1
|
Sánchez Á. Immunophenotyping of Leukocytes in Brain in Hypothyroid Mice. Methods Mol Biol 2025; 2876:93-103. [PMID: 39579310 DOI: 10.1007/978-1-0716-4252-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Hypothyroidism, characterized by inadequate production of thyroid hormones, and malaria, a mosquito-borne infectious disease caused by Plasmodium parasites, are significant health concerns worldwide. Understanding the interplay between these two conditions could offer insights into their complex relationship and potential therapeutic strategies. To induce hypothyroidism, pharmacological inhibition of thyroid hormone synthesis was employed. Subsequently, mice were infected with Plasmodium berghei ANKA to simulate cerebral malaria infection. It needs to monitor the progression of the disease in male mice before it can identify infiltrating immune system populations of interest in the brain by multiparametric techniques such as flow cytometry.
Collapse
Affiliation(s)
- Ángela Sánchez
- Department of Metabolic and Immune Diseases, Instituto de Investigaciones Biomédicas Sols-Morreale Centro Mixto Consejo Superior de Investigaciones Científıcas CSIC-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
de Oliveira HD, Batista CN, Lima MN, Lima AC, Dos Passos BABR, Freitas RJRX, Silva JD, Xisto DG, Rangel-Ferreira MV, Pelajo M, Rocco PRM, Ribeiro-Gomes FL, de Castro Faria-Neto HC, Maron-Gutierrez T. Acetylsalicylic acid and dihydroartemisinin combined therapy on experimental malaria-associated acute lung injury: analysis of lung function and the inflammatory process. Malar J 2024; 23:285. [PMID: 39300444 DOI: 10.1186/s12936-024-05017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Severe malaria can cause respiratory symptoms, which may lead to malaria-acute lung injury (MA-ALI) due to inflammation and damage to the blood-gas barrier. Patients with severe malaria also often present thrombocytopenia, and the use of acetylsalicylic acid (ASA), a commonly used non-steroidal anti-inflammatory drug with immunomodulatory and antiplatelet effects, may pose a risk in regions where malaria is endemic. Thus, this study aimed to investigate the systemic impact of ASA and dihydroartemisinin (DHA) on ALI induced in mice by Plasmodium berghei NK65 (PbNK65). METHODS C57BL/6 mice were randomly divided into control (C) and PbNK65 infected groups and were inoculated with uninfected or 104 infected erythrocytes, respectively. Then, the animals were treated with DHA (3 mg/kg) or vehicle (DMSO) at the 8-day post-infection (dpi) for 7 days and with ASA (100 mg/kg, single dose), and analyses were performed at 9 or 15 dpi. Lung mechanics were performed, and lungs were collected for oedema evaluation and histological analyses. RESULTS PbNK65 infection led to lung oedema, as well as increased lung static elastance (Est, L), resistive (ΔP1, L) and viscoelastic (ΔP2, L) pressures, percentage of mononuclear cells, inflammatory infiltrate, hemorrhage, alveolar oedema, and alveolar thickening septum at 9 dpi. Mice that received DHA or DHA + ASA had an increase in Est, L, and CD36 expression on inflammatory monocytes and higher protein content on bronchoalveolar fluid (BALF). However, only the DHA-treated group presented a percentage of inflammatory monocytes similar to the control group and a decrease in ΔP1, L and ΔP2, L compared to Pb + DMSO. Also, combined treatment with DHA + ASA led to an impairment in diffuse alveolar damage score and lung function at 9 dpi. CONCLUSIONS Therapy with ASA maintained lung morpho-functional impairment triggered by PbNK65 infection, leading to a large influx of inflammatory monocytes to the lung tissue. Based on its deleterious effects in experimental MA-ALI, ASA administration or its treatment maintenance might be carefully reconsidered and further investigated in human malaria cases.
Collapse
Affiliation(s)
- Helena D'Anunciação de Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Camila Nunes Batista
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Maiara Nascimento Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Ana Carolina Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | | | - Rodrigo Jose Rocha Xavier Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Gonçalves Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo
- Laboratory of Pathology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hugo Caire de Castro Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil.
| |
Collapse
|
3
|
Feng X, Yu JL, Sun YF, Du CY, Shen Y, Zhang L, Kong WZ, Han S, Cheng Y. Plasmodium yoelii surface-related antigen (PySRA) modulates the host pro-inflammatory responses via binding to CD68 on macrophage membrane. Infect Immun 2024; 92:e0011324. [PMID: 38624215 PMCID: PMC11075460 DOI: 10.1128/iai.00113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1β, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Membrane/metabolism
- Cell Membrane/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Malaria/immunology
- Malaria/parasitology
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Plasmodium yoelii/immunology
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Xin Feng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jia-Li Yu
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Fan Sun
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Yan Du
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yao Shen
- Department of Food Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lu Zhang
- Department of General Practice, Rongxiang Street Community Health Service Center, Binhu District, Wuxi, China
| | - Wei-Zhong Kong
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Rodrigues PS, Azeredo MDF, Almeida NDS, de Almeida GGCG, Wanderley JLM, Seabra SH, DaMatta RA. Plasmodium chabaudi Merozoites Obtained through a Simpler Method Do Not Survive in Classically Activated Macrophages. Microorganisms 2024; 12:105. [PMID: 38257932 PMCID: PMC10818340 DOI: 10.3390/microorganisms12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria is caused by apicomplexan parasites of the Plasmodium genus. Plasmodium chabaudi is an excellent animal model for the study of human malaria caused by P. falciparum. Merozoites invade erythrocytes but are also found in other host cells including macrophages from the spleen and liver. Methodologies for obtaining merozoites usually involve treatment with protease inhibitors. However, merozoites obtained in this way may have their enzymatic profile altered and, therefore, are not ideal for cell-interaction assays. We report the obtainment of P. chabaudi merozoites naturally egressed from a synchronous erythrocyte population infected with schizonts forms. Merozoites had their infectivity and ultrastructure analyzed. Interaction assays were performed with mice erythrocytes and classically activated mice peritoneal macrophages, a very well-established classic model. Obtained merozoites were able to kill mice and efficiently infect erythrocytes. Interestingly, a lower merozoite:erythrocyte ratio resulted in a higher percentage of infected erythrocytes. We describe a simpler method for obtaining viable and infective merozoites. Classically activated macrophages killed merozoites, suggesting that these host cells may not serve as reservoirs for these parasites. These findings have implications for our understanding of P. chabaudi merozoite biology and may improve the comprehension of their host-parasite relationship.
Collapse
Affiliation(s)
- Pedro Souto Rodrigues
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| | - Milena de Farias Azeredo
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| | - Natália de Souza Almeida
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| | - Gisela Garcia Cabral Galaxe de Almeida
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| | | | - Sergio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (P.S.R.); (M.d.F.A.); (N.d.S.A.); (G.G.C.G.d.A.)
| |
Collapse
|
5
|
Cordeiro MCC, Tomé FD, Arruda FS, da Fonseca SG, Nagib PRA, Celes MRN. Curcumin as a Stabilizer of Macrophage Polarization during Plasmodium Infection. Pharmaceutics 2023; 15:2505. [PMID: 37896265 PMCID: PMC10610200 DOI: 10.3390/pharmaceutics15102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Malaria is a parasitic infection responsible for high morbidity and mortality rates worldwide. During the disease, phagocytosis of infected red blood cells by the macrophages induces the production of reactive oxygen (ROS) and nitrogen species (RNS), culminating in parasite death. Curcumin (CUR) is a bioactive compound that has been demonstrated to reduce the production of pro-inflammatory cytokines and chemokines produced by macrophages but to reduce parasitemia in infected mice. Hence, the main purpose of this study is to investigate whether curcumin may interfere with macrophage function and polarization after Plasmodium berghei infection in vitro. In our findings, non-polarized macrophage (M0), classically activated (M1), and alternatively activated (M2) phenotypes showed significantly increased phagocytosis of infected red blood cells (iRBCs) when compared to phagocytosis of uninfected red blood cells (RBCs) 3 h after infection. After 24 h, M1 macrophages exposed to RBCs + CUR showed greater elimination capacity when compared to macrophages exposed to iRBCs + CUR, suggesting the interference of curcumin with the microbicidal activity. Additionally, curcumin increased the phagocytic activity of macrophages when used in non-inflammatory conditions (M0) and reduced the inducible nitric oxide synthase (iNOS) and arginase activities in all macrophage phenotypes infected (M0, M1, and M2), suggesting interference in arginine availability by curcumin and balance promotion in macrophage polarization in neutral phenotype (M0). These results support the view of curcumin treatment in malaria as an adjuvant, promoting a balance between pro- and anti-inflammatory responses for a better clinical outcome.
Collapse
Affiliation(s)
- Maria Clara C. Cordeiro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Fernanda D. Tomé
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Felipe S. Arruda
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Simone Gonçalves da Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Patrícia R. A. Nagib
- Department of Microbiology, Immunology and Parasitology, Biological Science Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Mara R. N. Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| |
Collapse
|
6
|
Tumas KC, Xu F, Wu J, Hernandez M, Pattaradilokrat S, Xia L, Peng YC, Lavali AM, He X, Singh BK, Zhang C, Percopo C, Qi CF, Huang S, Long CA, Su XZ. Dysfunction of CD169 + macrophages and blockage of erythrocyte maturation as a mechanism of anemia in Plasmodium yoelii infection. Proc Natl Acad Sci U S A 2023; 120:e2311557120. [PMID: 37748059 PMCID: PMC10556621 DOI: 10.1073/pnas.2311557120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.
Collapse
Affiliation(s)
- Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Maricarmen Hernandez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sittiporn Pattaradilokrat
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Lu Xia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan410033, China
| | - Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Angela Musu Lavali
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Chen-Feng Qi
- Pathology Core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Suming Huang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State Cancer Institute, Hershey, PA17033
- Department of Pharmacology, Division of Pediatric Hematology and Oncology, Penn State Cancer Institute, Hershey, PA17033
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
7
|
Bastos RG, Capelli-Peixoto J, Laughery JM, Suarez CE, Ueti MW. Vaccination with an in vitro culture attenuated Babesia bovis strain safely protects highly susceptible adult cattle against acute bovine babesiosis. Front Immunol 2023; 14:1219913. [PMID: 37583702 PMCID: PMC10424928 DOI: 10.3389/fimmu.2023.1219913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Live in vivo attenuated Babesia bovis vaccines produced by sequential passages in splenectomized calves have historically been used to control acute bovine babesiosis in endemic areas worldwide. However, several constraints prevent the widespread use of these vaccines, including the need for several splenectomized calves to produce vaccine batches, and potential inconsistent parasite attenuation, which contraindicates their use for highly Babesia-susceptible adult cattle. Thus, the use of vaccines based on well-defined in vitro culture attenuated B. bovis strains emerges as a more sustainable and efficient alternative. Previous work demonstrated that the culture attenuated strain Att-S74-T3Bo is non-tick transmissible and able to safely protect calves against needle challenge with a B. bovis virulent strain. Methods and results Herein we evaluated safety and efficacy of Att-S74-T3Bo in preventing acute babesiosis in adult (>1.5 year of age) cattle. Results demonstrated that Att-S74-T3Bo vaccination of adult animals (n=5) induced self-limiting signs of acute infection and protected the vaccinated animals against challenge with the homologous virulent B. bovis strain Vir-S74-T3Bo. Att-S74-T3Bo-vaccinated adult cattle developed significant (P<0.05) monocytosis, with concomitant neutropenia and CD4+ leukopenia, in peripheral blood early after vaccination. Also, vaccinated animals developed a specific signature of pro- and anti-inflammatory cytokine expression in peripheral blood and significant levels of IgM, total IgG, IgG1, and IgG2 against the B. bovis immunodominant antigen RAP-1 CT. Strikingly, none of the vaccinated animals showed any signs of acute babesiosis after challenge with Vir-S74-T3Bo. In contrast, control adult cattle (n=5) showed pathognomonic symptoms of acute babesiosis, and significant decrease (P<0.05) in lymphocytes, monocytes, and neutrophils, starting on day 7 post-challenge. All control animals developed severe acute disease and were euthanized on days 10 through 12 days post-challenge. Discussion and conclusion Evidence from this study indicates that Att-S74-T3Bo safely protects highly susceptible adult cattle against challenge with a homologous virulent strain of B. bovis. In conclusion, Att-S74-T3Bo may be considered as a potential efficient and sustainable attenuated candidate vaccine strain to control acute bovine babesiosis in highly susceptible adult cattle. Future studies should focus on increasing the number of animals vaccinated, duration of immunity, and efficacy of this attenuated strain against heterologous virulent parasite strains.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Janaina Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Martin C, Clift S, Leisewitz A. Lung pathology of natural Babesia rossi infection in dogs. J S Afr Vet Assoc 2023; 94:59-69. [PMID: 37358318 DOI: 10.36303/jsava.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
A proportion of Babesia rossi infections in dogs are classified as complicated and one of the most lethal complications is acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Most dogs that die succumb within 24 hours of presentation. The pulmonary pathology caused by B. rossi in dogs has not been described. The aim of this study was to provide a thorough macroscopic, histological and immunohistochemical description of the lung changes seen in dogs naturally infected with B. rossi that succumbed to the infection. Death was invariably accompanied by alveolar oedema. Histopathology showed acute interstitial pneumonia characterised by alveolar oedema and haemorrhages, with increased numbers of mononuclear leucocytes in alveolar walls and lumens. Intra-alveolar polymerised fibrin aggregates were observed in just over half the infected cases. Immunohistochemistry showed increased numbers of MAC387- and CD204-reactive monocyte-macrophages in alveolar walls and lumens, and increased CD3-reactive T-lymphocytes in alveolar walls, compared with controls. These histological features overlap to some extent (but far from perfectly) with the histological pattern of lung injury referred to as the exudative stage of diffuse alveolar damage (DAD) as is quite commonly reported in ALI/ARDS.
Collapse
Affiliation(s)
- C Martin
- Idexx Laboratories (Pty) Ltd, South Africa
| | - S Clift
- Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - A Leisewitz
- Department of Clinical Sciences, Bailey Small Animal Teaching Hospital, Auburn University College of Veterinary Medicine, United States of America and Section of Small Animal Medicine, Companion Animal Clinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
9
|
Malaria-derived exosomes exacerbate liver injury during blood stage of Plasmodium berghei infection. Acta Trop 2023; 239:106815. [PMID: 36608749 DOI: 10.1016/j.actatropica.2023.106815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Liver injury is a common clinical feature of Plasmodium spp. infection and contributes to multi-organ failure of severe malaria. Malaria-derived exosomes (MD-Exos) have recently engaged as key mediators in parasite-host interactions, modulating the subsequent pathogenic process. However, the role of MD-Exos in malaria-related liver injury and the underlying mechanisms remain unclear. Herein, exosomes from C57BL/6 mice infected with or without P. berghei ANKA serum (namely inf-Exos or un-Exos) were isolated and characterized by transmission electron microscopy, western blotting, and nanoparticle tracking analysis. The miRNAs profiling between inf-Exos and un-Exos were generated using RNA-seq and qPCR. The functions of inf-Exos on liver injury were investigated after two types of exosomes injected into mice intravenously (i.v.), by examining histopathological and apoptotic changes, macrophage polarization, and pro-inflammatory response. The infected red blood cells-stimulated mouse Raw264.7 macrophage cells targeted by inf-Exos or un-Exos were cultured for further study and verification the potential mechanisms. We found that both inf-Exos and un-Exos displayed a typical cup-shaped structure with a diameter of 60-200 nm, and had a positive expression of exosomal markers (e.g., CD9, CD63, and CD81). Compared with infected control mice, the treatment of inf-Exos but not un-Exos dramatically enhanced peripheral blood parasitemia and ECM incidence, exacerbated liver histopathological damage, elevated numbers of liver apoptotic cells, CD68+and CD86+ macrophages. The CD68+-TREM-1+ macrophages in liver tissues and the mRNA levels of pro-inflammatory cytokines (e.g., iNOS, TNF-α, IL-1β, and IL-6) were increased by inf-Exos treatment in vivo. Meanwhile, the treatment of inf-Exos resulted in a substantial increase of the mRNA levels of CD86, iNOS, TNF-α, IL-1β, and IL-6, but led to a remarkable decrease of Bcl-6 and SOCS-1 in Raw264.7 cells stimulated with iRBC in vitro. Notably, compared to un-Exos, five types of miRNAs (including miR-10a-5p, miR-10b-5p, miR-155-5p, miR-205-5p, and miR-21a-5p), that were previously reported to target Bcl-6 or SOCS-1, present higher abundance on inf-Exos, as demonstrated by RNA-seq and qPCR. Collectively, our data suggest that inf-Exos exacerbate malaria-induced liver pathology via triggering excessive pro-inflammatory response and promoting macrophage M1 polarization. Our findings will provide new insights into the roles of inf-Exos in malaria parasite-host interaction and pathogenesis of liver injury.
Collapse
|
10
|
The enemy within: lipid asymmetry in intracellular parasite-host interactions. Emerg Top Life Sci 2023; 7:67-79. [PMID: 36820809 DOI: 10.1042/etls20220089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular threats during replication and growth. In addition to many nutrients, parasites scavenge host cell lipids to establish complex membrane structures inside their host cells. To counteract the disturbance of the host cell plasma membrane they have evolved strategies to regulate phospholipid asymmetry. In this review, the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the target and immune cells of the host are highlighted. The malaria parasite Plasmodium infects red blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol depletion and an altered intracellular calcium ion homeostasis can lead to disruption in erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS). Binding to the PS receptor on monocytes and macrophages results in phagocytosis and destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by actively enhancing PS exposure on their surface to trigger increased infection of macrophages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair functions as a flippase important for exocytosis of specialised secretory organelles. Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases, floppases, and scramblases, will be central for the recognition of the molecular mechanisms of parasite/host interactions. Ultimately, a better understanding of parasitic diseases, host immunity, and immune escape by parasites require more research on the dynamics of phospholipid bilayers of parasites and the infected host cell.
Collapse
|
11
|
Aksić J, Genčić M, Stojanović N, Radulović N, Zlatković D, Dimitrijević M, Stojanović-Radić Z, Srbljanović J, Štajner T, Jovanović L. New Iron Twist to Chloroquine─Upgrading Antimalarials with Immunomodulatory and Antimicrobial Features. J Med Chem 2023; 66:2084-2101. [PMID: 36661364 DOI: 10.1021/acs.jmedchem.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, upgraded chloroquine (CQ) derivatives capable of overcoming Plasmodium resistance and, at the same time, suppressing excessive immune response and risk of concurrent bacteremia were developed. Twelve new ferrocene-CQ hybrids tethered with a small azathia heterocycle (1,3-thiazolidin-4-one, 1,3-thiazinan-4-one, or 5-methyl-1,3-thiazolidin-4-one) were synthesized and fully characterized. All hybrids were evaluated for their in vitro antiplasmodial, antimicrobial, and immunomodulatory activities. Additional assays were performed on selected hybrids to gain insights into their mode of action. Although only hybrid 4a was more potent than the parent drug toward CQ-resistant Dd2 Plasmodium falciparum strain, several other hybrids (such as 6b, 6c, and 6d) manifested substantially improved antimicrobial and immunomodulatory properties. Interesting structure-activity relationship data were obtained, hinting at future research for the development of new multitarget chemotherapies for malaria and other infectious diseases complicated by drug resistance, bacterial co-infection, and immune-driven pathology issues.
Collapse
Affiliation(s)
- Jelena Aksić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marija Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Nikola Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevar Zorana D̵ind̵ića 81, 18000Niš, Serbia
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Jelena Srbljanović
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Tijana Štajner
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Ljiljana Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000Novi Sad, Serbia
| |
Collapse
|
12
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Khowawisetsut L, Vimonpatranon S, Lekmanee K, Sawasdipokin H, Srimark N, Chotivanich K, Pattanapanyasat K. Differential Effect of Extracellular Vesicles Derived from Plasmodium falciparum-Infected Red Blood Cells on Monocyte Polarization. Int J Mol Sci 2023; 24:2631. [PMID: 36768950 PMCID: PMC9916780 DOI: 10.3390/ijms24032631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte's functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16- classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended.
Collapse
Affiliation(s)
- Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sinmanus Vimonpatranon
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kittima Lekmanee
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Hathai Sawasdipokin
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narinee Srimark
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
14
|
Kalkal M, Das J. Current understanding of the immune potential of B-cell subsets in malarial pathogenesis. Front Microbiol 2023; 14:1046002. [PMID: 36778886 PMCID: PMC9909418 DOI: 10.3389/fmicb.2023.1046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
In the past several decades, our understanding of how B cells are generated and what function they perform has continued to advance. It is widely accepted that B-cell subsets play a critical role in mediating immune response. Surprisingly, human and murine malarial infections cause major alterations in the composition of B-cell subsets in both the spleen and periphery. Multiple B-cell subsets are well characterized in murine models following primary and secondary infection, although in human malarial infection, these subsets are not well defined. Furthermore, a rare known function of B cells includes the potential role of regulating the activities of other cells in the body as regulatory cells. Plasmodium infection strongly alters the frequency of these regulatory B cells indicating the immunoregulatory function of B cells in malarial. It is important to note that these subsets, taken together, form the cellular basis of humoral immune responses, allowing protection against a wide array of Plasmodium antigens to be achieved. However, it remains a challenge and an important area of investigation to understand how these B-cell subsets work together to provide protection against Plasmodium infection.
Collapse
|
15
|
Ty M, Sun S, Callaway PC, Rek J, Press KD, van der Ploeg K, Nideffer J, Hu Z, Klemm S, Greenleaf W, Donato M, Tukwasibwe S, Arinaitwe E, Nankya F, Musinguzi K, Andrew D, de la Parte L, Mori DM, Lewis SN, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Blish C, Utz PJ, Khatri P, Dorsey G, Kamya M, Boyle M, Feeney M, Ssewanyana I, Jagannathan P. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci Transl Med 2023; 15:eadd9012. [PMID: 36696483 PMCID: PMC9976268 DOI: 10.1126/scitranslmed.add9012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
Collapse
Affiliation(s)
- Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Michele Donato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Dean Andrew
- Queensland Institute for Medical Research, Queensland, Australia
| | | | | | | | - Saki Takahashi
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Blish
- Department of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P J Utz
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Michelle Boyle
- Queensland Institute for Medical Research, Queensland, Australia
| | - Margaret Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Storm J, Camarda G, Haley MJ, Brough D, Couper KN, Craig AG. Plasmodium falciparum-infected erythrocyte co-culture with the monocyte cell line THP-1 does not trigger production of soluble factors reducing brain microvascular barrier function. PLoS One 2023; 18:e0285323. [PMID: 37141324 PMCID: PMC10159134 DOI: 10.1371/journal.pone.0285323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Monocytes contribute to the pro-inflammatory immune response during the blood stage of a Plasmodium falciparum infection, but their precise role in malaria pathology is not clear. Besides phagocytosis, monocytes are activated by products from P. falciparum infected erythrocytes (IE) and one of the activation pathways is potentially the NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multi-protein complex that leads to the production of interleukin (IL)-1β. In cerebral malaria cases, monocytes accumulate at IE sequestration sites in the brain microvascular and the locally produced IL-1β, or other secreted molecules, could contribute to leakage of the blood-brain barrier. To study the activation of monocytes by IE within the brain microvasculature in an in vitro model, we co-cultured IT4var14 IE and the monocyte cell line THP-1 for 24 hours and determined whether generated soluble molecules affect barrier function of human brain microvascular endothelial cells, measured by real time trans-endothelial electrical resistance. The medium produced after co-culture did not affect endothelial barrier function and similarly no effect was measured after inducing oxidative stress by adding xanthine oxidase to the co-culture. While IL-1β does decrease barrier function, barely any IL-1β was produced in the co- cultures, indicative of a lack of or incomplete THP-1 activation by IE in this co-culture model.
Collapse
Affiliation(s)
- Janet Storm
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
17
|
Bastos RG, Laughery JM, Ozubek S, Alzan HF, Taus NS, Ueti MW, Suarez CE. Identification of novel immune correlates of protection against acute bovine babesiosis by superinfecting cattle with in vitro culture attenuated and virulent Babesia bovis strains. Front Immunol 2022; 13:1045608. [PMID: 36466866 PMCID: PMC9716085 DOI: 10.3389/fimmu.2022.1045608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 08/12/2023] Open
Abstract
The apicomplexan tickborne parasites Babesia bovis and B. bigemina are the major causative agents of bovine babesiosis, a disease that negatively affects the cattle industry and food safety around the world. The absence of correlates of protection represents one major impediment for the development of effective and sustainable vaccines against bovine babesiosis. Herein we superinfected cattle with attenuated and virulent strains of B. bovis to investigate immune correlates of protection against acute bovine babesiosis. Three 6-month-old Holstein calves were infected intravenously (IV) with the in vitro culture attenuated Att-S74-T3Bo B. bovis strain (106 infected bovine red blood cells (iRBC)/calf) while three age-matched Holstein calves were inoculated IV with normal RBC as controls (106 RBC/calf). All Att-S74-T3Bo-infected calves showed a significant increase in temperature early after inoculation but recovered without treatment. Att-S74-T3Bo-infected calves also developed: (a) monocytosis, neutropenia, and CD4+ lymphopenia in peripheral blood on days 3 to 7 post-inoculation; (b) significant levels of TNFα, CXCL10, IFNγ, IL-4, and IL-10 in sera at day 6 after infection; and (c) IgM and IgG against B. bovis antigens, starting at days 10 and 30 post-inoculation, respectively. At 46 days post-Att-S74-T3Bo inoculation, all experimental calves were infected IV with the homologous virulent B. bovis strain Vir-S74-T3Bo (107 iRBC/calf). All Att-S74-T3Bo-infected calves survived superinfection with Vir-S74-T3Bo without displaying signs of acute babesiosis. In contrast, control animals showed signs of acute disease, starting at day 10 post-Vir-S74-T3Bo infection, and two of them were humanely euthanized at days 13 and 14 after inoculation due to the severity of their symptoms. Also, control calves showed higher (P<0.05) parasite load in peripheral blood compared to animals previously exposed to Att-S74-T3Bo. No significant alterations in the profile of leukocytes and cytokines were observed in Att-S74-T3Bo-inoculated after Vir-S74-T3Bo infection. In conclusion, data demonstrate novel changes in the profile of blood immune cells and cytokine expression in peripheral blood that are associated with protection against acute bovine babesiosis. These identified immune correlates of protection may be useful for designing effective and sustainable vaccines against babesiosis in cattle.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Naomi S. Taus
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| |
Collapse
|
18
|
Dobbs KR, Dent AE, Embury P, Ogolla S, Koech E, Midem D, Kazura JW. Monocyte epigenetics and innate immunity to malaria: yet another level of complexity? Int J Parasitol 2022; 52:717-720. [PMID: 35905779 DOI: 10.1016/j.ijpara.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022]
Abstract
Children under the age of 5 years living in areas of moderate to high malaria transmission are highly susceptible to clinical malaria with fever that prompts treatment of blood stage infection with anti-malarial drugs. In contrast, older school age children frequently experience subclinical malaria, i.e. chronic Plasmodium falciparum parasitemia without fever or other clinical symptoms. The role of innate immune cells in regulating inflammation at a level that is sufficient to control the parasite biomass, while at the same time maintaining a disease-tolerant clinical phenotype, i.e., subclinical malaria, is not well understood. Recent studies suggest that host epigenetic mechanisms underlie the innate immune homeostasis associated with subclinical malaria. This Current Opinion article presents evidence supporting the notion that modifications of the host monocyte/macrophage epigenome regulate innate immune functions pertinent to subclinical malaria.
Collapse
Affiliation(s)
- Katherine R Dobbs
- Centre for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC:4983, Cleveland, OH 44106, USA; Division of Pediatric Infectious Diseases, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Arlene E Dent
- Centre for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC:4983, Cleveland, OH 44106, USA; Division of Pediatric Infectious Diseases, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Paula Embury
- Centre for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC:4983, Cleveland, OH 44106, USA
| | | | | | - David Midem
- Chulaimbo Sub-county Hospital, Kisumu County, Kenya
| | - James W Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC:4983, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Aguilar-Castro J, Cervantes-Candelas LA, Buendía-González FO, Fernández-Rivera O, Nolasco-Pérez TDJ, López-Padilla MS, Chavira-Ramírez DR, Cervantes-Sandoval A, Legorreta-Herrera M. Testosterone induces sexual dimorphism during infection with Plasmodium berghei ANKA. Front Cell Infect Microbiol 2022; 12:968325. [PMID: 36237427 PMCID: PMC9551224 DOI: 10.3389/fcimb.2022.968325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is the most lethal parasitic disease worldwide; men exhibit higher mortality and more severe symptomatology than women; however, in most studies of immune response in malaria, sex is not considered a variable. Sex hormones 17β-oestradiol and testosterone are responsible for the main physiological differences between sexes. When interacting with their receptors on different immune cells, they modify the expression of genes that modulate cell proliferation, differentiation, and synthesis of cytokines. The immunosuppressive activity of testosterone is well accepted; however, its participation in the sexual dimorphism of the immune response to malaria has not been studied. In this work, we analysed whether altering the concentration of testosterone, through increasing the concentration of this hormone for exogenous administration for three weeks, or gonadectomy before infection with Plasmodium berghei ANKA affects different cells of the immune response necessary for parasite clearance. We also assessed the concentration of pro-and anti-inflammatory cytokines in male and female CBA/Ca mice infected or not with the parasite. Our results show that testosterone changes affect females more than males, resulting in sex-associated patterns. Testosterone administration increased parasitaemia in intact males while reducing it in intact females leading to a dimorphic pattern. In addition, gonadectomy increased parasitaemia in both sexes. Moreover, testosterone administration prevented both weight loss caused by the infection in females and hypothermia in gonadectomized mice of both sexes. Boosting testosterone concentration increased CD3+ and CD8+ populations but decreased the B220+ cells exclusively in females. Additionally, testosterone reduced IFN-γ concentration and increased IL-6 levels only in females, while in males, testosterone increased the number of NK cells. Finally, gonadectomy decreased TNF-α concentration in both sexes. Our results demonstrate that testosterone induces different patterns depending on sex and testosterone concentration. The results of this work contribute to understanding the impact of modifying testosterone concentration on the immune response specific against Plasmodium and the participation of this hormone in sexual dimorphism in malaria.
Collapse
Affiliation(s)
- Jesús Aguilar-Castro
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Teresita de Jesús Nolasco-Pérez
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Monserrat Sofía López-Padilla
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando Cervantes-Sandoval
- Laboratorio de Aplicaciones Computacionales, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Martha Legorreta-Herrera,
| |
Collapse
|
20
|
Lv L, Xu Z, Zhao M, Gao J, Jiang R, Wang Q, Shi X. Mannose inhibits Plasmodium parasite growth and cerebral malaria development via regulation of host immune responses. Front Immunol 2022; 13:859228. [PMID: 36211381 PMCID: PMC9546034 DOI: 10.3389/fimmu.2022.859228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
D-mannose can be transported into a variety of cells via glucose transporter (GLUT), and supraphysiological levels of D-mannose impairs tumor growth and modulates immune cell function through mechanisms such as interference with glycolysis and induction of oxidative stress. Blood-stage Plasmodium mainly depends on glycolysis for energy supply and pathological immune response plays a vital role in cerebral malaria. However, it is not clear whether mannose affects malaria blood-stage infection. Here, we fed D-mannose to Plasmodium berghei-infected mice and found weight loss and reduced parasitemia without apparent side effects. Compromised parasitemia in C57BL/6 mice was accompanied by an increase in splenic macrophages compared to an untreated group. When mannose was applied to a rodent experimental cerebral malaria (ECM) model, the incidence of ECM decreased. Expression of activation marker CD69 on T cells in peripheral blood and the brain were reduced, and cerebral migration of activated T cells was prevented by decreased expression of CXCR3. These findings suggest that mannose inhibits Plasmodium infection by regulating multiple host immune responses and could serve as a potential strategy for facilitating malaria treatment.
Collapse
Affiliation(s)
- Li Lv
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihao Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Meichen Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Jian Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Rumeng Jiang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| | - Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| |
Collapse
|
21
|
Abad P, Marín-García P, Heras M, Fobil JN, Hutchful AG, Diez A, Puyet A, Reyes-Palomares A, Azcárate IG, Bautista JM. Microscopic and submicroscopic infection by Plasmodium falciparum: Immunoglobulin M and A profiles as markers of intensity and exposure. Front Cell Infect Microbiol 2022; 12:934321. [PMID: 36118030 PMCID: PMC9478039 DOI: 10.3389/fcimb.2022.934321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Assessment of serological Plasmodium falciparum–specific antibodies in highly endemic areas provides valuable information about malaria status and parasite exposure in the population. Although serological evidence of Plasmodium exposure is commonly determined by Plasmodium-specific immunoglobulin G (IgG) levels; IgM and IgA are likely markers of malaria status that remain relatively unexplored. Previous studies on IgM and IgA responses have been based on their affinity for single antigens with shortage of immune responses analysis against the whole Plasmodium proteome. Here, we provide evidence of how P. falciparum infection triggers the production of specific IgM and IgA in plasma and its relationship with parasite density and changes in hematological parameters. A total of 201 individuals attending a hospital in Breman Asikuma, Ghana, were recruited into this study. Total and P. falciparum–specific IgM, IgA, and IgG were assessed by ELISA and examined in relation to age (0–5, 14–49, and ≥50 age ranges); infection (submicroscopic vs. microscopic malaria); pregnancy and hematological parameters. Well-known IgG response was used as baseline control. P. falciparum–specific IgM and IgA levels increased in the population with the age, similarly to IgG. These data confirm that acquired humoral immunity develops by repeated infections through the years endorsing IgM and IgA as exposure markers in endemic malaria regions. High levels of specific IgA and IgM in children were associated with microscopic malaria and worse prognosis, because most of them showed severe anemia. This new finding shows that IgM and IgA may be used as diagnostic markers in this age group. We also found an extremely high prevalence of submicroscopic malaria (46.27% on average) accompanied by IgM and IgA levels indistinguishable from those of uninfected individuals. These data, together with the observed lack of sensitivity of rapid diagnostic tests (RDTs) compared to PCR, invoke the urgent need to implement diagnostic markers for submicroscopic malaria. Overall, this study opens the potential use of P. falciparum–specific IgM and IgA as new serological markers to predict malaria status in children and parasite exposure in endemic populations. The difficulties in finding markers of submicroscopic malaria are highlighted, emphasizing the need to explore this field in depth.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marcos Heras
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred G. Hutchful
- Laboratory of Hematology and Infectious Diseases, Our Lady of Grace Hospital, Breman-Asikuma, Ghana
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel G. Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| |
Collapse
|
22
|
Brandi J, Riehn M, Hadjilaou A, Jacobs T. Increased Expression of Multiple Co-Inhibitory Molecules on Malaria-Induced CD8 + T Cells Are Associated With Increased Function Instead of Exhaustion. Front Immunol 2022; 13:878320. [PMID: 35874786 PMCID: PMC9301332 DOI: 10.3389/fimmu.2022.878320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
23
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
24
|
TREJO IMELDA, BÜYÜKKAHRAMAN MEHTAPLAFCI, KOJOUHAROV HRISTOV. MATHEMATICAL INSIGHTS INTO THE DYNAMICS OF INNATE IMMUNE RESPONSE DURING INFLAMMATION. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Innate immune system cells activate in response to infection and trigger an acute inflammatory reaction to restore tissue homeostasis and promote subsequent tissue repair. Their activation and functions must be very well regulated to avoid tissue damage, organ dysfunction, or even death. In this work, a new set of mathematical models is presented to examine the dynamics of the innate immune system response to tissue damage and provide further understanding of the role of the innate immune system during the early stages of an inflammatory response. Different damaged cells production functions are proposed to represent the effect of secondary tissue damage by the innate immune system. The stability and bifurcation analyses of the model reveal that there is an important threshold parameter that can be controlled in order to avoid sustained chronic inflammation and secure a successful healing outcome. A set of numerical simulations is also performed to support the presented theoretical results and demonstrate the medical applicability of the new mathematical model.
Collapse
Affiliation(s)
- IMELDA TREJO
- Theoretical Biology and Biophysics Group (T-6), Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - HRISTO V. KOJOUHAROV
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| |
Collapse
|
25
|
Ramirez Ramirez AD, de Jesus MCS, Rossit J, Reis NF, Santos-Filho MC, Sudré AP, de Oliveira-Ferreira J, Baptista ARDS, Storti-Melo LM, Machado RLD. Association of toll-like receptors in malaria susceptibility and immunopathogenesis: A meta-analysis. Heliyon 2022; 8:e09318. [PMID: 35520620 PMCID: PMC9065626 DOI: 10.1016/j.heliyon.2022.e09318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the induced immune response in malaria. Although the potential roles of TLRs have been described, it is necessary to elucidate which of these receptors may actually have an impact on the immunopathogenesis of the disease. This article performed a meta-analysis adhered to the PRISMA statement on TLRs studied in malaria by Plasmodium falciparum and Plasmodium vivax and its impact on susceptibility and pathogenesis during malaria. A search of the literature was undertaken in PubMed, LILACS and SciELO published until June 30th, 2020. The risk of bias was calculated using the Joanna Briggs Institute's Critical Review Checklist. Later, based on the inclusion and/or exclusion criteria, 17 out of 296 articles were harvested for this systematic review, the meta-analysis included studies incorporating 6,747 cases and 8,983 controls. The results showed that only TLR1, TLR9 and TLR4 receptors were associated with parasitemia, TLR2 and TLR6 were related with severity and none TLR was correlated with susceptibility. The data described here should be taken with caution, since the current evidence is limited and inconsistent. More studies are needed given that the results may change depending on the region and genetic background of the populations.
Collapse
Affiliation(s)
- Aína Danaisa Ramirez Ramirez
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Myrela Conceição Santos de Jesus
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Júlia Rossit
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nathália Faria Reis
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcelo Cerilo Santos-Filho
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Adriana Pittella Sudré
- Laboratory of Parasites Molecular Biology, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Luciane Moreno Storti-Melo
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Sharma D, Priest H, Wilcox A. Pseudoreticulocytosis by the ADVIA 2120 Hematology Analyzer and Other Hematologic Changes in a Cynomolgus Macaque ( Macaca fascicularis) With Malaria. Toxicol Pathol 2022; 50:684-692. [DOI: 10.1177/01926233221083217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Important hematologic changes can be observed in nonhuman primates with malaria, including inaccurate reticulocyte counts by the ADVIA 2120 hematology analyzer. A 5-year-old male purpose-bred cynomolgus macaque ( Macaca fascicularis) imported from a commercial source in Cambodia was enrolled in a nonclinical toxicity study investigating the effects of an immunomodulatory pharmaceutical agent. On study day 22, an increase in large unstained cells (LUCs), due to increased monocytes (2.20 × 103/µl, reference interval: 0.17-0.76 × 103/µl), was reported by the analyzer during a scheduled hematologic evaluation, which prompted blood smear review and revealed that the macaque had a high burden of Plasmodium spp.. The macaque did not have clinical signs for the infection at this time point. Progressively higher parasite burdens and persistently increased monocytes (markedly increased by study day 56, 10.38 × 103/µl) were observed at subsequent hematologic evaluations. New Methylene Blue stain manual reticulocyte counts were performed on study day 43 and at later time points, and showed that the analyzer reported erroneous higher reticulocyte counts (study day 43: +6.7%, +266.2 × 109/L; study day 50: +18.9%, +409.8 × 109/L) compared with the manual reticulocyte counts (pseudoreticulocytosis). The magnitude of regenerative response was considered inadequate for the severity of anemia at these time points. Atypical reticulocyte scatter plot distributions from the analyzer were also observed at time points with high parasite burdens, and combined with increased LUCs, may suggest high burden parasitemia. Verification of automated reticulocyte counts is important in cases with high malarial parasite burdens and the recognition of pseudoreticulocytosis is prudent in assessing appropriateness of the regenerative response. Increases in monocytes correlated with higher parasite burdens and marked increases may be an indicator of advanced disease.
Collapse
Affiliation(s)
- Diya Sharma
- Charles River Laboratories, Reno, Nevada, USA
| | | | | |
Collapse
|
27
|
Chen S, Gao Y, Fan Y, Guo S, Zhou J, Liu T, Xu W. The Dynamic Change of Immune Responses Between Acute and Recurrence Stages of Rodent Malaria Infection. Front Microbiol 2022; 13:844975. [PMID: 35250958 PMCID: PMC8891988 DOI: 10.3389/fmicb.2022.844975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria infections are persistent as frequent recrudescence of the disease may occur following the acute infection stage, but the different immune responses that control the acute and recrudescence stages are still largely unknown. Using single-cell RNA sequencing (scRNA-seq), we showed that the number of Th1 and plasma cells in the spleen was significantly reduced during the recurrence stage compared to the acute stage of Plasmodium chabaudi chabaudi AS (P. chabaudi) infection. Additionally, the ability of both CD4+ T cell responses and B cells to control P. chabaudi recurrence was significantly reduced compared to their roles in the control of acute infection. In contrast, the number of innate immune cells, including red pulp macrophages (RPMs), gamma delta (γδ) T cells, and Dendritic cells (DCs) were significantly increased during the recurrence stage and showed to be critical for P. chabaudi infection recurrence control. Thus, our data strongly suggest the complementary role of innate immune responses in controlling malaria recrudescence when adaptive immune responses are suppressed. These findings shed new light on the development of immune interventions against malaria.
Collapse
Affiliation(s)
- Suilin Chen
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Yuanli Gao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Yongling Fan
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Shuai Guo
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Jian Zhou
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jian Zhou,
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Taiping Liu,
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Wenyue Xu,
| |
Collapse
|
28
|
Zelter T, Granot Z, Dzikowski R. Assaying Interactions Between Neutrophils and Plasmodium falciparum-Infected Red Blood Cells. Methods Mol Biol 2022; 2470:629-639. [PMID: 35881379 DOI: 10.1007/978-1-0716-2189-9_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmodium falciparum, which causes the deadliest form of human malaria, is able to evade antibody-mediated immune responses through switches in expression of surface antigens. Thus, over the years, the focus of most research has been on the role of the adaptive immune response in the course of malaria. However, in recent years there is mounting evidence for the role of the innate immune response to Plasmodium infections. In this context, very little is known on the protective role of neutrophils against blood-stage parasites and the mechanisms by which they recognize and eliminate infected red blood cells. Here we describe several useful methodologies that enable the study and quantification of the interactions between human neutrophils and P. falciparum-infected red blood cells.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
29
|
Kordes M, Ormond L, Rausch S, Matuschewski K, Hafalla JCR. TLR9 signalling inhibits Plasmodium liver infection by macrophage activation. Eur J Immunol 2021; 52:270-284. [PMID: 34773640 DOI: 10.1002/eji.202149224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches.
Collapse
Affiliation(s)
- Maximilian Kordes
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Louise Ormond
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sebastian Rausch
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Kamiya T, Davis NM, Greischar MA, Schneider D, Mideo N. Linking functional and molecular mechanisms of host resilience to malaria infection. eLife 2021; 10:e65846. [PMID: 34636723 PMCID: PMC8510579 DOI: 10.7554/elife.65846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
It remains challenging to understand why some hosts suffer severe illnesses, while others are unscathed by the same infection. We fitted a mathematical model to longitudinal measurements of parasite and red blood cell density in murine hosts from diverse genetic backgrounds to identify aspects of within-host interactions that explain variation in host resilience and survival during acute malaria infection. Among eight mouse strains that collectively span 90% of the common genetic diversity of laboratory mice, we found that high host mortality was associated with either weak parasite clearance, or a strong, yet imprecise response that inadvertently removes uninfected cells in excess. Subsequent cross-sectional cytokine assays revealed that the two distinct functional mechanisms of poor survival were underpinned by low expression of either pro- or anti-inflammatory cytokines, respectively. By combining mathematical modelling and molecular immunology assays, our study uncovered proximate mechanisms of diverse infection outcomes across multiple host strains and biological scales.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - David Schneider
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
31
|
Pack AD, Schwartzhoff PV, Zacharias ZR, Fernandez-Ruiz D, Heath WR, Gurung P, Legge KL, Janse CJ, Butler NS. Hemozoin-mediated inflammasome activation limits long-lived anti-malarial immunity. Cell Rep 2021; 36:109586. [PMID: 34433049 PMCID: PMC8432597 DOI: 10.1016/j.celrep.2021.109586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/04/2022] Open
Abstract
During acute malaria, most individuals mount robust inflammatory responses that limit parasite burden. However, long-lived sterilizing anti-malarial memory responses are not efficiently induced, even following repeated Plasmodium exposures. Using multiple Plasmodium species, genetically modified parasites, and combinations of host genetic and pharmacologic approaches, we find that the deposition of the malarial pigment hemozoin directly limits the abundance and capacity of conventional type 1 dendritic cells to prime helper T cell responses. Hemozoin-induced dendritic cell dysfunction results in aberrant Plasmodium-specific CD4 T follicular helper cell differentiation, which constrains memory B cell and long-lived plasma cell formation. Mechanistically, we identify that dendritic cell-intrinsic NLRP3 inflammasome activation reduces conventional type 1 dendritic cell abundance, phagocytosis, and T cell priming functions in vivo. These data identify biological consequences of hemozoin deposition during malaria and highlight the capacity of the malarial pigment to program immune evasion during the earliest events following an initial Plasmodium exposure.
Collapse
Affiliation(s)
- Angela D Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | - Zeb R Zacharias
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Kevin L Legge
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden 233 ZA, the Netherlands
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
32
|
Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J 2021; 20:319. [PMID: 34271941 PMCID: PMC8284020 DOI: 10.1186/s12936-021-03849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
Collapse
Affiliation(s)
| | - Ida May Jen Ng
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Medicine, The Doherty Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host Microbe 2021; 29:894-903.e5. [PMID: 33989514 DOI: 10.1016/j.chom.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023]
Abstract
Babesia spp. are tick-transmitted intra-erythrocytic protozoan parasites that infect humans and animals, causing a flu-like illness and hemolytic anemia. There is currently no human vaccine available. People most at risk of severe disease are the elderly, immunosuppressed, and asplenic individuals. B. microti and B. divergens are the predominant species affecting humans. Here, we present a whole-parasite Babesia vaccine. To establish proof-of-principle, we employed chemically attenuated B. microti parasitized red blood cells from infected mice. To aid clinical translation, we produced liposomes containing killed parasite material. Vaccination significantly reduces peak parasitemia following challenge. B cells and anti-parasite antibodies do not significantly contribute to vaccine efficacy. Protection is abrogated by the removal of CD4+ T cells or macrophages prior to challenge. Importantly, splenectomized mice are protected by vaccination. To further facilitate translation, we prepared a culture-based liposomal vaccine and demonstrate that this performs as a universal vaccine inducing immunity against different human Babesia species.
Collapse
|
34
|
Nambou K, Nie X, Tong Y, Anakpa M. Weighted gene co-expression network analysis and drug-gene interaction bioinformatics uncover key genes associated with various presentations of malaria infection in African children and major drug candidates. INFECTION GENETICS AND EVOLUTION 2021; 89:104723. [PMID: 33444859 DOI: 10.1016/j.meegid.2021.104723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/06/2023]
Abstract
Malaria is a fatal parasitic disease with unelucidated pathogenetic mechanism. Herein, we aimed to uncover genes associated with different clinical aspects of malaria based on the GSE1124 dataset that is publicly accessible by using WGCNA. We obtained 16 co-expression modules and their correlations with clinical features. Using the MCODE tool, we identified THEM4, STYX, VPS36, LCOR, KIAA1143, EEA1, RAPGEF6, LOC439994, ZBTB33, PTPN22, ESCO1, and KLF3 as hub genes positively associated with Plasmodium falciparum infection (ASPF). These hub genes were involved in the biological processes of endosomal transport, regulation of natural killer cell proliferation, and KEGG pathways of endocytosis and fatty acid elongation. For the purple module negatively correlated with ASPF, we identified 19 hub genes that were involved in the biological processes of positive regulation of cellular protein catabolic process and KEGG pathways of other glycan degradation. For the salmon module positively correlated with severe malaria anemia (SMA), we identified 17 hub genes that were among those driving the biological processes of positive regulation of erythrocyte differentiation. For the brown module positively correlated with cerebral malaria (CM), we identified eight hub genes and these genes participated in phagolysosome assembly and positive regulation of exosomal secretion, and animal mitophagy pathway. For the tan module negatively correlated with CM, we identified four hub genes that were involved in CD8-positive, alpha-beta T cell differentiation and notching signaling pathway. These findings may provide new insights into the pathogenesis of malaria and help define new diagnostic and therapeutic approaches for malaria patients.
Collapse
Affiliation(s)
- Komi Nambou
- Shenzhen Nambou1 Biotech Company Limited, West Silicon Valley, No. 5010 Bao'an Avenue, Shenzhen 518000, Guangdong Province, China.
| | - Xiaoling Nie
- Shenzhen Nambou1 Biotech Company Limited, West Silicon Valley, No. 5010 Bao'an Avenue, Shenzhen 518000, Guangdong Province, China
| | - Yin Tong
- Shenzhen Nambou1 Biotech Company Limited, West Silicon Valley, No. 5010 Bao'an Avenue, Shenzhen 518000, Guangdong Province, China
| | - Manawa Anakpa
- Key Laboratory of Trustworthy Distributed Computing and Service, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Ministry of Education, Beijing 100876, China
| |
Collapse
|
35
|
Bharti AR, McCutchan JA, Umlauf A, Okwuegbuna OK, Letendre S, Cherner M, Burdo T, Jumare J, Williams K, Blattner W, Royal W. Asymptomatic Malaria Co-infection of HIV-Infected Adults in Nigeria: Prevalence of and Impact on Cognition, Mood, and Biomarkers of Systemic Inflammation. J Acquir Immune Defic Syndr 2021; 86:91-97. [PMID: 33021552 PMCID: PMC10742372 DOI: 10.1097/qai.0000000000002516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV and malaria are associated with immunological perturbations and neurocognitive disorders even when asymptomatic. However, the effect of asymptomatic malaria (AM) in HIV-infected adults on neurocognitive impairment (NCI) is not well understood. This study investigated the biomarkers of systemic inflammation and neurocognition in dually infected Nigerian adults. METHODS We assessed the HIV and AM status of 269 adults and measured their global and domain-specific neurocognition and depression using standardized measures. Blood levels of sCD14 and sCD163 were also measured. RESULTS The mean age of the participants (n = 269) was 33 years, 62% were women, and AM among HIV+ and HIV- was similar (36% versus 37%). NCI was found in 23% (62/269) of participants. HIV+/AM+ had a higher prevalence of impaired learning and executive functions and were more depressed than HIV-/AM- or HIV+/AM-. HIV+ with CD4 T-cell counts ≤200/µL were more impaired in the learning domain than those with >200/µL. HIV+/AM+ group had higher levels of sCD14 compared to the other 3 groups and higher levels of sCD163 than the HIV-/AM- group. Higher levels of sCD14 and sCD163 were each associated with NCI. The sCD163 (log10) levels were higher for those with 1+ versus 2+ parasitemia level. CONCLUSIONS HIV and AM coinfection was associated with an increased risk of reduced learning and executive functions, and elevated systemic inflammation. Mood was more depressed in HIV patients with than those without AM. The mechanisms and long-term effects on neurocognition and depression among HIV+/AM+ individuals should be studied because this coinfection is common globally.
Collapse
Affiliation(s)
- Ajay R. Bharti
- University of California San Diego, School of Medicine, San Diego, CA
| | | | - Anya Umlauf
- University of California San Diego, School of Medicine, San Diego, CA
| | | | - Scott Letendre
- University of California San Diego, School of Medicine, San Diego, CA
| | - Mariana Cherner
- University of California San Diego, School of Medicine, San Diego, CA
| | - Tricia Burdo
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Jibreel Jumare
- University of Maryland, School of Medicine, Baltimore, MD
| | | | | | - Walter Royal
- University of Maryland, School of Medicine, Baltimore, MD
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| |
Collapse
|
36
|
Abstract
Lactic acidosis and hyperlactatemia are common metabolic disturbances in patients with severe malaria. Lactic acidosis causes physiological adverse effects, which can aggravate the outcome of malaria. Despite its clear association with mortality in malaria patients, the etiology of lactic acidosis is not completely understood. In this review, the possible contributors to lactic acidosis and hyperlactatemia in patients with malaria are discussed. Both increased lactate production and impaired lactate clearance may play a role in the pathogenesis of lactic acidosis. The increased lactate production is caused by several factors, including the metabolism of intraerythrocytic Plasmodium parasites, aerobic glycolysis by activated immune cells, and an increase in anaerobic glycolysis in hypoxic cells and tissues as a consequence of parasite sequestration and anemia. Impaired hepatic and renal lactate clearance, caused by underlying liver and kidney disease, might further aggravate hyperlactatemia. Multiple factors thus participate in the etiology of lactic acidosis in malaria, and further investigations are required to fully understand their relative contributions and the consequences of this major metabolic disturbance.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| |
Collapse
|
37
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Ramamoorthy H, Abraham P, Isaac B. Melatonin protects against tenofovir-induced nephrotoxicity in rats by targeting multiple cellular pathways. Hum Exp Toxicol 2020; 40:826-850. [PMID: 33146023 DOI: 10.1177/0960327120968860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nephrotoxicity is a dose-limiting side effect of long-term use of tenofovir, a reverse transcriptase inhibitor that is used for the treatment of HIV infection and chronic hepatitis B infection. Identifying an agent that prevents tenofovir disoproxil fumarate (TDF)-induced renal injury can lead to its better tolerance, and a more effective treatment can be achieved. The present study is aimed at investigating whether melatonin, a potent antioxidant and anti-inflammatory agent, protects against TDF nephrotoxicity in rats and to determine its cellular targets. Rats were divided into groups and treated as follows. Group I (control): Rats in this group (n = 6) received sterile water only by gavage for 35 days. Group II: Rats (n = 6) in this group received 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group III: Rats (n = 6) in this group received once daily 20 mg/kg bodyweight melatonin i.p. 2 h before the administration of 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group IV: Rats were pretreated daily with 20 mg/kg body weight melatonin i.p. 2 h before the administration of sterile water by gavage. All the rats were sacrificed on the 36th day, after overnight fast. Melatonin pretreatment protected the rats against TDF nephrotoxicity both histologically and biochemically. Biochemically, melatonin pretreatment attenuated TDF-induced, oxidative stress, nitrosative stress, mitochondrial pathway of apoptosis, PARP overactivation and preserved proximal tubular function (p < 0.01). This suggests that melatonin may be useful in ameliorating TDF nephrotoxicity.
Collapse
Affiliation(s)
| | - Premila Abraham
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Bina Isaac
- Department of Anatomy, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
39
|
Assis PA, Fernandes Durso D, Chacon Cavalcante F, Zaniratto R, Carvalho-Silva AC, Cunha-Neto E, Golenbock DT, Rodrigues Pinto Ferreira L, Tostes Gazzinelli R. Integrative analysis of microRNA and mRNA expression profiles of monocyte-derived dendritic cells differentiation during experimental cerebral malaria. J Leukoc Biol 2020; 108:1183-1197. [PMID: 32362022 PMCID: PMC11215656 DOI: 10.1002/jlb.1ma0320-731r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Heterogeneity and high plasticity are common features of cells from the mononuclear phagocyte system: monocytes (MOs), macrophages, and dendritic cells (DCs). Upon activation by microbial agents, MO can differentiate into MO-derived DCs (MODCs). In previous work, we have shown that during acute infection with Plasmodium berghei ANKA (PbA), MODCs become, transiently, the main CD11b+ myeloid population in the spleen (SP) and once recruited to the brain play an important role in the development of experimental cerebral malaria (ECM). Here, we isolated 4 cell populations: bone marrow (BM) MOs (BM-MOs) and SP-MOs from uninfected mice; BM inflammatory MOs (BM-iMOs) and SP-MODCs from PbA-infected mice and used a system biology approach to a holistic transcriptomic comparison and provide an interactome analysis by integrating differentially expressed miRNAs (DEMs) and their differentially expressed gene targets (DEGs) data. The Jaccard index (JI) was used for gauging the similarity and diversity among these cell populations. Whereas BM-MOs, BM-iMOs, and SP-MOs presented high similarity of DEGs, SP-MODCs distinguished by showing a greater number of DEGs. Moreover, functional analysis identified an enrichment in canonical pathways, such as DC maturation, neuroinflammation, and IFN signaling. Upstream regulator analysis identified IFNγ as the potential upstream molecule that can explain the observed DEMs-Target DEGs intersections in SP-MODCs. Finally, directed target analysis and in vivo/ex vivo assays indicate that SP-MODCs differentiate in the SP and IFNγ is a main driver of this process.
Collapse
Affiliation(s)
| | - Danielle Fernandes Durso
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ricardo Zaniratto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Ana Carolina Carvalho-Silva
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Douglas Taylor Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Tostes Gazzinelli
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais, Brazil
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
40
|
Loughland JR, Woodberry T, Field M, Andrew DW, SheelaNair A, Dooley NL, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, McCarthy JS, Boyle MJ, Minigo G. Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent Plasmodium falciparum infection. Clin Transl Immunology 2020; 9:e1144. [PMID: 32566226 PMCID: PMC7302943 DOI: 10.1002/cti2.1144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response, yet their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. METHODS The transcriptional and functional profiles of monocytes were examined in controlled human malaria infection with P. falciparum blood stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA sequencing and flow cytometry at peak infection and compared to pre-infection or at convalescence in acute malaria. RESULTS In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response and cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change were greater in children. CONCLUSIONS Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggests monocyte phenotypes may change with age or exposure.
Collapse
Affiliation(s)
- Jessica R Loughland
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Tonia Woodberry
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Present address:
The University of NewcastleCallaghanNSWAustralia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia,John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Dean W Andrew
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Kim A Piera
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Fiona H Amante
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Enny Kenangalem
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia,District Health AuthorityTimikaIndonesia
| | - Ric N Price
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | - Nicholas M Anstey
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Gabriela Minigo
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,College of Health and Human SciencesCharles Darwin UniversityDarwinNTAustralia
| |
Collapse
|
41
|
Efstratiou A, Galon EMS, Wang G, Umeda K, Kondoh D, Terkawi MA, Kume A, Liu M, Ringo AE, Guo H, Gao Y, Lee SH, Li J, Moumouni PFA, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Babesia microti Confers Macrophage-Based Cross-Protective Immunity Against Murine Malaria. Front Cell Infect Microbiol 2020; 10:193. [PMID: 32411624 PMCID: PMC7200999 DOI: 10.3389/fcimb.2020.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Malaria and babesiosis, the two primary intraerythrocytic protozoan diseases of humans, have been reported in multiple cases of co-infection in endemic regions. As the geographic range and incidence of arthropod-borne infectious diseases is being affected by climate change, co-infection cases with Plasmodium and Babesia are likely to increase. The two parasites have been used in experimental settings, where prior infection with Babesia microti has been shown to protect against fatal malarial infections in mice and primates. However, the immunological mechanisms behind such phenomena of cross-protection remain unknown. Here, we investigated the effect of a primary B. microti infection on the outcome of a lethal P. chabaudi challenge infection using a murine model. Simultaneous infection with both pathogens led to high mortality rates in immunocompetent BALB/c mice, similar to control mice infected with P. chabaudi alone. On the other hand, mice with various stages of B. microti primary infection were thoroughly immune to a subsequent P. chabaudi challenge. Protected mice exhibited decreased levels of serum antibodies and pro-inflammatory cytokines during early stages of challenge infection. Mice repeatedly immunized with dead B. microti quickly succumbed to P. chabaudi infection, despite induction of high antibody responses. Notably, cross-protection was observed in mice lacking functional B and T lymphocytes. When the role of other innate immune effector cells was examined, NK cell-depleted mice with chronic B. microti infection were also found to be protected against P. chabaudi. Conversely, in vivo macrophage depletion rendered the mice vulnerable to P. chabaudi. The above results show that the mechanism of cross-protection conferred by B. microti against P. chabaudi is innate immunity-based, and suggest that it relies predominantly upon the function of macrophages. Further research is needed for elucidating the malaria-suppressing effects of babesiosis, with a vision toward development of novel tools to control malaria.
Collapse
Affiliation(s)
- Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May S Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Orthopedic Surgery, Hokkaido University, Sapporo, Japan
| | - Aiko Kume
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
42
|
Hou N, Jiang N, Ma Y, Zou Y, Piao X, Liu S, Chen Q. Low-Complexity Repetitive Epitopes of Plasmodium falciparum Are Decoys for Humoural Immune Responses. Front Immunol 2020; 11:610. [PMID: 32351503 PMCID: PMC7174639 DOI: 10.3389/fimmu.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Induction of humoural immunity is critical for clinical protection against malaria. More than 100 malaria vaccine candidates have been investigated at different developmental stages, but with limited protection. One of the roadblocks constrains the development of malaria vaccines is the poor immunogenicity of the antigens. The objective of this study was to map the linear B-cell epitopes of the Plasmodium falciparum erythrocyte invasion-associated antigens with a purpose of understanding humoural responses and protection. We conducted a large-scale screen using overlapping peptide microarrays of 37 proteins from the P. falciparum parasite, most of which are invasion-associated antigens which have been tested in clinical settings as vaccine candidates, with sera from individuals with various infection episodes. Analysis of the epitome of the antigens revealed that the most immunogenic epitopes were predominantly located in the low-complexity regions of the proteins containing repetitive and/or glutamate-rich motifs in different sequence contexts. However, in vitro assay showed the antibodies specific for these epitopes did not show invasion inhibitory effect. These discoveries indicated that the low-complexity regions of the parasite proteins might drive immune responses away from functional domains, which may be an instructive finding for the rational design of vaccine candidates.
Collapse
Affiliation(s)
- Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yu Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Zou
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
43
|
Reis AS, Barboza R, Murillo O, Barateiro A, Peixoto EPM, Lima FA, Gomes VM, Dombrowski JG, Leal VNC, Araujo F, Bandeira CL, Araujo RBD, Neres R, Souza RM, Costa FTM, Pontillo A, Bevilacqua E, Wrenger C, Wunderlich G, Palmisano G, Labriola L, Bortoluci KR, Penha-Gonçalves C, Gonçalves LA, Epiphanio S, Marinho CRF. Inflammasome activation and IL-1 signaling during placental malaria induce poor pregnancy outcomes. SCIENCE ADVANCES 2020; 6:eaax6346. [PMID: 32181339 PMCID: PMC7056302 DOI: 10.1126/sciadv.aax6346] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/11/2019] [Indexed: 05/12/2023]
Abstract
Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1β (IL-1β) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1β-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.
Collapse
MESH Headings
- Animals
- Caspase 1/genetics
- Caspase 1/immunology
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Immunologic Factors/pharmacology
- Inflammasomes/drug effects
- Inflammasomes/genetics
- Inflammasomes/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin 1 Receptor Antagonist Protein/pharmacology
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Malaria/drug therapy
- Malaria/genetics
- Malaria/immunology
- Malaria/parasitology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Mice
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Pregnancy
- Pregnancy Complications, Parasitic/genetics
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/prevention & control
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- THP-1 Cells
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/parasitology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Aramys S. Reis
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Faculdade de Medicina, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA, Brazil
| | - Renato Barboza
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Oscar Murillo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André Barateiro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erika P. M. Peixoto
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia A. Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinícius M. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jamille G. Dombrowski
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinícius N. C. Leal
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Franciele Araujo
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla L. Bandeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rosana B. D. Araujo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rita Neres
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rodrigo M. Souza
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Fabio T. M. Costa
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Estela Bevilacqua
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carsten Wrenger
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leticia Labriola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Lígia A. Gonçalves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Claudio R. F. Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
44
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
45
|
Dos Santos RO, Gonçalves-Lopes RM, Lima NF, Scopel KKG, Ferreira MU, Lalwani P. Kynurenine elevation correlates with T regulatory cells increase in acute Plasmodium vivax infection: A pilot study. Parasite Immunol 2020; 42:e12689. [PMID: 31799743 DOI: 10.1111/pim.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disease-tolerance mechanisms limit infection severity by preventing tissue damage; however, the underlying mechanisms in human malaria are still unclear. Tryptophan (TRP), an essential amino acid, is catabolized into tolerogenic metabolites, kynurenines (KYN), by indoleamine 2,3-dioxygenase 1 (IDO1), which can induce Foxp3+ T regulatory cells (Tregs). In this study, we evaluated the relationship of these metabolites with Treg-mediated tolerance induction in acute malaria infections. METHODS We performed a cross-sectional study that evaluated asymptomatic, symptomatic malaria patients and endemic control patient groups. We assessed plasmatic concentration of cytokines by ELISA. Plasmatic TRP and KYN levels were measured by HPLC. Peripheral T regulatory cells were measured and phenotyped by flow cytometry. RESULTS The KYN/TRP ratio was significantly elevated in asymptomatic and symptomatic Plasmodium infection, compared to healthy controls. Also, Th1 and Th2 cytokines were elevated in the acute phase of malaria disease. IFN-γ increase in acute phase was positively correlated with the KYN/TRP ratio and KYN elevation was positively correlated with the increase of peripheral FoxP3+ T regulatory cells. CONCLUSIONS Additional studies are needed not only to identify innate mechanisms that increase tryptophan catabolism but also the role of Tregs in controlling malaria-induced pathology and malaria tolerance by the host.
Collapse
Affiliation(s)
| | - Raquel M Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Kézia K G Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus, Brazil, Manaus, Brazil
| |
Collapse
|
46
|
Jones S, Hodel EM, Sharma R, Kay K, Hastings IM. Optimal Treatments for Severe Malaria and the Threat Posed by Artemisinin Resistance. J Infect Dis 2020; 219:1243-1253. [PMID: 30517708 PMCID: PMC6452316 DOI: 10.1093/infdis/jiy649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023] Open
Abstract
Background Standard treatment for severe malaria is with artesunate; patient survival in the 24 hours immediately posttreatment is the key objective. Clinical trials use clearance rates of circulating parasites as their clinical outcome, but the pathology of severe malaria is attributed primarily to noncirculating, sequestered, parasites, so there is a disconnect between existing clinical metrics and objectives. Methods We extend existing pharmacokinetic/pharmacodynamic modeling methods to simulate the treatment of 10000 patients with severe malaria and track the pathology caused by sequestered parasites. Results Our model recovered the clinical outcomes of existing studies (based on circulating parasites) and showed a “simplified” artesunate regimen was noninferior to the existing World Health Organization regimen across the patient population but resulted in worse outcomes in a subgroup of patients with infections clustered in early stages of the parasite life cycle. This same group of patients were extremely vulnerable to resistance emerging in parasite early ring stages. Conclusions We quantify patient outcomes in a manner appropriate for severe malaria with a flexible framework that allows future researchers to implement their beliefs about underlying pathology. We highlight with some urgency the threat posed to treatment of severe malaria by artemisinin resistance in parasite early ring stages.
Collapse
Affiliation(s)
- Sam Jones
- Parasitology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Eva Maria Hodel
- Parasitology Department, Liverpool School of Tropical Medicine, United Kingdom.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, United Kingdom
| | - Raman Sharma
- Parasitology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Katherine Kay
- Parasitology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Ian M Hastings
- Parasitology Department, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
47
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
48
|
Lai SM, Sheng J, Gupta P, Renia L, Duan K, Zolezzi F, Karjalainen K, Newell EW, Ruedl C. Organ-Specific Fate, Recruitment, and Refilling Dynamics of Tissue-Resident Macrophages during Blood-Stage Malaria. Cell Rep 2019; 25:3099-3109.e3. [PMID: 30540942 DOI: 10.1016/j.celrep.2018.11.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammation-induced disappearance of tissue-resident macrophages represents a key pathogen defense mechanism. Using a model of systemic blood-stage malaria, we studied the dynamics of tissue-resident macrophages in multiple organs to determine how they are depleted and refilled during the course of disease. We show that Plasmodium infection results in a transient loss of embryonically established resident macrophages prior to the parasitemia peak. Fate-mapping analysis reveals that inflammatory monocytes contribute to the repopulation of the emptied niches of splenic red pulp macrophages and hepatic Kupffer cells, while lung alveolar macrophages refill their niche predominantly through self-renewal. Interestingly, the local microenvironment of the spleen and liver can "imprint" the molecular characteristics of fetal-derived macrophages on newly differentiated bone marrow-derived immigrants with remarkably similar gene expression profiles and turnover kinetics. Thus, the mononuclear phagocytic system has developed distinct but effective tissue-specific strategies to replenish emptied niches to guarantee the functional integrity of the system.
Collapse
Affiliation(s)
- Si Min Lai
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jianpeng Sheng
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Pravesh Gupta
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Klaus Karjalainen
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Evan W Newell
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Christiane Ruedl
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
49
|
Carrillo-Larco RM, Altez-Fernandez C, Ugarte-Gil C. Is diabetes associated with malaria and malaria severity? A systematic review of observational studies. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.15467.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: We conducted a systematic review to study the association between diabetes and malaria as well as malaria severity. Methods: The search was conducted in Embase, Global Health, MEDLINE, Scopus and Web of Science. Titles and abstracts were screened, full-text studied and information extracted for qualitative synthesis. Risk of bias was assessed with ROBINS-I criteria. The exposure was diabetes and the outcome malaria or malaria severity. Results: Of 1992 results, three studies were included (n=7,226). Two studies found strong associations: people with diabetes had higher odds of malaria (adjusted odds ratio (aOR): 1.46 (95% CI: 1.06-2.03)) and severe malaria (aOR: 2.98 (95% CI: 1.25-7.09)). One study did not find conclusive evidence: aOR for severe malaria was 0.95 (95% CI: 0.71-1.28). Risk of bias was high in all the studies. Conclusions: Although the available evidence on the association between diabetes and malaria is limited, the results may suggest there is a non-trivial positive relationship between these conditions.
Collapse
|
50
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|