(s)
- Elham Hosseini-Beheshti
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia
| | - Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
23
|
Fazio F, Ulivieri M, Volpi C, Gargaro M, Fallarino F. Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 2018; 38:16-23. [PMID: 29471184 DOI: 10.1016/j.coph.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
A large body of evidence suggests that neuroinflammation lies at the core of nearly all CNS disorders, including psychiatric disorders. Invading and local immune cells orchestrate the series of events that lead to either tissue repair or damage in response to neuroinflammation. Both lymphocytes and microglia express metabotropic glutamate (mGlu) receptors, which respond to glutamate or other endogenous activators (e.g. some kynurenine metabolites of tryptophan metabolism) influencing immune phenotype and the balance between pro-inflammatory and anti-inflammatory cytokines. Here, we offer an up-to-date on the role of individual mGlu receptor subtypes in the regulation of innate and adaptive immune response, highlighting the relevance of this information in the development of subtype-selective mGlu receptor ligands for treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Martina Ulivieri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| |
Collapse
|
24
|
Tantarungsee N, Yisarakun W, Thongtan T, Lalert L, Srikam S, Reuangwechvorachai P, Ingruanglert P, Maneesri-le Grand S. Upregulation of Pro-inflammatory Cytokine Expression Following Chronic Paracetamol Treatment in Astrocyte. Neurotox Res 2018; 34:137-146. [DOI: 10.1007/s12640-018-9875-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
|
25
|
Abstract
Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host-parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.
Collapse
|
26
|
Mohareb RM, Abdallah AEM, Ahmed EA. Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene- 3-carbonitrile. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:495-510. [PMID: 29337677 DOI: 10.1515/acph-2017-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 12/14/2022]
Abstract
Reactivity of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3- carbonitrile towards thioglycolic acid resulted in thiazole derivative 1. The latter reacted with different chemical reagents to give thiazole, pyrano[2,3-d]thiazole and thiazolo[ 4,5-d]thiazole derivatives. Cytotoxicity effects of the newly synthesized products against six cancer cell lines, namely, human gastric cancer (NUGC), human colon cancer (DLD- 1), human liver cancer (HA22T and HEPG-2), human breast cancer (MCF) and nasopharyngeal carcinoma (HONE-1) as well as against a normal fibroblast cell (WI-38) were evaluated. The study showed that the 4,5,6,7 tetrahydrobenzo[ b] thiophene derivatives 6a, 7, 8a,b, 9b and 10b,c w ere t he most active compounds. Their potencies were attributed to the presence of the electron withdrawing groups.
Collapse
Affiliation(s)
- Rafat M. Mohareb
- Department of Chemistry Faculty of Science Cairo University, Giza , A. R. Egypt
| | - Amira E. M. Abdallah
- Department of Chemistry Faculty of Science, Helwan University Ain Helwan, Cairo A. R. Egypt
| | - Ebtsam A. Ahmed
- Department of Chemistry Faculty of Science, Helwan University Ain Helwan, Cairo A. R. Egypt
| |
Collapse
|
27
|
Donnelly S, Huston WM, Johnson M, Tiberti N, Saunders B, O'Brien B, Burke C, Labbate M, Combes V. Targeting the master regulator mTOR: a new approach to prevent the neurological of consequences of parasitic infections? Parasit Vectors 2017; 10:581. [PMID: 29162126 PMCID: PMC5697405 DOI: 10.1186/s13071-017-2528-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
A systematic analysis of 240 causes of death in 2013 revealed that parasitic diseases were responsible for more than one million deaths. The vast majority of these fatalities resulted from protozoan infections presenting with neurological sequelae. In the absence of a vaccine, development of effective therapies is essential to improving global public health. In 2015, an intriguing strategy to prevent cerebral malaria was proposed by Gordon et al. 2015 mBio, 6:e00625. Their study suggested that inhibition of the mammalian target of rapamycin prevented experimental cerebral malaria by blocking the damage to the blood brain barrier and stopping the accumulation of parasitized red blood cells and T cells in the brain. Here, we hypothesize that the same therapeutic strategy could be adopted for other protozoan infections with a brain tropism, to prevent cerebral parasitosis by limiting pathogen replication and preventing immune mediated destruction of brain tissue.
Collapse
Affiliation(s)
- Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Johnson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Natalia Tiberti
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Bernadette Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine Burke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Maurizio Labbate
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Valery Combes
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
28
|
Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017; 7:276. [PMID: 28676848 PMCID: PMC5476750 DOI: 10.3389/fcimb.2017.00276] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.
Collapse
Affiliation(s)
- Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Paediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elizaveta B Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina P Martynova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kopylevich
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E Gertsog
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
29
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
30
|
Chen PJ, Wang YL, Kuo LM, Lin CF, Chen CY, Tsai YF, Shen JJ, Hwang TL. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα. Sci Rep 2016; 6:26554. [PMID: 27212040 PMCID: PMC4876378 DOI: 10.1038/srep26554] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacological activities, including anti-inflammatory effects, yet the nature of honokiol targeting molecules remains to be revealed. Here, we investigated the inhibitory effect of honokiol on neutrophil adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression, which underlie its molecular target, and mechanisms for inactivating nuclear factor κ enhancer binding protein (NF-κB) in mouse cerebral ECs. Honokiol inhibited tumour necrosis factor-α (TNF-α)-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs. The inflammatory transcription factor NF-κB was downregulated by honokiol. Honokiol significantly blocked TNF-α-induced NF-κB p65 nuclear translocation and degradation of the proteasome-dependent inhibitor of NF-κB α (IκBα). From docking model prediction, honokiol directly targeted the ubiquitin-ubiquitin interface of Lys48-linked polychains. Moreover, honokiol prevented the TNF-α-induced Lys48-linked polyubiquitination, including IκBα-polyubiquitin interaction. Honokiol has protective anti-inflammatory effects on TNF-α-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs, at least in part by directly inhibiting ubiquitination-mediated IκBα degradation and then preventing NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Po-Jen Chen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Ling Wang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chwan-Fwu Lin
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jiann-Jong Shen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
Synergistic induction of CXCL10 by interferon-gamma and lymphotoxin-alpha in astrocytes: Possible role in cerebral malaria. Cytokine 2015; 78:79-86. [PMID: 26687629 DOI: 10.1016/j.cyto.2015.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/22/2022]
Abstract
Cerebral malaria (CM) has a high mortality rate and incidence of neurological sequelae in survivors. Hypoxia and cytokine expression in the brain are two mechanisms thought to contribute to the pathogenesis of CM. The cytokines interferon (IFN)-γ and lymphotoxin (LT)-α and the chemokine CXCL10 are essential for the development of CM in a mouse model. Furthermore, serum IFN-γ protein levels are higher in human CM than in controls, and CXCL10 is elevated in both serum and cerebrospinal fluid in Ghanaian paediatric CM cases. Astrocytes actively participate in CNS pathologies, becoming activated in response to various stimuli including cytokines. Astrocyte activation also occurs in murine and human CM. We here determined the responsiveness of mouse and human astrocytes to IFN-γ and LT-α, with the aim of further elucidating the role of astrocytes in CM pathogenesis. Initially we confirmed that Ifn-γ and Cxcl10 are expressed in the brain in murine CM, and that the increased Cxcl10 expression is IFN-γ-dependant. IFN-γ induced CXCL10 production in human and murine astrocytes in vitro. The degree of induction was increased synergistically in the presence of LT-α. IFN-γ induced the expression of receptors for LT-α, while LT-α increased the expression of the receptor for IFN-γ, in the astrocytes. This cross-induction may explain the synergistic effect of the two cytokines on CXCL10 production. Expression of these receptors also was upregulated in the brain in murine CM. The results suggest that astrocytes contribute to CM pathogenesis by producing CXCL10 in response to IFN-γ and LT-α.
Collapse
|
32
|
Haghighi F, Galfalvy H, Chen S, Huang YY, Cooper TB, Burke AK, Oquendo MA, Mann JJ, Sublette ME. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk. Front Neurol 2015; 6:92. [PMID: 25972837 PMCID: PMC4412056 DOI: 10.3389/fneur.2015.00092] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.
Collapse
Affiliation(s)
- Fatemeh Haghighi
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center , New York, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Hanga Galfalvy
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Biostatistics, New York State Psychiatric Institute , New York, NY , USA
| | - Sean Chen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Yung-Yu Huang
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA
| | - Thomas B Cooper
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA ; Nathan S. Kline Institute for Psychiatric Research , Orangeburg, NY , USA
| | - Ainsley K Burke
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA
| | - Maria A Oquendo
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA ; Department of Radiology, Columbia University College of Physicians and Surgeons , New York, NY , USA
| | - M Elizabeth Sublette
- Department of Psychiatry, Columbia University College of Physicians and Surgeons , New York, NY , USA ; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute , New York, NY , USA
| |
Collapse
|
33
|
Hunt NH, Ball HJ, Hansen AM, Khaw LT, Guo J, Bakmiwewa S, Mitchell AJ, Combes V, Grau GER. Cerebral malaria: gamma-interferon redux. Front Cell Infect Microbiol 2014; 4:113. [PMID: 25177551 PMCID: PMC4133756 DOI: 10.3389/fcimb.2014.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 11/13/2022] Open
Abstract
There are two theories that seek to explain the pathogenesis of cerebral malaria, the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence consistent with both ideas has accumulated from studies of the human disease and experimental models. Thus, some combination of these concepts seems necessary to explain the very complex pattern of changes seen in cerebral malaria. The interactions between malaria parasites, erythrocytes, the cerebral microvascular endothelium, brain parenchymal cells, platelets and microparticles need to be considered. One factor that seems able to knit together much of this complexity is the cytokine interferon-gamma (IFN-γ). In this review we consider findings from the clinical disease, in vitro models and the murine counterpart of human cerebral malaria in order to evaluate the roles played by IFN-γ in the pathogenesis of this often fatal and debilitating condition.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Helen J Ball
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Anna M Hansen
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Loke T Khaw
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Jintao Guo
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Supun Bakmiwewa
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Andrew J Mitchell
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Valéry Combes
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
34
|
Williams AC, Dunbar RIM. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med Hypotheses 2014; 83:79-87. [PMID: 24767939 DOI: 10.1016/j.mehy.2014.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Meat eating has been an important trigger for human evolution however the responsible component in meat has not been clearly identified. Here we propose that the limiting factors for expanding brains and increasing longevity were the micronutrient nicotinamide (vitamin B3) and the metabolically related essential amino-acid, tryptophan. Meat offers significant sourcing challenges and lack causes a deficiency of nicotinamide and tryptophan and consequently the energy carrier nicotinamide adenine dinucleotide (NAD) that gets consumed in regulatory circuits important for survival, resulting in premature ageing, poor cognition and brain atrophy. If a trophic supply of dietary nicotinamide/tryptophan is so essential for building brains, constraining their size and connectivity, we hypothesise that back-up mechanisms to ensure the supply evolved. One strategy may be increasing the reliance on gut symbionts to break down celluloses that produces NADH and only nicotinamide indirectly, and may cause diarrhoea. We suggest that a direct supplier was the chronic mycobacterial infection tuberculosis (TB) that is a surprise candidate but it co-evolved early, does not inevitably cause disease (90-95% of those infected are healthy), and secretes (and is inhibited by) nicotinamide. We hypothesise that TB evolved first as a symbiont that enabled humans to cope with short-lived shortages of meat and only later behaved as a pathogen when the supply deteriorated chronically, for those in poverty. (TB immunology and epidemiology is riddled with paradoxes for a conventional pathogen). We test this in pilot data showing that sharp declines in TB (and diarrhoea) - `environmental enteropathy' strongly correlate with increasing meat consumption and therefore nicotinamide exposure, unlike later onset cancers and Parkinson's disease that increased in incidence, perhaps - as we propose a hypothetical hypervitaminosis B3 (to include obesity and the metabolic syndrome) - as the trade-off for increased brain power and longevity, a recently evolved human characteristic.
Collapse
Affiliation(s)
- Adrian C Williams
- Institute for Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford OX2 6PN, UK.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, South Parks Rd, Oxford OX1 3UD, UK
| |
Collapse
|
35
|
Microparticles: a new perspective in central nervous system disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:756327. [PMID: 24860829 PMCID: PMC4000927 DOI: 10.1155/2014/756327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.
Collapse
|
36
|
Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One 2014; 9:e85115. [PMID: 24400127 PMCID: PMC3882264 DOI: 10.1371/journal.pone.0085115] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022] Open
Abstract
Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload.
Collapse
Affiliation(s)
- Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Noppamas Pipatpiboon
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Exposure to inflammatory cytokines IL-1β and TNFα induces compromise and death of astrocytes; implications for chronic neuroinflammation. PLoS One 2013; 8:e84269. [PMID: 24367648 PMCID: PMC3868583 DOI: 10.1371/journal.pone.0084269] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/21/2013] [Indexed: 02/06/2023] Open
Abstract
Background Astrocytes have critical roles in the human CNS in health and disease. They provide trophic support to neurons and are innate-immune cells with keys roles during states-of-inflammation. In addition, they have integral functions associated with maintaining the integrity of the blood-brain barrier. Methods We have used cytometric bead arrays and xCELLigence technology to monitor the to monitor the inflammatory response profiles and astrocyte compromise in real-time under various inflammatory conditions. Responses were compared to a variety of inflammatory cytokines known to be released in the CNS during neuroinflammation. Astrocyte compromise measured by xCELLigence was confirmed using ATP measurements, cleaved caspase 3 expression, assessment of nuclear morphology and cell death. Results Inflammatory activation (IL-1β or TNFα) of astrocytes results in the transient production of key inflammatory mediators including IL-6, cell surface adhesion molecules, and various leukocyte chemoattractants. Following this phase, the NT2-astrocytes progressively become compromised, which is indicated by a loss of adhesion, appearance of apoptotic nuclei and reduction in ATP levels, followed by DEATH. The earliest signs of astrocyte compromise were observed between 24-48h post cytokine treatment. However, significant cell loss was not observed until at least 72h, where there was also an increase in the expression of cleaved-caspase 3. By 96 hours approximately 50% of the astrocytes were dead, with many of the remaining showing signs of compromise too. Numerous other inflammatory factors were tested, however these effects were only observed with IL-1β or TNFα treatment. Conclusions Here we reveal direct sensitivity to mediators of the inflammatory milieu. We highlight the power of xCELLigence technology for revealing the early progressive compromise of the astrocytes, which occurs 24-48 hours prior to substantive cell loss. Death induced by IL-1β or TNFα is relevant clinically as these two cytokines are produced by various peripheral tissues and by resident brain cells.
Collapse
|
38
|
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19:1584-96. [PMID: 24309662 DOI: 10.1038/nm.3407] [Citation(s) in RCA: 1602] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity. But if one member of the BBB fails, and as a result the barrier breaks down, there can be dramatic consequences and neuroinflammation and neurodegeneration can occur. In this Review, we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.
Collapse
Affiliation(s)
- Birgit Obermeier
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
39
|
Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2013; 15:43-53. [PMID: 24281245 DOI: 10.1038/nrn3617] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CNS is endowed with an elaborated response repertoire termed 'neuroinflammation', which enables it to cope with pathogens, toxins, traumata and degeneration. On the basis of recent publications, we deduce that orchestrated actions of immune cells, vascular cells and neurons that constitute neuroinflammation are not only provoked by pathological conditions but can also be induced by increased neuronal activity. We suggest that the technical term 'neurogenic neuroinflammation' should be used for inflammatory reactions in the CNS in response to neuronal activity. We believe that neurogenic neuro-inflammation maintains homeostasis to enable the CNS to cope with enhanced metabolic demands and increases the computational power and plasticity of CNS neuronal networks. However, neurogenic neuroinflammation may also become maladaptive and aggravate the outcomes of pain, stress and epilepsy.
Collapse
|
40
|
Williams AC, Dunbar RIM. Big brains, meat, tuberculosis, and the nicotinamide switches: co-evolutionary relationships with modern repercussions? Int J Tryptophan Res 2013; 6:73-88. [PMID: 24250227 PMCID: PMC3825668 DOI: 10.4137/ijtr.s12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Meat-eating was a game changer for human evolution. We suggest that the limiting factors for expanding brains earlier were scarcities of nicotinamide and tryptophan. In humans and some other omnivores, lack of meat causes these deficiencies. Nicotinamide adenine dinucleotide (NADH) is necessary to synthesize adenosine triphosphate (ATP) via either glycolysis or via the mitochondrial respiratory chain. NAD consumption is also necessary for developmental and repair circuits. Inadequate supplies result in "de-evolutionary" brain atrophy, as seen with pellagra. If trophic nicotinamide/tryptophan was a "prime mover" in building bigger brains, back-up mechanisms should have evolved. One strategy may be to recruit extra gut symbionts that produce NADH precursors or export nicotinamide (though this may cause diarrhea). We propose a novel supplier TB that co-evolved early, which did not originally and does not now inevitably cause disease. TB has highly paradoxical immunology for a pathogen, and secretes and is inhibited by nicotinamide and its analogue, isoniazid. Sharp declines in TB and diarrhea correlated with increased meat intake in the past, suggesting that dietary vitamin B3 and tryptophan deficiencies (also associated with poor cognition and decreased lifespans) are still common where meat is unaffordable.
Collapse
Affiliation(s)
- Adrian C Williams
- Institute for Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, UK
| | | |
Collapse
|
41
|
Abstract
Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander's disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.
Collapse
|