1
|
Cantero P, Ehret-Sabatier L, Lenormand C, Hansmann Y, Sauleau E, Zilliox L, Westermann B, Jaulhac B, Mutter D, Barthel C, Perdu-Alloy P, Martinot M, Lipsker D, Boulanger N. Detection of Borrelia burgdorferi sensu lato by proteomics: a complementary diagnosis tool on erythema migrans biopsies. Clin Microbiol Infect 2025; 31:78-86. [PMID: 39454756 DOI: 10.1016/j.cmi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES We have developed targeted proteomics in the context of Lyme borreliosis (LM) as a new direct diagnostic tool for detecting Borrelia proteins in the skin of patients with erythema migrans. If satisfactory, this proteomic technique could be used in addition to culture and/or PCR for disseminated infections where Borrelia detection is essential to demonstrate active infection. In these infections, the diagnosis is indirect and relies mainly on serology. METHODS We recruited 46 patients with LM and 11 controls and collected two skin biopsies from each patient. One biopsy was used for Borrelia burgdorferi sensu lato PCR and culture and the other one was for targeted mass-spectrometry-based proteomics. Six markers of infection were selected for proteomics: Outer surface protein C (OspC), flagellin, enolase, lipoprotein gi|365823350, decorin binding protein A, and glyceraldehyde-3-phosphate dehydrogenase. RESULTS Culturing Borrelia from the biopsies increased the sensitivity of the methods. Among the patients included for analysis, 61% (28 patients), 61% (28), and 46% (21) were detected as positive by proteomics, PCR, and culture, respectively. PCR and proteomics were complementary. OspC and flagellin were the most frequently detected protein markers of infection by proteomics, which in some patients, detected up to nine peptides for the flagellin. DISCUSSION It is possible to identify bacterial makers from the skin by proteomics. Our approach can be used to diagnose tick-borne diseases such as LM. TRIAL REGISTRATION clinicaltrials.gov identifier: NCT02414789.
Collapse
Affiliation(s)
- Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI, Strasbourg, France
| | - Cédric Lenormand
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France; UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Yves Hansmann
- UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France; Service de Maladies Infectieuses, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Erik Sauleau
- Groupe Méthode en Recherche Clinique, Pôle Santé Publique, Hôpitaux Universitaires de Strasbourg et ICube Unité Mixte de Recherche, Université de Strasbourg/Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurence Zilliox
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Benoit Westermann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI, Strasbourg, France
| | - Benoit Jaulhac
- UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France; French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Didier Mutter
- Service de Chirurgie Digestive et Endocrinienne, Hôpitaux Universitaires de Strasbourg, Strasbourg France
| | - Cathy Barthel
- UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Pauline Perdu-Alloy
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI, Strasbourg, France
| | - Martin Martinot
- Service de Maladies Infectieuses, Hôpital de Colmar, Colmar, France
| | - Dan Lipsker
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Nathalie Boulanger
- UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France; French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Koloski CW, Adam H, Hurry G, Foley-Eby A, Zinck CB, Wei H, Hansra S, Wachter J, Voordouw MJ. Adaptive immunity in Mus musculus influences the acquisition and abundance of Borrelia burgdorferi in Ixodes scapularis ticks. Appl Environ Microbiol 2024; 90:e0129924. [PMID: 39503497 DOI: 10.1128/aem.01299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi cycles between immature black-legged ticks (Ixodes scapularis) and vertebrate reservoir hosts, such as rodents. Larval ticks acquire spirochetes from infected hosts, and the resultant nymphs transmit the spirochetes to naïve hosts. This study investigated the impact of immunocompetence and host tissue spirochete load on host-to-tick transmission (HTT) of B. burgdorferi and the spirochete load inside immature I. scapularis ticks. Wild-type (WT) C57BL/6J mice and mice with severe combined immunodeficiency (SCID) were experimentally infected with B. burgdorferi. To measure HTT, WT and SCID mice were repeatedly infested with I. scapularis larvae, and ticks were sacrificed at three different developmental stages: engorged larvae, 1-month-old, and 12-month-old nymphs. The spirochete loads in immature ticks and mouse tissues were estimated using qPCR. In WT mice, HTT decreased from 90% to 65% over the course of the infection, whereas in the SCID mice, HTT was always 100%. Larvae that fed on SCID mice acquired a much larger dose of spirochetes compared to larvae that fed on WT mice. This difference in spirochete load persisted over tick development where nymphs that fed as larvae on SCID mice had significantly higher spirochete loads compared to their WT counterparts. HTT and the tick spirochete loads were strongly correlated with the mouse tissue spirochete loads. Our study shows that the host immune system (e.g., the presence of antibodies) influences HTT of B. burgdorferi and the spirochete load in immature I. scapularis ticks.IMPORTANCEThe tick-borne spirochete Borrelia burgdorferi causes Lyme disease in humans. This pathogen is maintained in nature by cycles involving black-legged ticks and wildlife hosts. The present study investigated the host factors that influence the transmission of B. burgdorferi from infected hosts to feeding ticks. We infected immunocompetent mice and immunocompromised mice (that cannot develop antibodies) with B. burgdorferi and repeatedly infested these mice with ticks. We determined the percentage of infected ticks and their spirochete loads. This percentage was 100% for immunocompromised mice but decreased from 90% to 65% over time (8 weeks) for immunocompetent mice. The tick spirochete load was much higher in ticks fed on immunocompromised mice compared to ticks fed on immunocompetent mice. In summary, the host immune system influences the transmission of B. burgdorferi from infected hosts to ticks and the spirochete loads in those ticks, which, in turn, determines the risk of Lyme disease for people.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Haomiao Wei
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Różańska-Wróbel J, Migalska M, Urbanowicz A, Grzybek M, Rego ROM, Bajer A, Dwuznik-Szarek D, Alsarraf M, Behnke-Borowczyk J, Behnke JM, Radwan J. Interplay between vertebrate adaptive immunity and bacterial infectivity genes: Bank vole MHC versus Borrelia afzelii OspC. Mol Ecol 2024; 33:e17534. [PMID: 39314079 DOI: 10.1111/mec.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years. Neither MHC alleles nor their inferred functional groupings (supertypes) significantly predicted the specificity of infection with strains carrying different OspC variants. However, we found that MHC alleles, but not supertypes, significantly predicted the level of IgG antibodies against two common OspC variants among seropositive individuals. Our results thus indicate that MHC alleles differ in their ability to induce antibody responses against specific OspC variants, which may contribute to selection of OspC polymorphism by the vole immune system.
Collapse
Affiliation(s)
- Joanna Różańska-Wróbel
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Gdynia, Poland
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Dwuznik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Phytopathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Maraspin V, Ogrinc K, Bogovič P, Rojko T, Ružić-Sabljić E, Wormser GP, Strle F. Erythema Migrans in Patients with Post-Traumatic Splenectomy. Microorganisms 2024; 12:1465. [PMID: 39065233 PMCID: PMC11278708 DOI: 10.3390/microorganisms12071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Information on asplenic Lyme borreliosis (LB) patients with erythema migrans (EM) is lacking. We compared the course and outcome of 26 EM episodes in 24 post-trauma splenectomized patients (median age 51 years) diagnosed at a single clinical center in Slovenia during 1994-2023 with those of 52 age- and sex-matched patients with EM but with no history of splenectomy. All patients were followed for one year. A comparison of pre-treatment characteristics revealed that EM in splenectomized patients was of shorter duration before diagnosis (4 vs. 8 days, p = 0.034) with a smaller EM diameter (10.5 vs. 14 cm, p = 0.046), and more frequently fulfilled criteria for disseminated LB (3/26, 11.5% vs. 0%, p = 0.034). Treatment failure occurred in 5/26 (19.2%) EM episodes in splenectomized patients versus 0/52 in non-splenectomized patients (p = 0.003). The five treatment failure cases were retreated with antibiotic regimens used to treat EM and had complete resolution of all symptoms/signs. In conclusion, our study showed that splenectomized adult patients with EM differ somewhat in presentation and more often have treatment failure compared with non-splenectomized patients with EM.
Collapse
Affiliation(s)
- Vera Maraspin
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia; (V.M.); (K.O.); (P.B.); (T.R.)
| | - Katarina Ogrinc
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia; (V.M.); (K.O.); (P.B.); (T.R.)
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia; (V.M.); (K.O.); (P.B.); (T.R.)
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia; (V.M.); (K.O.); (P.B.); (T.R.)
| | - Eva Ružić-Sabljić
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Gary P. Wormser
- Department of Medicine, Division of Infectious Diseases, New York Medical College, Valhalla, NY 10595, USA;
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia; (V.M.); (K.O.); (P.B.); (T.R.)
| |
Collapse
|
6
|
Lee W, Ben-Othman R, Skut P, Lee AHY, Barbosa AD, Beaman M, Currie A, Harvey NT, Kumarasinghe P, Hall RA, Potter J, Graves S, West NP, Cox AJ, Irwin PJ, Kollmann TR, Oskam CL. Molecular analysis of human tick-bitten skin yields signatures associated with distinct spatial and temporal trajectories - A proof-of-concept study. Heliyon 2024; 10:e33600. [PMID: 39071681 PMCID: PMC11283101 DOI: 10.1016/j.heliyon.2024.e33600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Tick-associated diseases present challenges due to tridirectional interactions among host-specific responses, tick toxins and salivary proteins as well as microbes. We aimed to uncover molecular mechanisms in tick-bitten skin samples (cases) and contralateral skin samples (controls) collected simultaneously from the same participants, using spatial transcriptomics. Cases and controls analysed using NanoString GeoMx Digital Spatial Profiler identified 274 upregulated and 840 downregulated differentially expressed genes (DEGs), revealing perturbations in keratinization and immune system regulation. Samples of skin biopsies taken within 72 h post tick-bite DEGs had changes in protein metabolism and viral infection pathways as compared to samples taken 3 months post tick-bite, which instead displayed significant perturbations in several epigenetic regulatory pathways, highlighting the temporal nature of the host response following tick bites. Within-individual signatures distinguished tick-bitten samples from controls and identified between-individual signatures, offering promise for future biomarker discovery to guide prognosis and therapy.
Collapse
Affiliation(s)
- Wenna Lee
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | | | | | - Amy Huey-Yi Lee
- Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Canada
| | - Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- School of Veterinary Medicine, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Miles Beaman
- Faculty of Health and Medical Sciences, Pathology & Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Andrew Currie
- School of Medical, Molecular, and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Nathan T. Harvey
- Faculty of Health and Medical Sciences, Pathology & Laboratory Medicine, University of Western Australia, Perth, WA, Australia
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia
| | - Prasad Kumarasinghe
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, Australia
- Western Dermatology, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - James Potter
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC, Australia
| | - Nicholas P. West
- School of Pharmacy and Medical Sciences, and Menzies Health Institute, Griffith University, QLD, Australia
| | - Amanda J. Cox
- School of Pharmacy and Medical Sciences, and Menzies Health Institute, Griffith University, QLD, Australia
| | - Peter J. Irwin
- School of Veterinary Medicine, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | | | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
7
|
Butler LR, Gonzalez J, Pedra JHF, Oliva Chavez AS. Tick extracellular vesicles in host skin immunity and pathogen transmission. Trends Parasitol 2023; 39:873-885. [PMID: 37591719 PMCID: PMC10528898 DOI: 10.1016/j.pt.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Ticks can transmit a variety of human pathogens, including intracellular and extracellular bacteria, viruses, and protozoan parasites. Historically, their saliva has been of immense interest due to its anticoagulant, anti-inflammatory, and anesthetic properties. Only recently, it was discovered that tick saliva contains extracellular vesicles (EVs). Briefly, it has been observed that proteins associated with EVs are important for multiple tick-borne intracellular microbial lifestyles. The impact of tick EVs on viral and intracellular bacterial pathogen transmission from the tick to the mammalian host has been shown experimentally. Additionally, tick EVs interact with the mammalian skin immune system at the bite site. The interplay between tick EVs, the transmission of pathogens, and the host skin immune system affords opportunities for future research.
Collapse
Affiliation(s)
- L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Julia Gonzalez
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Victoria B, Noureddine SA, Shehat MG, Jewett TJ, Jewett MW. Borrelia burgdorferi-mediated induction of miR146a-5p fine tunes the inflammatory response in human dermal fibroblasts. PLoS One 2023; 18:e0286959. [PMID: 37319241 PMCID: PMC10270362 DOI: 10.1371/journal.pone.0286959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Colonization of a localized area of human skin by Borrelia burgdorferi after a bite from an infected tick is the first step in the development of Lyme disease. The initial interaction between the pathogen and the human host cells is suggested to impact later outcomes of the infection. MicroRNAs (miRNAs) are well known to be important regulators of host inflammatory and immune responses. While miRNAs have been shown to play a role in the inflammatory response to B. burgdorferi at late stages of infection in the joints, the contributions of miRNAs to early B. burgdorferi infection have yet to be explored. To address this knowledge gap, we used the published host transcriptional responses to B. burgdorferi in erythema migrans skin lesions of early Lyme disease patients and a human dermal fibroblasts (HDFs)/B. burgdorferi co-culture model to predict putative upstream regulator miRNAs. This analysis predicted a role for miR146a-5p in both, B. burgdorferi-infected skin and -stimulated HDFs. miR146a-5p was confirmed to be significantly upregulated in HDF stimulated with B. burgdorferi for 24 hours compared to uninfected control cells. Furthermore, manipulation of miR146a-5p expression (overexpression or inhibition) altered the B. burgdorferi driven inflammatory profile of HDF cells. Our results suggest that miR146a-5p is an important upstream regulator of the transcriptional and immune early response to early B. burgdorferi infection.
Collapse
Affiliation(s)
- Berta Victoria
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sarah A. Noureddine
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Michael G. Shehat
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
9
|
Du LF, Zhang MZ, Yuan TT, Ni XB, Wei W, Cui XM, Wang N, Xiong T, Zhang J, Pan YS, Zhu DY, Li LJ, Xia LY, Wang TH, Wei R, Liu HB, Sun Y, Zhao L, Lam TTY, Cao WC, Jia N. New insights into the impact of microbiome on horizontal and vertical transmission of a tick-borne pathogen. MICROBIOME 2023; 11:50. [PMID: 36915209 PMCID: PMC10012463 DOI: 10.1186/s40168-023-01485-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The impact of host skin microbiome on horizontal transmission of tick-borne pathogens , and of pathogen associated transstadial and transovarial changes in tick microbiome are largely unknown, but are important to control increasingly emerging tick-borne diseases worldwide. METHODS Focusing on a rickettsiosis pathogen, Rickettsia raoultii, we used R. raoultii-positive and R. raoultii-negative Dermacentor spp. tick colonies to study the involvement of skin microbiota in cutaneous infection with rickettsiae in laboratory mice, and the function of the tick microbiome on maintenance of rickettsiae through all tick developmental stages (eggs, larvae, nymphs, adults) over two generations. RESULTS We observed changes in the skin bacteria community, such as Chlamydia, not only associated with rickettsial colonization but also with tick feeding on skin. The diversity of skin microbiome differed between paired tick-bitten and un-bitten sites. For vertical transmission, significant differences in the tick microbiota between pathogenic rickettsia-positive and -negative tick chorts was observed across all developmental stages at least over two generations, which appeared to be a common pattern not only for R. raoultii but also for another pathogenic species, Candidatus Rickettsia tarasevichiae. More importantly, bacterial differences were complemented by functional shifts primed for genetic information processing during blood feeding. Specifically, the differences in tick microbiome gene repertoire between pathogenic Rickettsia-positive and -negative progenies were enriched in pathways associated with metabolism and hormone signals during vertical transmission. CONCLUSIONS We demonstrate that host skin microbiome might be a new factor determining the transmission of rickettsial pathogens through ticks. While pathogenic rickettsiae infect vertebrate hosts during blood-feeding by the tick, they may also manipulate the maturation of the tick through changing the functional potential of its microbiota over the tick's life stages. The findings here might spur the development of new-generation control methods for ticks and tick-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ting-Ting Yuan
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tian-Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China.
- EKIH (Gewuzhikang) Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China.
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
10
|
Erythema migrans: Lyme disease does not need prolonged therapy. THE LANCET. INFECTIOUS DISEASES 2023; 23:271-272. [PMID: 36209760 DOI: 10.1016/s1473-3099(22)00581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
|
11
|
Zhang J, Zheng YC, Chu YL, Cui XM, Wei R, Bian C, Liu HB, Yao NN, Jiang RR, Huo QB, Yuan TT, Li J, Zhao L, Li LF, Wang Q, Wei W, Zhu JG, Chen MC, Gao Y, Wang F, Ye JL, Song JL, Jiang JF, Lam TTY, Ni XB, Jia N. Skin infectome of patients with a tick bite history. Front Cell Infect Microbiol 2023; 13:1113992. [PMID: 36923591 PMCID: PMC10008932 DOI: 10.3389/fcimb.2023.1113992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction Ticks are the most important obligate blood-feeding vectors of human pathogens. With the advance of high-throughput sequencing, more and more bacterial community and virome in tick has been reported, which seems to pose a great threat to people. Methods A total of 14 skin specimens collected from tick-bite patients with mild to severe symptoms were analyzed through meta-transcriptomic sequencings. Results Four bacteria genera were both detected in the skins and ticks, including Pseudomonas, Acinetobacter, Corynebacterium and Propionibacterium, and three tick-associated viruses, Jingmen tick virus (JMTV), Bole tick virus 4 (BLTV4) and Deer tick mononegavirales-like virus (DTMV) were identified in the skin samples. Except of known pathogens such as pathogenic rickettsia, Coxiella burnetii and JMTV, we suggest Roseomonas cervicalis and BLTV4 as potential new agents amplified in the skins and then disseminated into the blood. As early as 1 day after a tick-bite, these pathogens can transmit to skins and at most four ones can co-infect in skins. Discussion Advances in sequencing technologies have revealed that the diversity of tick microbiome and virome goes far beyond our previous understanding. This report not only identifies three new potential pathogens in humans but also shows that the skin barrier is vital in preventing horizontal transmissions of tick-associated bacteria or virus communities to the host. It is the first research on patients' skin infectome after a tick bite and demonstrates that more attention should be paid to the cutaneous response to prevent tick-borne illness.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan-Chun Zheng
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Yan-Li Chu
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Wei
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai Bian
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Hong-Bo Liu
- Department of Infectious Diseases Control and Prevention, Chinese People's Liberation Army of China (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Nan-Nan Yao
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Rui-Ruo Jiang
- Institute of Nuclear, Biological, and Chemical weapons (NBC) Defence, PLA Army, Beijing, China
| | - Qiu-Bo Huo
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | | | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Guo Zhu
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Mei-Chao Chen
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Yan Gao
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Fei Wang
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Jin-Ling Ye
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Ju-Liang Song
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| |
Collapse
|
12
|
A systems biology approach to better understand human tick-borne diseases. Trends Parasitol 2023; 39:53-69. [PMID: 36400674 DOI: 10.1016/j.pt.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Tick-borne diseases (TBDs) are a growing global health concern. Despite extensive studies, ill-defined tick-associated pathologies remain with unknown aetiologies. Human immunological responses after tick bite, and inter-individual variations of immune-response phenotypes, are not well characterised. Current reductive experimental methodologies limit our understanding of more complex tick-associated illness, which results from the interactions between the host, tick, and microbes. An unbiased, systems-level integration of clinical metadata and biological host data - obtained via transcriptomics, proteomics, and metabolomics - offers to drive the data-informed generation of testable hypotheses in TBDs. Advanced computational tools have rendered meaningful analysis of such large data sets feasible. This review highlights the advantages of integrative system biology approaches as essential for understanding the complex pathobiology of TBDs.
Collapse
|
13
|
Terriere N, Glazemaekers E, Bregman S, Rasschaert G, Willems S, Boyen F, Lens L, Baeten L, Verheyen K, Pasmans F, Strubbe D, Martel A. Zoonotic pathogens linked with hedgehog diphtheric disease. Transbound Emerg Dis 2022; 69:3618-3623. [PMID: 36219469 DOI: 10.1111/tbed.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023]
Abstract
Hedgehog diphtheric disease (HDD), an ulcerative skin disease with a high fatality rate, is an emerging threat to European hedgehogs (Erinaceus europaeus). We explored the potential role of a panel of zoonotic pathogens in the presumed multifactorial nature of HDD in 188 hedgehogs from 3 wildlife rescue centres in Belgium. As expected, and with a prevalence of 67% in 57 hedgehogs with skin lesions, characteristic of HDD, the occurrence of Corynebacterium ulcerans was strongly associated with the disease. Remarkably, with a prevalence of 42% in affected animals, infections with Borrelia burgdorferi sensu lato were 3.92 times more likely to be detected in HDD (95% confidence interval: 1.650-9.880; p = .0024). Overall, 40 hedgehogs tested positive for the B. burgdorferi sensu lato complex, including Borrelia afzelii (n = 30), Borrelia bavariensis (n = 7) and Borrelia spielmanii (n = 7). Other widely occurring pathogens included Salmonella (prevalence of 19%, with three pulsed-field gel electrophoresis profiles) and Leptospira sp. (prevalence of 11%, including Leptospira interrogans and Leptospira borgpetersenii), but these were not associated with the occurrence of HDD. These findings show that hedgehogs in Belgium represent a significant reservoir of multiple zoonotic bacteria, of which toxigenic C. ulcerans and B. burgdorferi sensu lato are associated with widespread hedgehog skin pathology and mortality.
Collapse
Affiliation(s)
- Naomi Terriere
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelien Glazemaekers
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Seline Bregman
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geertrui Rasschaert
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Melle, Belgium
| | - Sjarlotte Willems
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Melle, Belgium
| | - Filip Boyen
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Lens
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Campus Ledeganck, Ghent, Belgium
| | - Lander Baeten
- Department of Environment, Forest & Nature Lab, Melle-Gontrode, Belgium
| | - Kris Verheyen
- Department of Environment, Forest & Nature Lab, Melle-Gontrode, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Diederik Strubbe
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Campus Ledeganck, Ghent, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Kight E, Alfaro R, Gadila SKG, Chang S, Evans D, Embers M, Haselton F. Direct Capture and Early Detection of Lyme Disease Spirochete in Skin with a Microneedle Patch. BIOSENSORS 2022; 12:819. [PMID: 36290956 PMCID: PMC9599122 DOI: 10.3390/bios12100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Borrelia burgdorferi sensu lato family of spirochetes causes Lyme disease (LD) in animals and humans. As geographic territory of ticks expands across the globe, surveillance measures are needed to measure transmission rates and provide early risk testing of suspected bites. The current standard testing of LD uses an indirect two-step serological assay that detects host immune reactivity. Early detection remains a challenge because the host antibody response develops several weeks after infection. A microneedle (MN) device was developed to sample interstitial fluid (ISF) and capture spirochetes directly from skin. After sampling, the MN patch is easily dissolved in water or TE buffer, and the presence of spirochete DNA is detected by PCR. Performance was tested by spiking porcine ear skin with inactivated Borrelia burgdorferi, which had an approximate recovery of 80% of spirochetes. With further development, this simple direct PCR method could be a transformative approach for early detection of the causative agent of Lyme disease and enable rapid treatment to patients when infection is early, and numbers of systemic spirochetes are low.
Collapse
Affiliation(s)
- Emily Kight
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Rosana Alfaro
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Shuang Chang
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - David Evans
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | | |
Collapse
|
15
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021; 9:725. [PMID: 34358142 PMCID: PMC8310300 DOI: 10.3390/vaccines9070725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
The medical and veterinary public health importance of ticks and tick-borne pathogens is increasing due to the expansion of the geographic ranges of both ticks and pathogens, increasing tick populations, growing incidence of tick-borne diseases, emerging tick transmitted pathogens, and continued challenges of achieving effective and sustained tick control. The past decades show an increasing interest in the immune-mediated control of tick infestations and pathogen transmission through the use of vaccines. Bovine tick resistance induced by repeated infestations was reported over a century ago. This review addresses the phenomena and immunological underpinning of resistance to tick infestation by livestock and laboratory animals; the scope of tick countermeasures to host immune defenses; and the impact of genomics, functional genomics, and proteomics on dissecting complex tick-host-pathogen interactions. From early studies utilizing tick tissue extracts to salivary gland derived molecules and components of physiologically important pathways in tick gut and other tissues, an increased understanding of these relationships, over time, impacted the evolution of anti-tick vaccine antigen selection. Novel antigens continue to emerge, including increased interest in the tick microbiome. Anti-tick and transmission blocking vaccines targeting pathogen reservoirs have the potential to disrupt enzootic cycles and reduce human, companion, domestic animal, and wildlife exposure to infected ticks.
Collapse
Affiliation(s)
| | - Stephen K. Wikel
- US Biologic Inc., 20 Dudley Street, Memphis, TN 38103, USA;
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
17
|
Hart TM, Dupuis AP, Tufts DM, Blom AM, Starkey SR, Rego ROM, Ram S, Kraiczy P, Kramer LD, Diuk-Wasser MA, Kolokotronis SO, Lin YP. Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathog 2021; 17:e1009801. [PMID: 34324600 PMCID: PMC8354441 DOI: 10.1371/journal.ppat.1009801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.
Collapse
Affiliation(s)
- Thomas M. Hart
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Danielle M. Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Simon R. Starkey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Ryan O. M. Rego
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
- Institute for Genomic Health, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, United States of America
| |
Collapse
|
18
|
The infectivity gene bbk13 is important for multiple phases of the Borrelia burgdorferi enzootic cycle. Infect Immun 2021; 89:e0021621. [PMID: 34181460 PMCID: PMC8445180 DOI: 10.1128/iai.00216-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease is a multistage inflammatory disease caused by the spirochete Borrelia burgdorferi transmitted through the bite of an infected Ixodes scapularis tick. We previously discovered a B. burgdorferi infectivity gene, bbk13, that facilitates mammalian infection by promoting spirochete population expansion in the skin inoculation site. Initial characterization of bbk13 was carried out using an intradermal needle inoculation model of mouse infection, which does not capture the complex interplay of the pathogen-vector-host triad of natural transmission. Here, we aimed to understand the role of bbk13 in the enzootic cycle of B. burgdorferi. B. burgdorferi spirochetes lacking bbk13 were unable to be acquired by naive larvae fed on needle-inoculated mice. Using a capsule feeding approach to restrict tick feeding activity to a defined skin site, we determined that delivery by tick bite alleviated the population expansion defect in the skin observed after needle inoculation of Δbbk13B. burgdorferi. Despite overcoming the early barrier in the skin, Δbbk13B. burgdorferi remained attenuated for distal tissue colonization after tick transmission. Disseminated infection by Δbbk13B. burgdorferi was improved in needle-inoculated immunocompromised mice. Together, we established that bbk13 is crucial to the maintenance of B. burgdorferi in the enzootic cycle and that bbk13 is necessary beyond early infection in the skin, likely contributing to host immune evasion. Moreover, our data highlight the critical interplay between the pathogen, vector, and host as well as the distinct molecular genetic requirements for B. burgdorferi to survive at the pathogen-vector-host interface and achieve productive disseminated infection.
Collapse
|
19
|
Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEM, Shaw DK, Tully BG, Buskirk AD, Ford SL, Butler LR, Shahi P, Morozova K, Clement CC, Lawres L, Neal AJO, Mamoun CB, Mason KL, Hobbs BE, Scoles GA, Barry EM, Sonenshine DE, Pal U, Valenzuela JG, Sztein MB, Pasetti MF, Levin ML, Kotsyfakis M, Jay SM, Huntley JF, Miller LS, Santambrogio L, Pedra JHF. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun 2021; 12:3696. [PMID: 34140472 PMCID: PMC8211691 DOI: 10.1038/s41467-021-23900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E McClure Carroll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Excerpta Medica, Doylestown, PA, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Brenden G Tully
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amanda D Buskirk
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment, Microbiology Assessment Branch III, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Shelby L Ford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Preeti Shahi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kateryna Morozova
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anya J O' Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen L Mason
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
| | - Brandi E Hobbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glen A Scoles
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Levin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Immunology, Janssen Research and Development, Spring House, PA, USA
| | - Laura Santambrogio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
21
|
Bernard Q, Hu LT. Innate Immune Memory to Repeated Borrelia burgdorferi Exposure Correlates with Murine In Vivo Inflammatory Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3383-3389. [PMID: 33168577 PMCID: PMC7725865 DOI: 10.4049/jimmunol.2000686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the bite of an infected tick. Once inoculated into the host dermis, it disseminates to various organs including distant skin sites, the heart, the joint and the nervous system. Most humans will develop an early skin manifestation called erythema migrans at the tick bite site. This can be followed by symptoms such as carditis, neuritis, meningitis, or arthritis if not treated. A specific mouse strain, C3H/HeN develops arthritis with B. burgdorferi infection whereas another strain, C57BL/6, develops minimal to no arthritis. Neither strain of mice show any skin signs of rash or inflammation. Factors that determine the presence of skin inflammation and the joint arthritis susceptibility in the host are only partially characterized. We show in this study that murine fibroblast-like synoviocytes display trained immunity, a program in some cells that results in increased inflammatory responses if the cell has previously come in contact with a stimulus, and that trained immunity in fibroblast-like synoviocytes tested ex vivo correlates with Lyme arthritis susceptibility. Conversely, skin fibroblasts do not exhibit trained immunity, which correlates with the absence of skin symptoms in these mice. Moreover, we demonstrate that the trained phenotype in FLS is affected by the cell environment, which depends on the host genetic background. Future studies expanding this initial report of the role of trained immunity on symptoms of B. burgdorferi infection may provide insight into the pathogenesis of disease in murine models.
Collapse
Affiliation(s)
- Quentin Bernard
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
22
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
23
|
Lefeuvre B, Cantero P, Ehret-Sabatier L, Lenormand C, Barthel C, Po C, Parveen N, Grillon A, Jaulhac B, Boulanger N. Effects of topical corticosteroids and lidocaine on Borrelia burgdorferi sensu lato in mouse skin: potential impact to human clinical trials. Sci Rep 2020; 10:10552. [PMID: 32601348 PMCID: PMC7324597 DOI: 10.1038/s41598-020-67440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lyme borreliosis is the most prevalent vector-borne disease in northern hemisphere. Borrelia burgdorferi sensu lato spirochetes are transmitted by Ixodes species ticks. During a blood meal, these spirochetes are inoculated into the skin where they multiply and often spread to various target organs: disseminated skin sites, the central nervous system, the heart and large joints. The usual diagnosis of this disease relies on serological tests. However, in patients presenting persistent clinical manifestations, this indirect diagnosis is not capable of detecting an active infection. If the serological tests are positive, it only proves that exposure of an individual to Lyme spirochetes had occurred. Although culture and quantitative PCR detect active infection, currently used tests are not sensitive enough for wide-ranging applications. Animal models have shown that B. burgdorferi persists in the skin. We present here our targeted proteomics results using infected mouse skin biopsies that facilitate detection of this pathogen. We have employed several novel approaches in this study. First, the effect of lidocaine, a local anesthetic used for human skin biopsy, on B. burgdorferi presence was measured. We further determined the impact of topical corticosteroids to reactivate Borrelia locally in the skin. This local immunosuppressive compound helps follow-up detection of spirochetes by proteomic analysis of Borrelia present in the skin. This approach could be developed as a novel diagnostic test for active Lyme borreliosis in patients presenting disseminated persistent infection. Although our results using topical corticosteroids in mice are highly promising for recovery of spirochetes, further optimization will be needed to translate this strategy for diagnosis of Lyme disease in patients.
Collapse
Affiliation(s)
- Bastien Lefeuvre
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Cedric Lenormand
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
- Clinique dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Cathy Barthel
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000, Strasbourg, France
| | - Nikhat Parveen
- Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, ICPH Building, 225 Warren Street, Newark, NJ, 07103, USA
| | - Antoine Grillon
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Benoit Jaulhac
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
- French National Reference Center on Lyme borreliosis, Centre Hospitalier Régional Uinversitaire de Strasbourg, 67000, Strasbourg, France
| | - Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France.
- French National Reference Center on Lyme borreliosis, Centre Hospitalier Régional Uinversitaire de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
24
|
Inflammation following trypanosome infection and persistence in the skin. Curr Opin Immunol 2020; 66:65-73. [PMID: 32446136 DOI: 10.1016/j.coi.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Human African trypanosomes rely for their transmission on tsetse flies (Glossina sp.) that inoculate parasites into the skin during blood feeding. The absence of a protective vaccine, limited knowledge about the infection immunology, and the existence of asymptomatic carriers sustaining transmission are major outstanding challenges towards elimination. All these relate to the skin where (i) parasites persist and transmit to tsetse flies and (ii) a successful vaccination strategy should ideally be effective. Host immune processes and parasite strategies that underlie early infection and skin tropism are essential aspects to comprehend the transmission-success of trypanosomes and the failure in vaccine development. Recent insights into the early infection establishment may pave the way to novel strategies aimed at blocking transmission.
Collapse
|