1
|
Han M, Qing Y, Fu J, He W, Huang J, Zhu X, Yang L, Yao L, Peng T, Wang Z, Li Z, Wu L, Yang Q, Hu B, Lv Y, Zhang H, Wan L, Meng X, Wang F, Qin S, Zhang Y, Wang Z. Mechanism of Jizhi syrup's prevention and treatment of acute bronchitis based on LPS-iNOS inflammatory mediators' signalling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118708. [PMID: 39197804 DOI: 10.1016/j.jep.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jizhi syrup (JZTJ) is composed of eight medicinal herbs, including Houttuynia cordata, Fagopyrum dibotrys, Ilex chinensis, Ephedra sinica, Aster tataricus, Peucedanum praeruptorum, Citrus aurantium and Glycyrrhiza uralensis. It is mainly used for coughing caused by exogenous wind heat. Symptoms include fever, aversion to cold, chest and diaphragm tightness, cough and sore throat; and acute bronchitis and acute exacerbation of chronic bronchitis with the above symptoms. PURPOSE This study aimed to preliminary analyse the chemical components in the liposoluble part of JZTJ, evaluate the anti-inflammatory effect of JZTJ by using six animal and cell models and predict the target and mechanism of acute bronchitis prevention and treatment with JZTJ. METHODS The chemical components in the liposoluble fraction of JZTJ (extracted by cyclohexane) were quantitatively analysed using gas chromatography-mass spectrometry (GC-MS). Classic non-specific inflammation models and acute bronchitis models were established to systematically evaluate the anti-inflammatory effect of JZTJ. The anti-inflammatory intensity and characteristics of three doses of JZTJ were comprehensively compared on the basis of principal component analysis method at the cellular and overall animal levels. By using lipopolysaccharides (LPSs) as modelling factors, a RAW264.7 macrophage inflammatory response model and a rat acute bronchitis model were created to study the effect of JZTJ on the in-vitro and - vivo LPS-iNOS-inflammatory mediators' inflammatory signalling pathway to reveal the mechanism of acute bronchitis prevention and treatment by JZTJ at the levels of genes, proteins, and inflammatory mediators. RESULTS Seventeen alkane and ester compounds were preliminarily qualitatively identified from the lipid soluble fraction of JZTJ: dibutyl phthalate, tetradecane, ridecane, n-hexadecanoic acid, pentadecane, n-decanoic acid, 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl-(all-E)-; phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-; hexadecane. JZTJ has a significant inhibitory effect on acute non-specific inflammation, specifically inhibiting 'xylene-induced ear swelling in mice', 'acetic acid-induced increased permeability of abdominal capillaries in mice' and 'egg white-induced foot swelling in rats'. The above effects are most evident in high doses, followed by medium doses, whereas low doses have poorer or no effects. JZTJ can prevent and treat acute bronchitis induced by LPS in mice and rats, significantly improve the pathological changes in patchy interstitial and alveolar bleeding with excessive neutrophil infiltration and inhibit the release of inflammatory mediators by LPS-induced RAW264.7 macrophages. Its mechanism of action may be by downregulating the phosphorylation level of p-ERK1/2 protein, thereby inhibiting inducible nitric oxide synthase (iNOS) mRNA, tumour necrosis factor (TNF)-α mRNA and IL-1β. The expression levels of genes, such as mRNA and IL-6 mRNA, thereby reducing iNOS, TNF-α and IL-1β. The expression of proteins in the cytoplasm of lung and bronchial tissue cells reduced the release of downstream inflammatory mediators NO and IL-6. CONCLUSION Preliminary analysis of the chemical components in the lipid soluble fraction of JZTJ can lay the foundation for subsequent research on its effective components. Evaluating the anti-inflammatory effect of JZTJ is helpful for further research on its mechanism of action. The anti-inflammatory effects are exerted by regulating the inflammatory signalling pathway of LPS-iNOS inflammatory mediators, providing a scientific basis for their clinical application.
Collapse
Affiliation(s)
- Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Qing
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Jiaqing Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wencan He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Huang
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Xiaoqi Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijuan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Lincai Yao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Peng
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Zhihua Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhangyu Li
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Lian Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | | | - Boyang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongjun Lv
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Hai Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Wan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| | - Shaorong Qin
- Taiji Group Co., Ltd., Chongqing, 408099, China.
| | - Yi Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Morrison T, Watts ER, Sadiku P, Walmsley SR. The emerging role for metabolism in fueling neutrophilic inflammation. Immunol Rev 2023; 314:427-441. [PMID: 36326284 PMCID: PMC10953397 DOI: 10.1111/imr.13157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are a critical element of host defense and are rapidly recruited to inflammatory sites. Such sites are frequently limited in oxygen and/or nutrient availability, presenting a metabolic challenge for infiltrating cells. Long believed to be uniquely dependent on glycolysis, it is now clear that neutrophils possess far greater metabolic plasticity than previously thought, with the capacity to generate energy stores and utilize extracellular proteins to fuel central carbon metabolism and biosynthetic activity. Out-with cellular energetics, metabolic programs have also been implicated in the production of neutrophils and their progenitors in the bone marrow compartment, activation of neutrophil antimicrobial responses, inflammatory and cell survival signaling cascades, and training of the innate immune response. Thus, understanding the mechanisms by which metabolic processes sustain changes in neutrophil effector functions and how these are subverted in disease states provides exciting new avenues for the treatment of dysfunctional neutrophilic inflammation which are lacking in clinical practice to date.
Collapse
Affiliation(s)
- Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| |
Collapse
|
3
|
Tahamtan M, Aghaei I, Shabani M, Nazari A, Pooladvand V, Razavinasab M. Peroxisome proliferator-activated receptor-γ doesn't modify altered electrophysiological properties of the CA1 pyramidal neurons in a rat model of hepatic cirrhosis. Metab Brain Dis 2022; 37:2687-2697. [PMID: 35943675 DOI: 10.1007/s11011-022-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| | - Abbas Nazari
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Vahid Pooladvand
- Biochemical Department, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| |
Collapse
|
4
|
Zhang H, Alford T, Liu S, Zhou D, Wang J. Influenza virus causes lung immunopathology through down-regulating PPARγ activity in macrophages. Front Immunol 2022; 13:958801. [PMID: 36091002 PMCID: PMC9452838 DOI: 10.3389/fimmu.2022.958801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Taylor Alford
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Shuangquan Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Jieru Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The incidence of allergic diseases such as asthma, rhinitis and atopic dermatitis has risen at an alarming rate over the last century. Thus, there is a clear need to understand the critical factors that drive such pathologic immune responses. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that has emerged as an important regulator of multiple cell types involved in the inflammatory response to allergens; from airway epithelial cells to T Helper (TH) cells. RECENT FINDINGS Initial studies suggested that agonists of PPAR-γ could be employed to temper allergic inflammation, suppressing pro-inflammatory gene expression programs in epithelial cells. Several lines of work now suggest that PPAR-γ plays an essential in promoting 'type 2' immune responses that are typically associated with allergic disease. PPAR-γ has been found to promote the functions of TH2 cells, type 2 innate lymphoid cells, M2 macrophages and dendritic cells, regulating lipid metabolism and directly inducing effector gene expression. Moreover, preclinical models of allergy in gene-targeted mice have increasingly implicated PPAR-γ in driving allergic inflammation. Herein, we highlight the contrasting roles of PPAR-γ in allergic inflammation and hypothesize that the availability of environmental ligands for PPAR-γ may be at the heart of the rise in allergic diseases worldwide.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher A Tibbitt
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
7
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
8
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
9
|
Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med Hypotheses 2020; 140:109776. [PMID: 32344313 PMCID: PMC7175844 DOI: 10.1016/j.mehy.2020.109776] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic disease (COVID-19) that has spread globally causing more than 30,000 deaths. Despite the immense and ongoing global effort, no efficacious drugs to fight this plague have been identified and patients admitted to the intensive care units (ICU), for respiratory distress, are managed mostly by means of supportive care based on oxygen maintenance. Several authors have reported that the prevalence of hypertension, diabetes, cardiovascular and cerebrovascular diseases comorbidities were indeed frequent among patients with COVID-19, which suggests that these conditions are likely to aggravate and complicate the prognosis. What the aforementioned diseases have in common is a latent chronic inflammatory state that may be associated with the alteration of laboratory parameters that are typical of the metabolic syndrome and insulin resistance. In severe COVID-19 patients laboratory markers of inflammation such as C-reactive protein, IL-6, D-dimer, serum ferritin and lactate dehydrogenase are elevated in many patients; assessed since the 4th-6th day of illness onset, such increases seem to be predictive of an adverse prognosis. Our hypothesis is that drugs belonging to the family of thiazolidinediones (TZD) such as pioglitazone or rosiglitazone, approved for treating the condition of insulin resistance and the accompanying inflammation, could ameliorate the prognosis of those COVID-19 patients with diabetes, hypertension and cardiovascular disorders comorbidities. TZD are PPARγ agonists that act on nuclear receptors, thereby triggering certain transcription factors. TZD were widely used for type-2 diabetes in the first decade of this century and although concerns have been raised for possible side effects associated with long-term treatment, their use has been recently revaluated for their anti-inflammatory properties in numerous medical conditions.
Collapse
Affiliation(s)
- Elena Carboni
- Department of Paediatrics, Magna Graecia University of Catanzaro, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
10
|
Peroxisome Proliferator-Activated Receptor Gamma (PPAR) Suppresses Inflammation and Bacterial Clearance during Influenza-Bacterial Super-Infection. Viruses 2019; 11:v11060505. [PMID: 31159430 PMCID: PMC6630660 DOI: 10.3390/v11060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.
Collapse
|
11
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study. PLoS One 2018; 13:e0191783. [PMID: 29414995 PMCID: PMC5802889 DOI: 10.1371/journal.pone.0191783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Background Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. Methods For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Results Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Conclusions Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. Trial registration ClinicalTrials.gov NCT01174056.
Collapse
|
13
|
Lacy SH, Woeller CF, Thatcher TH, Maddipati KR, Honn KV, Sime PJ, Phipps RP. Human lung fibroblasts produce proresolving peroxisome proliferator-activated receptor-γ ligands in a cyclooxygenase-2-dependent manner. Am J Physiol Lung Cell Mol Physiol 2016; 311:L855-L867. [PMID: 27612965 DOI: 10.1152/ajplung.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Krishna Rao Maddipati
- Lipidomics Core Facility, Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; .,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
14
|
PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res 2015; 2015:549691. [PMID: 26713087 PMCID: PMC4680113 DOI: 10.1155/2015/549691] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022] Open
Abstract
The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.
Collapse
|
15
|
Morissette MC, Shen P, Thayaparan D, Stämpfli MR. Impacts of peroxisome proliferator-activated receptor-γ activation on cigarette smoke-induced exacerbated response to bacteria. Eur Respir J 2014; 45:191-200. [PMID: 25034559 DOI: 10.1183/09031936.00004314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by a state of chronic pulmonary inflammation punctuated by microbial exacerbations. Despite advances in treatment options, COPD remains difficult to manage. In this study, we investigated the potential of peroxisome proliferator-activated receptor (PPAR)γ activation as a new therapy against cigarette smoke-induced inflammation and its associated bacterial exacerbation. C57BL/6 mice were exposed to room air or cigarette smoke for either 4 days or 4 weeks and treated either prophylactically or therapeutically with rosiglitazone. The impact of rosiglitazone on cigarette smoke-induced exacerbated response to the bacterial pathogen nontypeable Haemophilus influenzae (NTHi) was studied using the therapeutic treatment protocol. We found that rosiglitazone was able to reduce cigarette smoke-induced neutrophilia both when administered prophylactically or therapeutically. Therapeutic intervention with rosiglitazone was also effective in preventing cigarette smoke-induced neutrophilia exacerbation following NTHi infection. Moreover, the anti-inflammatory effects of rosiglitazone did not lead to an increase in the pulmonary bacterial burden, unlike dexamethasone. Altogether, our data suggest that pharmacological activation of PPARγ may be an effective therapeutic approach to improve COPD management, as it is able to reduce cigarette smoke-induced inflammation and decrease the magnitude of bacterial exacerbations, without compromising the ability of the immune system to control the infection.
Collapse
Affiliation(s)
- Mathieu C Morissette
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Pamela Shen
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Honours Molecular Biology and Genetics Co-op Program, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada Dept of Medicine, Firestone Institute of Respiratory Health, St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Lakshmi SP, Reddy AT, Zhang Y, Sciurba FC, Mallampalli RK, Duncan SR, Reddy RC. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD). J Biol Chem 2013; 289:6383-6393. [PMID: 24368768 DOI: 10.1074/jbc.m113.536805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240.
| |
Collapse
|
17
|
Liu FC, Tsai YF, Yu HP. Maraviroc attenuates trauma-hemorrhage-induced hepatic injury through PPAR gamma-dependent pathway in rats. PLoS One 2013; 8:e78861. [PMID: 24205332 PMCID: PMC3799750 DOI: 10.1371/journal.pone.0078861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
Maraviroc is a CC-chemokine receptor 5 (CCR5) antagonist with potent antiviral and cancer preventive effects. Recent evidence suggests that the co-existence of CCR5 in various cell types is involved in inflammation. However, the effects that CCR5 antagonists produce in trauma-hemorrhage remain unknown. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in injury. In this study, we hypothesized that maraviroc administration in male rats, after trauma-hemorrhage, decreases cytokine production and protects against hepatic injury through a PPARγ-dependent pathway. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ antagonist GW9662 (1 mg/kg, intravenously), GW9662 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n=8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also increased hepatic PPARγ expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of maraviroc administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through PPARγ-dependent pathway.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (FCL); (HPL)
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (FCL); (HPL)
| |
Collapse
|
18
|
Melo AC, Valença SS, Gitirana LB, Santos JC, Ribeiro ML, Machado MN, Magalhães CB, Zin WA, Porto LC. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. Int Immunopharmacol 2013; 17:57-64. [PMID: 23747588 DOI: 10.1016/j.intimp.2013.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
Statins are standard therapy for the treatment of lipid disorders, and the field of redox biology accepts that statins have antioxidant properties. Our aim in this report was to consider the pleiotropic effects of atorvastatin, pravastatin and simvastatin administered prior to endotoxin-induced acute lung injury. Male mice were divided into 5 groups and intraperitoneally injected with LPS (10 mg/kg), LPS plus atorvastatin (10 mg/kg/day; A + LPS group), LPS plus pravastatin (5 mg/kg/day; P + LPS group) or LPS plus simvastatin (20 mg/kg/day; S + LPS group). The control group received saline. All mice were sacrificed one day later. There were fewer leukocytes in the P + LPS and S + LPS groups than in the LPS group. MCP-1 cytokine levels were lower in the P + LPS group, while IL-6 levels were lower in the P + LPS and S + LPS groups. TNF-α was lower in all statin-treated groups. Levels of redox markers (superoxide dismutase and catalase) were lower in the A + LPS group (p < 0.01). The extent of lipid peroxidation (malondialdehyde and hydroperoxides) was reduced in all statin-treated groups (p < 0.05). Myeloperoxidase was lower in the P + LPS group (p < 0.01). Elastance levels were significantly greater in the LPS group compared to the statin groups. Our results suggest that atorvastatin and pravastatin but not simvastatin exhibit anti-inflammatory and antioxidant activity in endotoxin-induced acute lung injury.
Collapse
Affiliation(s)
- Adriana Correa Melo
- Programa de Pós-graduação em Biologia Humana e Experimental, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Trapani L, Segatto M, Pallottini V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic "power station". World J Hepatol 2012; 4:184-90. [PMID: 22761969 PMCID: PMC3388116 DOI: 10.4254/wjh.v4.i6.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023] Open
Abstract
Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumulation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocholesterolemic strategies will also be introduced.
Collapse
Affiliation(s)
- Laura Trapani
- Laura Trapani, Marco Segatto, Valentina Pallottini, Department of Biology, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | | | | |
Collapse
|
20
|
Bauer CMT, Zavitz CCJ, Botelho FM, Lambert KN, Brown EG, Mossman KL, Taylor JD, Stämpfli MR. Treating viral exacerbations of chronic obstructive pulmonary disease: insights from a mouse model of cigarette smoke and H1N1 influenza infection. PLoS One 2010; 5:e13251. [PMID: 20967263 PMCID: PMC2953496 DOI: 10.1371/journal.pone.0013251] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/14/2010] [Indexed: 01/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease is a progressive lung disease that is punctuated by periods of exacerbations (worsening of symptoms) that are attributable to viral infections. While rhinoviruses are most commonly isolated viruses during episodes of exacerbation, influenza viruses have the potential to become even more problematic with the increased likelihood of an epidemic. Methodology and Principal Findings This study examined the impact of current and potential pharmacological targets namely the systemic corticosteroid dexamethasone and the peroxisome proliferator-activated receptor- gamma agonist pioglitazone on the outcome of infection in smoke-exposed mice. C57BL/6 mice were exposed to room air or cigarette smoke for 4 days and subsequently inoculated with an H1N1 influenza A virus. Interventions were delivered daily during the course of infection. We show that smoke-exposed mice have an exacerbated inflammatory response following infection. While smoke exposure did not compromise viral clearance, precision cut lung slices from smoke-exposed mice showed greater expression of CC (MCP-1, -3), and CXC (KC, MIP-2, GCP-2) chemokines compared to controls when stimulated with a viral mimic or influenza A virus. While dexamethasone treatment partially attenuated the inflammatory response in the broncho-alveolar lavage of smoke-exposed, virally-infected animals, viral-induced neutrophilia was steroid insensitive. In contrast to controls, dexamethasone-treated smoke-exposed influenza-infected mice had a worsened health status. Pioglitazone treatment of virally-infected smoke-exposed mice proved more efficacious than the steroid intervention. Further mechanistic evaluation revealed that a deficiency in CCR2 did not improve the inflammatory outcome in smoke-exposed, virally-infected animals. Conclusions and Significance This animal model of cigarette smoke and H1N1 influenza infection demonstrates that smoke-exposed animals are differentially primed to respond to viral insult. While providing a platform to test pharmacological interventions, this model demonstrates that treating viral exacerbations with alternative anti-inflammatory drugs, such as PPAR-gamma agonists should be further explored since they showed greater efficacy than systemic corticosteroids.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Disease Models, Animal
- Humans
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza, Human/complications
- Influenza, Human/drug therapy
- Influenza, Human/metabolism
- Influenza, Human/virology
- Mice
- Mice, Inbred C57BL
- PPAR gamma/agonists
- Pioglitazone
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/virology
- Smoking
- Thiazolidinediones/pharmacology
- Thiazolidinediones/therapeutic use
Collapse
Affiliation(s)
- Carla M. T. Bauer
- Medical Sciences Graduate Program, McMaster University, Hamilton, Canada
| | - Caleb C. J. Zavitz
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Canada
| | - Fernando M. Botelho
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Canada
| | - Kristen N. Lambert
- Molecular Biology Undergraduate Program, McMaster University, Hamilton, Canada
| | - Earl G. Brown
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | - Martin R. Stämpfli
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
21
|
Kumar A, Vashist A, Kumar P. Potential role of pioglitazone, caffeic acid and their combination against fatigue syndrome-induced behavioural, biochemical and mitochondrial alterations in mice. Inflammopharmacology 2010; 18:241-51. [DOI: 10.1007/s10787-010-0048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/04/2010] [Indexed: 01/03/2023]
|
22
|
Hicks A, Goodnow R, Cavallo G, Tannu SA, Ventre JD, Lavelle D, Lora JM, Satjawatcharaphong J, Brovarney M, Dabbagh K, Tare NS, Oh H, Lamb M, Sidduri A, Dominique R, Qiao Q, Lou JP, Gillespie P, Fotouhi N, Kowalczyk A, Kurylko G, Hamid R, Wright MB, Pamidimukkala A, Egan T, Gubler U, Hoffman AF, Wei X, Li YL, O'Neil J, Marcano R, Pozzani K, Molinaro T, Santiago J, Singer L, Hargaden M, Moore D, Catala AR, Chao LCF, Benson J, March T, Venkat R, Mancebo H, Renzetti LM. Effects of LTB4 receptor antagonism on pulmonary inflammation in rodents and non-human primates. Prostaglandins Other Lipid Mediat 2010; 92:33-43. [PMID: 20214997 DOI: 10.1016/j.prostaglandins.2010.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/24/2010] [Accepted: 02/27/2010] [Indexed: 01/15/2023]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor antagonists in these diseases remains controversial. Here we show that a novel dual BLT1 and BLT2 receptor antagonist, RO5101576, potently inhibited LTB4-evoked calcium mobilization in HL-60 cells and chemotaxis of human neutrophils. RO5101576 significantly attenuated LTB4-evoked pulmonary eosinophilia in guinea pigs. In non-human primates, RO5101576 inhibited allergen and ozone-evoked pulmonary neutrophilia, with comparable efficacy to budesonide (allergic responses). RO5101576 had no effects on LPS-evoked neutrophilia in guinea pigs and cigarette smoke-evoked neutrophilia in mice and rats. In toxicology studies RO5101576 was well-tolerated. Theses studies show differential effects of LTB4 receptor antagonism on neutrophil responses in vivo and suggest RO5101576 may represent a potential new treatment for pulmonary neutrophilia in asthma.
Collapse
Affiliation(s)
- Alexandra Hicks
- Department of RNA Therapeutics, Roche, 340 Kingsland Street, Nutley, NJ 07110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pseudomonas signal molecule 3-oxo-C12-homoserine lactone interferes with binding of rosiglitazone to human PPARγ. Microbes Infect 2010; 12:231-7. [DOI: 10.1016/j.micinf.2009.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
|