1
|
Jokivuolle M, Mahmood F, Madsen KH, Harbo FSG, Johnsen L, Lundell H. Assessing tumor microstructure with time-dependent diffusion imaging: Considerations and feasibility on clinical MRI and MRI-Linac. Med Phys 2025; 52:346-361. [PMID: 39387639 PMCID: PMC11700005 DOI: 10.1002/mp.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Quantitative imaging biomarkers (QIBs) can characterize tumor heterogeneity and provide information for biological guidance in radiotherapy (RT). Time-dependent diffusion MRI (TDD-MRI) derived parameters are promising QIBs, as they describe tissue microstructure with more specificity than traditional diffusion-weighted MRI (DW-MRI). Specifically, TDD-MRI can provide information about both restricted diffusion and diffusional exchange, which are the two time-dependent effects affecting diffusion in tissue, and relevant in tumors. However, exhaustive modeling of both effects can require long acquisitions and complex model fitting. Furthermore, several introduced TDD-MRI measurements can require high gradient strengths and/or complex gradient waveforms that are possibly not available in RT settings. PURPOSE In this study, we investigated the feasibility of a simple analysis framework for the detection of restricted diffusion and diffusional exchange effects in the TDD-MRI signal. To promote the clinical applicability, we use standard gradient waveforms on a conventional 1.5 T MRI system with moderate gradient strength (Gmax = 45 mT/m), and on a hybrid 1.5 T MRI-Linac system with low gradient strength (Gmax = 15 mT/m). METHODS Restricted diffusion and diffusional exchange were simulated in geometries mimicking tumor microstructure to investigate the DW-MRI signal behavior and to determine optimal experimental parameters. TDD-MRI was implemented using pulsed field gradient spin echo with the optimized parameters on a conventional MRI system and a MRI-Linac. Experiments in green asparagus and 10 patients with brain lesions were performed to evaluate the time-dependent diffusion (TDD) contrast in the source DW-images. RESULTS Simulations demonstrated how the TDD contrast was able to differentiate only dominating diffusional exchange in smaller cells from dominating restricted diffusion in larger cells. The maximal TDD contrast in simulations with typical cancer cell sizes and in asparagus measurements exceeded 5% on the conventional MRI but remained below 5% on the MRI-Linac. In particular, the simulated TDD contrast in typical cancer cell sizes (r = 5-10 µm) remained below or around 2% with the MRI-Linac gradient strength. In patients measured with the conventional MRI, we found sub-regions reflecting either dominating restricted diffusion or dominating diffusional exchange in and around brain lesions compared to the noisy appearing white matter. CONCLUSIONS On the conventional MRI system, the TDD contrast maps showed consistent tumor sub-regions indicating different dominating TDD effects, potentially providing information on the spatial tumor heterogeneity. On the MRI-Linac, the available TDD contrast measured in asparagus showed the same trends as with the conventional MRI but remained close to typical measurement noise levels when simulated in common cancer cell sizes. On conventional MRI systems with moderate gradient strengths, the TDD contrast could potentially be used as a tool to identify which time-dependent effects to include when choosing a biophysical model for more specific tumor characterization.
Collapse
Affiliation(s)
- Minea Jokivuolle
- Laboratory of Radiation PhysicsDepartment of OncologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Faisal Mahmood
- Laboratory of Radiation PhysicsDepartment of OncologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Lars Johnsen
- Laboratory of Radiation PhysicsDepartment of OncologyOdense University HospitalOdenseDenmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreHvidovreDenmark
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
2
|
Wennen M, Stehling W, Marcus JT, Kuijer JPA, Lavini C, Heunks LMA, Strijkers GJ, Coolen BF, Nederveen AJ, Gurney‐Champion OJ. A signal model for fat-suppressed T 1-mapping and dynamic contrast-enhanced MRI with interrupted spoiled gradient-echo readout. NMR IN BIOMEDICINE 2025; 38:e5289. [PMID: 39571186 PMCID: PMC11617136 DOI: 10.1002/nbm.5289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
The conventional gradient-echo steady-state signal model is the basis of various spoiled gradient-echo (SPGR) based quantitative MRI models, including variable flip angle (VFA) MRI and dynamic contrast-enhanced MRI (DCE). However, including preparation pulses, such as fat suppression or saturation bands, disrupts the steady-state and leads to a bias in T1 and DCE parameter estimates. This work introduces a signal model that improves the accuracy of VFA T1-mapping and DCE for interrupted spoiled gradient-echo (I-SPGR) acquisitions. The proposed model was applied to a VFA T1-mapping I-SPGR sequence in the Gold Standard T1-phantom (3 T), in the brain of four healthy volunteers (3 T), and to an abdominal DCE examination (1.5 T). T1-values obtained with the proposed and conventional model were compared to reference T1-values. Bland-Altman analysis (phantom) and analysis of variance (in vivo) were used to test whether bias from both methods was significantly different (p = 0.05). The proposed model outperformed the conventional model by decreasing the bias in the phantom with respect to the phantom reference values (mean bias -2 vs. -35% at 3 T) and in vivo with respect to the conventional SPGR (-6 vs. -37% bias in T1, p < 0.01). The proposed signal model estimated approximately 48% (depending on baseline T1) higher contrast concentrations in vivo, which resulted in decreased DCE pharmacokinetic parameter estimates of up to 35%. The proposed signal model improves the accuracy of quantitative parameter estimation from disrupted steady-state I-SPGR sequences. It therefore provides a flexible method for applying fat suppression, saturation bands, and other preparation pulses in VFA T1-mapping and DCE.
Collapse
Affiliation(s)
- Myrte Wennen
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Intensive CareErasmus Medical CenterRotterdamThe Netherlands
| | - Wilhelm Stehling
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - J. Tim Marcus
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Joost P. A. Kuijer
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Cristina Lavini
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Leo M. A. Heunks
- Department of Intensive CareRadboud University Medical CenterNijmegenThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering & PhysicsAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering & PhysicsAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Oliver J. Gurney‐Champion
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
- Cancer Center Amsterdam, Imaging and BiomarkersAmsterdamThe Netherlands
| |
Collapse
|
3
|
García-Figueiras R, Baleato-González S. Quantitative multi-energy CT in oncology: State of the art and future directions. Eur J Radiol 2025; 182:111840. [PMID: 39581021 DOI: 10.1016/j.ejrad.2024.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Multi-energy computed tomography (CT) involves acquisition of two or more CT measurements with distinct energy spectra. Using the differential attenuation of tissues and materials at different X-ray energies, multi-energy CT allows distinction of tissues and materials. Multi-energy technology encompasses different types of CT systems, such as dual-energy CT and photon-counting CT, that can use information from the energy and type of material present in acquired images to create multiple datasets. These scanners have overcome many of the limitations of conventional CT, making it possible to improve the diagnostic performance of CT and expand its use to new applications through better tissue characterization and multiple quantitative parameters. Quantitative imaging biomarkers based on multi-energy CT have enormous potential in oncologic imaging, from the diagnosis and characterization of tumor phenotypes to the evaluation of the response to treatment. Nevertheless, implementing these techniques in clinical practice remains challenging. This article reviews the basic principles underlying multi-energy CT and the most recent technical developments in these systems together with their advantages and limitations to establish the value of quantitative imaging derived from multi-energy CT in the field of oncology.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Jia X, Carter BW, Duffton A, Harris E, Hobbs R, Li H. Advancing the Collaboration Between Imaging and Radiation Oncology. Semin Radiat Oncol 2024; 34:402-417. [PMID: 39271275 PMCID: PMC11407744 DOI: 10.1016/j.semradonc.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The fusion of cutting-edge imaging technologies with radiation therapy (RT) has catalyzed transformative breakthroughs in cancer treatment in recent decades. It is critical for us to review our achievements and preview into the next phase for future synergy between imaging and RT. This paper serves as a review and preview for fostering collaboration between these two domains in the forthcoming decade. Firstly, it delineates ten prospective directions ranging from technological innovations to leveraging imaging data in RT planning, execution, and preclinical research. Secondly, it presents major directions for infrastructure and team development in facilitating interdisciplinary synergy and clinical translation. We envision a future where seamless integration of imaging technologies into RT will not only meet the demands of RT but also unlock novel functionalities, enhancing accuracy, efficiency, safety, and ultimately, the standard of care for patients worldwide.
Collapse
Affiliation(s)
- Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD..
| | - Brett W Carter
- Department of Thoracic Imaging, Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aileen Duffton
- Beatson West of Scotland Cancer Centre, Glasgow, UK.; Institute of Cancer Science, University of Glasgow, UK
| | - Emma Harris
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Robert Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Deasy JO. Data Science Opportunities To Improve Radiotherapy Planning and Clinical Decision Making. Semin Radiat Oncol 2024; 34:379-394. [PMID: 39271273 PMCID: PMC11698470 DOI: 10.1016/j.semradonc.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Radiotherapy aims to achieve a high tumor control probability while minimizing damage to normal tissues. Personalizing radiotherapy treatments for individual patients, therefore, depends on integrating physical treatment planning with predictive models of tumor control and normal tissue complications. Predictive models could be improved using a wide range of rich data sources, including tumor and normal tissue genomics, radiomics, and dosiomics. Deep learning will drive improvements in classifying normal tissue tolerance, predicting intra-treatment tumor changes, tracking accumulated dose distributions, and quantifying the tumor response to radiotherapy based on imaging. Mechanistic patient-specific computer simulations ('digital twins') could also be used to guide adaptive radiotherapy. Overall, we are entering an era where improved modeling methods will allow the use of newly available data sources to better guide radiotherapy treatments.
Collapse
Affiliation(s)
- Joseph O Deasy
- Department of Medical Physics, Attending Physicist, Chief, Service for Predictive Informatics, Chair, Memorial Sloan Kettering Cancer Center, New York, NY..
| |
Collapse
|
6
|
Mesny E, Leporq B, Chapet O, Beuf O. Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions. Magn Reson Imaging 2024; 108:129-137. [PMID: 38354843 DOI: 10.1016/j.mri.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Early prediction of radiation response by imaging is a dynamic field of research and it can be obtained using a variety of noninvasive magnetic resonance imaging methods. Recently, intravoxel incoherent motion (IVIM) has gained interest in cancer imaging. IVIM carries both diffusion and perfusion information, making it a promising tool to assess tumor response. Here, we briefly introduced the basics of IVIM, reviewed existing studies of IVIM in various type of tumors during radiotherapy in order to show whether IVIM is a useful technique for an early assessment of radiation response. 31/40 studies reported an increase of IVIM parameters during radiotherapy compared to baseline. In 27 studies, this increase was higher in patients with good response to radiotherapy. Future directions including implementation of IVIM on MR-Linac and its limitation are discussed. Obtaining new radiologic biomarkers of radiotherapy response could open the way for a more personalized, biology-guided radiation therapy.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France.
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| | - Olivier Chapet
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| |
Collapse
|
7
|
Possenti L, Vitullo P, Cicchetti A, Zunino P, Rancati T. Modeling hypoxia-induced radiation resistance and the impact of radiation sources. Comput Biol Med 2024; 173:108334. [PMID: 38520919 DOI: 10.1016/j.compbiomed.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.
Collapse
Affiliation(s)
- Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
8
|
Onal C, Guler OC, Torun N, Reyhan M. Long-term assessment of clinical parameters and positron emission tomography parameters in predicting recurrence in uterine cervical cancer patients receiving definitive chemoradiotherapy. Nucl Med Commun 2024; 45:203-210. [PMID: 38165168 DOI: 10.1097/mnm.0000000000001800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE The objective of this study was to assess the prognostic value of clinical factors and metabolic parameters measured using fluorodeoxyglucose PET (FDG-PET/CT) in predicting disease recurrence, as well as distant metastasis-free survival (DMFS), local recurrence-free survival (LRFS), and overall survival (OS) in patients with uterine cervical cancer who received definitive chemoradiotherapy. METHODS The clinical data and FDG-PET parameters, including standardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of 194 patients with biopsy-confirmed squamous cell carcinoma of cervical cancer were retrospectively analyzed. Univariate and multivariate analyses were used to ascertain prognostic factors associated with DMFS, LRFS, and OS. RESULTS With a median follow-up of 12.5 years, 96 patients (49.5%) presented with disease recurrence, at a median of 9.9 months after chemoradiotherapy. Patients who experienced recurrence had significantly higher values for all FDG-PET parameters compared to patients who did not. In multivariate regression analysis, lymph node metastasis, MTV, and SUV mean were significantly correlated with distant metastasis, while local recurrence was only predicted by SUV max . Lymph node metastasis, high MTV, SUV mean , and TLG predicted shorter DMFS, while only the primary tumor SUV max predicted LRFS. Age, regional nodal metastasis, and higher MTV independently predicted shorter OS in multivariate analysis. CONCLUSION We found that metabolic parameters derived from FDG-PET/CT could serve as surrogates for disease recurrence in patients with cervical cancer who were treated with definitive chemoradiotherapy. Patients at high risk of distant metastasis could be defined using SUV mean and MTV, and for local recurrence, by using SUV max .
Collapse
Affiliation(s)
- Cem Onal
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Dr. Turgut Noyan Research and Treatment Center, Adana
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara
| | - Ozan Cem Guler
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Dr. Turgut Noyan Research and Treatment Center, Adana
| | - Nese Torun
- Department of Nuclear Medicine, Baskent University Faculty of Medicine, Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Mehmet Reyhan
- Department of Nuclear Medicine, Baskent University Faculty of Medicine, Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| |
Collapse
|
9
|
Elliott A, Villemoes E, Farhat M, Klingberg E, Langshaw H, Svensson S, Chung C. Development and benchmarking diffusion magnetic resonance imaging analysis for integration into radiation treatment planning. Med Phys 2024; 51:2108-2118. [PMID: 37633837 DOI: 10.1002/mp.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE The rising promise in the utility of advanced multi-parametric magnetic resonance (MR) imaging in radiotherapy (RT) treatment planning creates a necessity for testing and enhancing the accuracy of quantitative imaging analysis. Standardizing the analysis of diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) to generate meaningful and reproducible apparent diffusion coefficient (ADC) and fractional anisotropy (FA) lays the requisite needed for clinical integration. The aim of the demonstrated work is to benchmark the generation of the ADC and FA parametric map analyses using integrated tools in a commercial treatment planning system against the currently used ones. METHODS Three software packages were used for generating ADC and FA maps in this study; one tool was developed within a commercial treatment planning system, another by the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library FSL (Analysis Group, FMRIB, Oxford, United Kingdom), and an in-house tool developed at the M.D. Anderson Cancer Center. The ADC and FA maps generated by all three packages for 35 subjects were subtracted from one another, and the standard deviation of the images' differences was used to compare the reproducibility. The reproducibility of the ADC maps was compared with the Quantitative Imaging Biomarkers Alliance (QIBA) protocol, while that of the FA maps was compared to data in published literature. RESULTS Results show that the discrepancies between the ADC maps calculated for each patient using the three different software algorithms are less than 2% which meets the 3.6% recommended QIBA requirement. Except for a small number of isolated points, the majority of differences in FA maps for each patient produced by the three methods did not exceed 0.02 which is 10 times lower than the differences seen in healthy gray and white matter. The results were also compared to the maps generated by existing MR Imaging consoles and showed that the robustness of console generated ADC and FA maps is largely dependent on the correct application of scaling factors, that only if correctly placed; the differences between the three tested methods and the console generated values were within the recommended QIBA guidelines. CONCLUSIONS Cross-comparison difference maps demonstrated that quantitative reproducibility of ADC and FA metrics generated using our tested commercial treatment planning system were comparable to in-house and established tools as benchmarks. This integrated approach facilitates the clinical utility of diffusion imaging in radiation treatment planning workflow.
Collapse
Affiliation(s)
- Andrew Elliott
- Department Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Maguy Farhat
- Department Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Holly Langshaw
- Department Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Caroline Chung
- Department Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
García-Figueiras R, Baleato-González S, Luna A, Padhani AR, Vilanova JC, Carballo-Castro AM, Oleaga-Zufiria L, Vallejo-Casas JA, Marhuenda A, Gómez-Caamaño A. How Imaging Advances Are Defining the Future of Precision Radiation Therapy. Radiographics 2024; 44:e230152. [PMID: 38206833 DOI: 10.1148/rg.230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Radiation therapy is fundamental in the treatment of cancer. Imaging has always played a central role in radiation oncology. Integrating imaging technology into irradiation devices has increased the precision and accuracy of dose delivery and decreased the toxic effects of the treatment. Although CT has become the standard imaging modality in radiation therapy, the development of recently introduced next-generation imaging techniques has improved diagnostic and therapeutic decision making in radiation oncology. Functional and molecular imaging techniques, as well as other advanced imaging modalities such as SPECT, yield information about the anatomic and biologic characteristics of tumors for the radiation therapy workflow. In clinical practice, they can be useful for characterizing tumor phenotypes, delineating volumes, planning treatment, determining patients' prognoses, predicting toxic effects, assessing responses to therapy, and detecting tumor relapse. Next-generation imaging can enable personalization of radiation therapy based on a greater understanding of tumor biologic factors. It can be used to map tumor characteristics, such as metabolic pathways, vascularity, cellular proliferation, and hypoxia, that are known to define tumor phenotype. It can also be used to consider tumor heterogeneity by highlighting areas at risk for radiation resistance for focused biologic dose escalation, which can impact the radiation planning process and patient outcomes. The authors review the possible contributions of next-generation imaging to the treatment of patients undergoing radiation therapy. In addition, the possible roles of radio(geno)mics in radiation therapy, the limitations of these techniques, and hurdles in introducing them into clinical practice are discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Sandra Baleato-González
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Luna
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Anwar R Padhani
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Joan C Vilanova
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana M Carballo-Castro
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Laura Oleaga-Zufiria
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Juan Antonio Vallejo-Casas
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana Marhuenda
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Gómez-Caamaño
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| |
Collapse
|
11
|
Knuth F, Tohidinezhad F, Winter RM, Bakke KM, Negård A, Holmedal SH, Ree AH, Meltzer S, Traverso A, Redalen KR. Quantitative MRI-based radiomics analysis identifies blood flow feature associated to overall survival for rectal cancer patients. Sci Rep 2024; 14:258. [PMID: 38167665 PMCID: PMC10762039 DOI: 10.1038/s41598-023-50966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Radiomics objectively quantifies image information through numerical metrics known as features. In this study, we investigated the stability of magnetic resonance imaging (MRI)-based radiomics features in rectal cancer using both anatomical MRI and quantitative MRI (qMRI), when different methods to define the tumor volume were used. Second, we evaluated the prognostic value of stable features associated to 5-year progression-free survival (PFS) and overall survival (OS). On a 1.5 T MRI scanner, 81 patients underwent diagnostic MRI, an extended diffusion-weighted sequence with calculation of the apparent diffusion coefficient (ADC) and a multiecho dynamic contrast sequence generating both dynamic contrast-enhanced and dynamic susceptibility contrast (DSC) MR, allowing quantification of Ktrans, blood flow (BF) and area under the DSC curve (AUC). Radiomic features were extracted from T2w images and from ADC, Ktrans, BF and AUC maps. Tumor volumes were defined with three methods; machine learning, deep learning and manual delineations. The interclass correlation coefficient (ICC) assessed the stability of features. Internal validation was performed on 1000 bootstrap resamples in terms of discrimination, calibration and decisional benefit. For each combination of image and volume definition, 94 features were extracted. Features from qMRI contained higher prognostic potential than features from anatomical MRI. When stable features (> 90% ICC) were compared with clinical parameters, qMRI features demonstrated the best prognostic potential. A feature extracted from the DSC MRI parameter BF was associated with both PFS (p = 0.004) and OS (p = 0.004). In summary, stable qMRI-based radiomics features was identified, in particular, a feature based on BF from DSC MRI was associated with both PFS and OS.
Collapse
Affiliation(s)
- Franziska Knuth
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Fariba Tohidinezhad
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - René M Winter
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Kine Mari Bakke
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Negård
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Stein H Holmedal
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
12
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
13
|
Crop F, Robert C, Viard R, Dumont J, Kawalko M, Makala P, Liem X, El Aoud I, Ben Miled A, Chaton V, Patin L, Pasquier D, Guillaud O, Vandendorpe B, Mirabel X, Ceugnart L, Decoene C, Lacornerie T. Efficiency and Accuracy Evaluation of Multiple Diffusion-Weighted MRI Techniques Across Different Scanners. J Magn Reson Imaging 2024; 59:311-322. [PMID: 37335079 DOI: 10.1002/jmri.28869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The choice between different diffusion-weighted imaging (DWI) techniques is difficult as each comes with tradeoffs for efficient clinical routine imaging and apparent diffusion coefficient (ADC) accuracy. PURPOSE To quantify signal-to-noise-ratio (SNR) efficiency, ADC accuracy, artifacts, and distortions for different DWI acquisition techniques, coils, and scanners. STUDY TYPE Phantom, in vivo intraindividual biomarker accuracy between DWI techniques and independent ratings. POPULATION/PHANTOMS NIST diffusion phantom. 51 Patients: 40 with prostate cancer and 11 with head-and-neck cancer at 1.5 T FIELD STRENGTH/SEQUENCE: Echo planar imaging (EPI): 1.5 T and 3 T Siemens; 3 T Philips. Distortion-reducing: RESOLVE (1.5 and 3 T Siemens); Turbo Spin Echo (TSE)-SPLICE (3 T Philips). Small field-of-view (FOV): ZoomitPro (1.5 T Siemens); IRIS (3 T Philips). Head-and-neck and flexible coils. ASSESSMENT SNR Efficiency, geometrical distortions, and susceptibility artifacts were quantified for different b-values in a phantom. ADC accuracy/agreement was quantified in phantom and for 51 patients. In vivo image quality was independently rated by four experts. STATISTICAL TESTS QIBA methodology for accuracy: trueness, repeatability, reproducibility, Bland-Altman 95% Limits-of-Agreement (LOA) for ADC. Wilcoxon Signed-Rank and student tests on P < 0.05 level. RESULTS The ZoomitPro small FOV sequence improved b-image efficiency by 8%-14%, reduced artifacts and observer scoring for most raters at the cost of smaller FOV compared to EPI. The TSE-SPLICE technique reduced artifacts almost completely at a 24% efficiency cost compared to EPI for b-values ≤500 sec/mm2 . Phantom ADC 95% LOA trueness were within ±0.03 × 10-3 mm2 /sec except for small FOV IRIS. The in vivo ADC agreement between techniques, however, resulted in 95% LOAs in the order of ±0.3 × 10-3 mm2 /sec with up to 0.2 × 10-3 mm2 /sec of bias. DATA CONCLUSION ZoomitPro for Siemens and TSE SPLICE for Philips resulted in a trade-off between efficiency and artifacts. Phantom ADC quality control largely underestimated in vivo accuracy: significant ADC bias and variability was found between techniques in vivo. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Frederik Crop
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
- University of Lille, IEMN, Lille, France
| | - Clémence Robert
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - Romain Viard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, PLBS UAR 2014-US 41, Lille, France
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Julien Dumont
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, PLBS UAR 2014-US 41, Lille, France
| | - Marine Kawalko
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - Pauline Makala
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Xavier Liem
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Imen El Aoud
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - Aicha Ben Miled
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - Victor Chaton
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - Lucas Patin
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - David Pasquier
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
- University of Lille, Centre de recherche en informatique, Signal et automatique de Lille, Lille, France
| | | | | | - Xavier Mirabel
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Luc Ceugnart
- Department of Radiology, Centre Oscar Lambret, Lille, France
| | - Camille Decoene
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | | |
Collapse
|
14
|
Paudyal R, Jiang J, Han J, Diplas BH, Riaz N, Hatzoglou V, Lee N, Deasy JO, Veeraraghavan H, Shukla-Dave A. Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images. BJR ARTIFICIAL INTELLIGENCE 2024; 1:ubae004. [PMID: 38476956 PMCID: PMC10928808 DOI: 10.1093/bjrai/ubae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
Objectives Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant. Results No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively. Conclusions The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC. Advances in knowledge First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - James Han
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
15
|
van Houdt PJ, Li S, Yang Y, van der Heide UA. Quantitative MRI on MR-Linacs: Towards Biological Image-Guided Adaptive Radiotherapy. Semin Radiat Oncol 2024; 34:107-119. [PMID: 38105085 DOI: 10.1016/j.semradonc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Recognizing the potential of quantitative imaging biomarkers (QIBs) in radiotherapy, many studies have investigated the prognostic value of quantitative MRI (qMRI). With the introduction of MRI-guided radiotherapy systems, the practical challenges of repeated imaging have been substantially reduced. Since patients are treated inside an MRI scanner, acquisition of qMRI can be done during each fraction with limited or no prolongation of the fraction duration. In this review paper, we identify the steps that need been taken to move from MR as an imaging technique to a useful biomarker for MRI-guided radiotherapy (MRgRT).
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shaolei Li
- SJTU-Ruijing, UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.; Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingli Yang
- SJTU-Ruijing, UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.; Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands..
| |
Collapse
|
16
|
Stikov N, Karakuzu A. The relaxometry hype cycle. Front Physiol 2023; 14:1281147. [PMID: 38028766 PMCID: PMC10666791 DOI: 10.3389/fphys.2023.1281147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Relaxometry is a field with a glorious and controversial history, and no review will ever do it justice. It is full of egos and inventions, patents and lawsuits, high expectations and deep disillusionments. Rather than a paragraph dedicated to each of these, we want to give it an impressionistic overview, painted over with a coat of personal opinions and ruminations about the future of the field. For those unfamiliar with the Gartner hype cycle, here's a brief recap. The cycle starts with a technology trigger and goes through a phase of unrealistically inflated expectations. Eventually the hype dies down as implementations fail to deliver on their promise, and disillusionment sets in. Technologies that manage to live through the trough reach the slope of enlightenment, when there is a flurry of second and third generation products that make the initial promise feel feasible again. Finally, we reach the slope of productivity, where mainstream adoption takes off, and more incremental progress is made, eventually reaching steady state in terms of the technology's visibility. The entire interactive timeline can be viewed at https://qmrlab.org/relaxometry/.
Collapse
Affiliation(s)
- Nikola Stikov
- Polytechnique Montréal, Montreal, QC, Canada
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Agâh Karakuzu
- Polytechnique Montréal, Montreal, QC, Canada
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Dejene EM, Brenner W, Makowski MR, Kolbitsch C. Unified Bayesian network for uncertainty quantification of physiological parameters in dynamic contrast enhanced (DCE) MRI of the liver. Phys Med Biol 2023; 68:215018. [PMID: 37820640 DOI: 10.1088/1361-6560/ad0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. Physiological parameter estimation is affected by intrinsic ambiguity in the data such as noise and model inaccuracies. The aim of this work is to provide a deep learning framework for accurate parameter and uncertainty estimates for DCE-MRI in the liver.Approach. Concentration time curves are simulated to train a Bayesian neural network (BNN). Training of the BNN involves minimization of a loss function that jointly minimizes the aleatoric and epistemic uncertainties. Uncertainty estimation is evaluated for different noise levels and for different out of distribution (OD) cases, i.e. where the data during inference differs strongly to the data during training. The accuracy of parameter estimates are compared to a nonlinear least squares (NLLS) fitting in numerical simulations andin vivodata of a patient suffering from hepatic tumor lesions.Main results. BNN achieved lower root-mean-squared-errors (RMSE) than the NLLS for the simulated data. RMSE of BNN was on overage of all noise levels lower by 33% ± 1.9% forktrans, 22% ± 6% forveand 89% ± 5% forvpthan the NLLS. The aleatoric uncertainties of the parameters increased with increasing noise level, whereas the epistemic uncertainty increased when a BNN was evaluated with OD data. For thein vivodata, more robust parameter estimations were obtained by the BNN than the NLLS fit. In addition, the differences between estimated parameters for healthy and tumor regions-of-interest were significant (p< 0.0001).Significance. The proposed framework allowed for accurate parameter estimates for quantitative DCE-MRI. In addition, the BNN provided uncertainty estimates which highlighted cases of high noise and in which the training data did not match the data during inference. This is important for clinical application because it would indicate cases in which the trained model is inadequate and additional training with an adapted training data set is required.
Collapse
Affiliation(s)
- Edengenet M Dejene
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
18
|
Hasler SW, Kallehauge JF, Hansen RH, Samsøe E, Arp DT, Nissen HD, Edmund JM, Bernchou U, Mahmood F. Geometric distortions in clinical MRI sequences for radiotherapy: insights gained from a multicenter investigation. Acta Oncol 2023; 62:1551-1560. [PMID: 37815867 DOI: 10.1080/0284186x.2023.2266560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND As magnetic resonance imaging (MRI) becomes increasingly integrated into radiotherapy (RT) for enhanced treatment planning and adaptation, the inherent geometric distortion in acquired MR images pose a potential challenge to treatment accuracy. This study aimed to evaluate the geometric distortion levels in the clinical MRI protocols used across Danish RT centers and discuss influence of specific sequence parameters. Based on the variety in geometric performance across centers, we assess if harmonization of MRI sequences is a relevant measure. MATERIALS AND METHODS Nine centers participated with 12 MRI scanners and MRI-Linacs (MRL). Using a travelling phantom approach, a reference MRI sequence was used to assess variation in baseline distortion level between scanners. The phantom was also scanned with local clinical MRI sequences for brain, head/neck (H/N), abdomen, and pelvis. The influence of echo time, receiver bandwidth, image weighting, and 2D/3D acquisition was investigated. RESULTS We found a large variation in geometric accuracy across 93 clinical sequences examined, exceeding the baseline variation found between MRI scanners (σ = 0.22 mm), except for abdominal sequences where the variation was lower. Brain and abdominal sequences showed lowest distortion levels ([0.22, 2.26] mm), and a large variation in performance was found for H/N and pelvic sequences ([0.19, 4.07] mm). Post hoc analyses revealed that distortion levels decreased with increasing bandwidth and a less clear increase in distortion levels with increasing echo time. 3D MRI sequences had lower distortion levels than 2D (median of 1.10 and 2.10 mm, respectively), and in DWI sequences, the echo-planar imaging read-out resulted in highest distortion levels. CONCLUSION There is a large variation in the geometric distortion levels of clinical MRI sequences across Danish RT centers, and between anatomical sites. The large variation observed makes harmonization of MRI sequences across institutions and adoption of practices from well-performing anatomical sites, a relevant measure within RT.
Collapse
Affiliation(s)
- Signe Winther Hasler
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Folsted Kallehauge
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Hvass Hansen
- Section for Radiation Therapy, Department of Oncology, Center for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Samsøe
- Department of Clinical Oncology, Zealand University Hospital, Naestved, Denmark
| | - Dennis Tideman Arp
- Department of Medical Physics, Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Dahl Nissen
- Department of Medical Physics, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jens M Edmund
- Radiotherapy Research Unit, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
20
|
Bisgaard ALH, Keesman R, van Lier ALHMW, Coolens C, van Houdt PJ, Tree A, Wetscherek A, Romesser PB, Tyagi N, Lo Russo M, Habrich J, Vesprini D, Lau AZ, Mook S, Chung P, Kerkmeijer LGW, Gouw ZAR, Lorenzen EL, van der Heide UA, Schytte T, Brink C, Mahmood F. Recommendations for improved reproducibility of ADC derivation on behalf of the Elekta MRI-linac consortium image analysis working group. Radiother Oncol 2023; 186:109803. [PMID: 37437609 PMCID: PMC11197850 DOI: 10.1016/j.radonc.2023.109803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND PURPOSE The apparent diffusion coefficient (ADC), a potential imaging biomarker for radiotherapy response, needs to be reproducible before translation into clinical use. The aim of this study was to evaluate the multi-centre delineation- and calculation-related ADC variation and give recommendations to minimize it. MATERIALS AND METHODS Nine centres received identical diffusion-weighted and anatomical magnetic resonance images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, pancreas, and prostate). All centres delineated the gross tumour volume (GTV), clinical target volume (CTV), and viable tumour volume (VTV), and calculated ADCs using both their local calculation methods and each of the following calculation conditions: b-values 0-500 vs. 150-500 s/mm2, region-of-interest (ROI)-based vs. voxel-based calculation, and mean vs. median. ADC variation was assessed using the mean coefficient of variation across delineations (CVD) and calculation methods (CVC). Absolute ADC differences between calculation conditions were evaluated using Friedman's test. Recommendations for ADC calculation were formulated based on observations and discussions within the Elekta MRI-linac consortium image analysis working group. RESULTS The median (range) CVD and CVC were 0.06 (0.02-0.32) and 0.17 (0.08-0.26), respectively. The ADC estimates differed 18% between b-value sets and 4% between ROI/voxel-based calculation (p-values < 0.01). No significant difference was observed between mean and median (p = 0.64). Aligning calculation conditions between centres reduced CVC to 0.04 (0.01-0.16). CVD was comparable between ROI types. CONCLUSION Overall, calculation methods had a larger impact on ADC reproducibility compared to delineation. Based on the results, significant sources of variation were identified, which should be considered when initiating new studies, in particular multi-centre investigations.
Collapse
Affiliation(s)
- Anne L H Bisgaard
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense Denmark.
| | - Rick Keesman
- Department of Radiation Oncology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Astrid L H M W van Lier
- Department of Radiotherapy, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX,Utrecht, The Netherlands.
| | - Catherine Coolens
- Department of Medical Physics, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, M5G 2M9 Toronto, ON, Canada.
| | - Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands.
| | - Alison Tree
- Department of Urology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT London, UK.
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, SM2 5NG London, UK.
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 22, NY 10065, New York, USA.
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 545 E. 73rd street, NY 10021, New York, USA.
| | - Monica Lo Russo
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Jonas Habrich
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, 2075 Bayview Avenue, M4N 3M5 Toronto, ON, Canada.
| | - Angus Z Lau
- Physical Sciences Platform, Sunnybrook Research Institute. Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, M4N 3M5 Toronto, ON, Canada.
| | - Stella Mook
- Department of Radiotherapy, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX,Utrecht, The Netherlands.
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network. Department of Radiation Oncology, University of Toronto, 610 University Avenue, M5G 2M9 Toronto, ON, Canada.
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Zeno A R Gouw
- Department of Radiation Oncology, the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands.
| | - Ebbe L Lorenzen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000 Odense, Denmark.
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands.
| | - Tine Schytte
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense Denmark; Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000 Odense, Denmark.
| | - Carsten Brink
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense Denmark.
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense Denmark.
| |
Collapse
|
21
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
22
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Ng J, Gregucci F, Pennell RT, Nagar H, Golden EB, Knisely JPS, Sanfilippo NJ, Formenti SC. MRI-LINAC: A transformative technology in radiation oncology. Front Oncol 2023; 13:1117874. [PMID: 36776309 PMCID: PMC9911688 DOI: 10.3389/fonc.2023.1117874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Advances in radiotherapy technologies have enabled more precise target guidance, improved treatment verification, and greater control and versatility in radiation delivery. Amongst the recent novel technologies, Magnetic Resonance Imaging (MRI) guided radiotherapy (MRgRT) may hold the greatest potential to improve the therapeutic gains of image-guided delivery of radiation dose. The ability of the MRI linear accelerator (LINAC) to image tumors and organs with on-table MRI, to manage organ motion and dose delivery in real-time, and to adapt the radiotherapy plan on the day of treatment while the patient is on the table are major advances relative to current conventional radiation treatments. These advanced techniques demand efficient coordination and communication between members of the treatment team. MRgRT could fundamentally transform the radiotherapy delivery process within radiation oncology centers through the reorganization of the patient and treatment team workflow process. However, the MRgRT technology currently is limited by accessibility due to the cost of capital investment and the time and personnel allocation needed for each fractional treatment and the unclear clinical benefit compared to conventional radiotherapy platforms. As the technology evolves and becomes more widely available, we present the case that MRgRT has the potential to become a widely utilized treatment platform and transform the radiation oncology treatment process just as earlier disruptive radiation therapy technologies have done.
Collapse
Affiliation(s)
- John Ng
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: John Ng,
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States,Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Ryan T. Pennell
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Encouse B. Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | | | | | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
24
|
Morelli L, Palombo M, Buizza G, Riva G, Pella A, Fontana G, Imparato S, Iannalfi A, Orlandi E, Paganelli C, Baroni G. Microstructural parameters from DW-MRI for tumour characterization and local recurrence prediction in particle therapy of skull-base chordoma. Med Phys 2023; 50:2900-2913. [PMID: 36602230 DOI: 10.1002/mp.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Quantitative imaging such as Diffusion-Weighted MRI (DW-MRI) can be exploited to non-invasively derive patient-specific tumor microstructure information for tumor characterization and local recurrence risk prediction in radiotherapy. PURPOSE To characterize tumor microstructure according to proliferative capacity and predict local recurrence through microstructural markers derived from pre-treatment conventional DW-MRI, in skull-base chordoma (SBC) patients treated with proton (PT) and carbon ion (CIRT) radiotherapy. METHODS Forty-eight patients affected by SBC, who underwent conventional DW-MRI before treatment and were enrolled for CIRT (n = 25) or PT (n = 23), were retrospectively selected. Clinically verified local recurrence information (LR) and histological information (Ki-67, proliferation index) were collected. Apparent diffusion coefficient (ADC) maps were calculated from pre-treatment DW-MRI and, from these, a set of microstructural parameters (cellular radius R, volume fraction vf, diffusion D) were derived by applying a fine-tuning procedure to a framework employing Monte Carlo simulations on synthetic cell substrates. In addition, apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretation. Histogram-based metrics (mean, median, variance, entropy) from estimated parameters were considered to investigate differences (Mann-Whitney U-test, α = 0.05) in estimated tumor microstructure in SBCs characterized by low or high cell proliferation (Ki-67). Recurrence-free survival analyses were also performed to assess the ability of the microstructural parameters to stratify patients according to the risk of local recurrence (Kaplan-Meier curves, log-rank test α = 0.05). RESULTS Refined microstructural markers revealed optimal capabilities in discriminating patients according to cell proliferation, achieving best results with mean values (p-values were 0.0383, 0.0284, 0.0284, 0.0468, and 0.0088 for ADC, R, vf, D, and ρapp, respectively). Recurrence-free survival analyses showed significant differences between populations at high and low risk of local recurrence as stratified by entropy values of estimated microstructural parameters (p = 0.0110). CONCLUSION Patient-specific microstructural information was non-invasively derived providing potentially useful tools for SBC treatment personalization and optimization in particle therapy.
Collapse
Affiliation(s)
- Letizia Morelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Giulia Riva
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Andrea Pella
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Fontana
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Imparato
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alberto Iannalfi
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ester Orlandi
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
25
|
Morelli L, Parrella G, Molinelli S, Magro G, Annunziata S, Mairani A, Chalaszczyk A, Fiore MR, Ciocca M, Paganelli C, Orlandi E, Baroni G. A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers (Basel) 2022; 15:cancers15010033. [PMID: 36612029 PMCID: PMC9817801 DOI: 10.3390/cancers15010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Carbon Ion Radiotherapy (CIRT) is one of the most promising therapeutic options to reduce Local Recurrence (LR) in Sacral Chordomas (SC). The aim of this work is to compare the performances of survival models fed with dosiomics features and conventional DVH metrics extracted from relative biological effectiveness (RBE)-weighted dose (DRBE) and dose-averaged Linear Energy Transfer (LETd) maps, towards the identification of possible prognostic factors for LR in SC patients treated with CIRT. This retrospective study included 50 patients affected by SC with a focus on patients that presented a relapse in a high-dose region. Survival models were built to predict both LR and High-Dose Local Recurrencies (HD-LR). The models were evaluated through Harrell Concordance Index (C-index) and patients were stratified into high/low-risk groups. Local Recurrence-free Kaplan-Meier curves were estimated and evaluated through log-rank tests. The model with highest performance (median(interquartile-range) C-index of 0.86 (0.22)) was built on features extracted from LETd maps, with DRBE models showing promising but weaker results (C-index of 0.83 (0.21), 0.80 (0.21)). Although the study should be extended to a wider patient population, LETd maps show potential as a prognostic factor for SC HD-LR in CIRT, and dosiomics appears to be the most promising approach against more conventional methods (e.g., DVH-based).
Collapse
Affiliation(s)
- Letizia Morelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Giovanni Parrella
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Simone Annunziata
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Mairani
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
- Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Agnieszka Chalaszczyk
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Ester Orlandi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
26
|
Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi‐Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney‐Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magn Reson Med 2022; 88:2592-2608. [PMID: 36128894 PMCID: PMC9529952 DOI: 10.1002/mrm.29450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.
Collapse
Affiliation(s)
- Rosie J. Goodburn
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | | | - Thierry L. Lefebvre
- Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Aly Khalifa
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Tom Bruijnen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - David E. J. Waddington
- Faculty of Medicine and Health, Sydney School of Health Sciences, ACRF Image X InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Eyesha Younus
- Department of Medical Physics, Odette Cancer CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Eric Aliotta
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Gabriele Meliadò
- Unità Operativa Complessa di Fisica SanitariaAzienda Ospedaliera Universitaria Integrata VeronaVeronaItaly
| | - Teo Stanescu
- Department of Radiation Oncology, University of Toronto and Medical Physics, Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Wajiha Bano
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Ali Fatemi‐Ardekani
- Department of PhysicsJackson State University (JSU)JacksonMississippiUSA
- SpinTecxJacksonMississippiUSA
- Department of Radiation OncologyCommunity Health Systems (CHS) Cancer NetworkJacksonMississippiUSA
| | - Andreas Wetscherek
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Nico van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | - Ralph P. Mason
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Petra J. van Houdt
- Department of Radiation OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - James M. Balter
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver J. Gurney‐Champion
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
27
|
Volpe S, Isaksson LJ, Zaffaroni M, Pepa M, Raimondi S, Botta F, Lo Presti G, Vincini MG, Rampinelli C, Cremonesi M, de Marinis F, Spaggiari L, Gandini S, Guckenberger M, Orecchia R, Jereczek-Fossa BA. Impact of image filtering and assessment of volume-confounding effects on CT radiomic features and derived survival models in non-small cell lung cancer. Transl Lung Cancer Res 2022; 11:2452-2463. [PMID: 36636424 PMCID: PMC9830263 DOI: 10.21037/tlcr-22-248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Background No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed. Methods Four-hundred seventeen CT images NSCLC patients were retrieved from the NSCLC-Radiomics public repository. Pre-processing and features extraction were implemented using Pyradiomics v3.0.1. Features showing high correlation with volume across original and filtered images were excluded. Cox proportional hazards (PH) with least absolute shrinkage and selection operator (LASSO) regularization and CatBoost models were built with and without volume, and their concordance (C-) indices were compared using Wilcoxon signed-ranked test. The Mann Whitney U test was used to assess model performances after stratification into two groups based on low- and high-volume lesions. Results Radiomic models significantly outperformed models built on only clinical variables and volume. However, the exclusion/inclusion of volume did not generally alter the performances of radiomic models. Overall, performances were not substantially affected by the choice of either imaging filter (overall C-index 0.539-0.590 for Cox PH and 0.589-0.612 for CatBoost). The separation of patients with high-volume lesions resulted in significantly better performances in 2/10 and 7/10 cases for Cox PH and CatBoost models, respectively. Both low- and high-volume models performed significantly better with the inclusion of radiomic features (P<0.0001), but the improvement was largest in the high-volume group (+10.2% against +8.7% improvement for CatBoost models and +10.0% against +5.4% in Cox PH models). Conclusions Radiomic features complement well-known prognostic factors such as volume, but their volume-dependency is high and should be managed with vigilance. The informative content of radiomic features may be diminished in small lesion volumes, which could limit the applicability of radiomics in early-stage NSCLC, where tumors tend to be small. Our results also suggest an advantage of CatBoost models over the Cox PH models.
Collapse
Affiliation(s)
- Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy;,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cristiano Rampinelli
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy;,Division of Thoracic Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy;,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Ryan JT, Nakayama M, Gleeson I, Mannion L, Geso M, Kelly J, Ng SP, Hardcastle N. Functional brain imaging interventions for radiation therapy planning in patients with glioblastoma: a systematic review. Radiat Oncol 2022; 17:178. [PMID: 36371225 PMCID: PMC9653002 DOI: 10.1186/s13014-022-02146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
RATIONALE This systematic review aims to synthesise the outcomes of different strategies of incorporating functional biological markers in the radiation therapy plans of patients with glioblastoma to support clinicians and further research. METHODS The systematic review protocol was registered on PROSPERO (CRD42021221021). A structured search for publications was performed following PRISMA guidelines. Quality assessment was performed using the Newcastle-Ottawa Scale. Study characteristics, intervention methodology and outcomes were extracted using Covidence. Data analysis focused on radiation therapy target volumes, toxicity, dose distributions, recurrence and survival mapped to functional image-guided radiotherapy interventions. RESULTS There were 5733 citations screened, with 53 citations (n = 32 studies) meeting review criteria. Studies compared standard radiation therapy planning volumes with functional image-derived volumes (n = 20 studies), treated radiation therapy volumes with recurrences (n = 15 studies), the impact on current standard target delineations (n = 9 studies), treated functional volumes and survival (n = 8 studies), functionally guided dose escalation (n = 8 studies), radiomics (n = 4 studies) and optimal organ at risk sparing (n = 3 studies). The approaches to target outlining and dose escalation were heterogeneous. The analysis indicated an improvement in median overall survival of over two months compared with a historical control group. Simultaneous-integrated-boost dose escalation of 72-76 Gy in 30 fractions appeared to have an acceptable toxicity profile when delivered with inverse planning to a volume smaller than 100 cm[Formula: see text]. CONCLUSION There was significant heterogeneity between the approaches taken by different study groups when implementing functional image-guided radiotherapy. It is recommended that functional imaging data be incorporated into the gross tumour volume with appropriate technology-specific margins used to create the clinical target volume when designing radiation therapy plans for patients with glioblastoma.
Collapse
Affiliation(s)
- John T Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne, Australia
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Japan
| | - Ian Gleeson
- Cancer Research UK RadNet Cambridge, Medical Physics, NHS Foundation Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ UK
| | - Liam Mannion
- Division of Midwifery and Radiography, School of Health Sciences, University of London, Northampton Square, London, UK
| | - Moshi Geso
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, 145 Studley Rd, Heidelberg, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Australia
| |
Collapse
|
29
|
Brynolfsson P, Lerner M, Sundgren PC, Jamtheim Gustafsson C, Nilsson M, Szczepankiewicz F, Olsson LE. Tensor-valued diffusion magnetic resonance imaging in a radiotherapy setting. Phys Imaging Radiat Oncol 2022; 24:144-151. [DOI: 10.1016/j.phro.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
30
|
Skipar K, Hompland T, Lund KV, Løndalen A, Malinen E, Kristensen GB, Lindemann K, Nakken ES, Bruheim K, Lyng H. Risk of recurrence after chemoradiotherapy identified by multimodal MRI and 18F-FDG-PET/CT in locally advanced cervical cancer. Radiother Oncol 2022; 176:17-24. [PMID: 36113778 DOI: 10.1016/j.radonc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE MRI, applying dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) sequences, and 18F-fluorodeoxyglucose (18F-FDG) PET/CT provide information about tumor aggressiveness that is unexploited in treatment of locally advanced cervical cancer (LACC). We investigated the potential of a multimodal combination of imaging parameters for classifying patients according to their risk of recurrence. MATERIALS AND METHODS Eighty-two LACC patients with diagnostic MRI and FDG-PET/CT, treated with chemoradiotherapy, were collected. Thirty-eight patients with MRI only were included for validation of MRI results. Endpoints were survival (disease-free, cancer-specific, overall) and tumor control (local, locoregional, distant). Ktrans, reflecting vascular function, apparent diffusion coefficient (ADC), reflecting cellularity, and standardized uptake value (SUV), reflecting glucose uptake, were extracted from DCE-MR, DW-MR and FDG-PET images, respectively. By applying an oxygen consumption and supply-based method, ADC and Ktrans parametric maps were voxel-wise combined into hypoxia images that were used to determine hypoxic fraction (HF). RESULTS HF showed a stronger association with outcome than the single modality parameters. This association was confirmed in the validation cohort. Low HF identified low-risk patients with 95% precision. Based on the 50th SUV-percentile (SUV50), patients with high HF were divided into an intermediate- and high-risk group with high and low SUV50, respectively. This defined a multimodality biomarker, HF/SUV50. HF/SUV50 increased the precision of detecting high-risk patients from 41% (HF alone) to 57% and showed prognostic significance in multivariable analysis for all endpoints. CONCLUSION Multimodal combination of MR- and FDG-PET/CT-images improves classification of LACC patients compared to single modality images and clinical factors.
Collapse
Affiliation(s)
- Kjersti Skipar
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Oncology, Telemark Hospital Trust, Skien, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Vassmo Lund
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ayca Løndalen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Gunnar B Kristensen
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway
| | - Kristina Lindemann
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Esten S Nakken
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Bruheim
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
31
|
van der Heide U, Thwaites DI. Integrated MRI-linac systems: The new paradigm for precision adaptive radiotherapy and biological image-guidance? Radiother Oncol 2022; 176:249-250. [PMID: 36446519 DOI: 10.1016/j.radonc.2022.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Uulke van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK.
| |
Collapse
|
32
|
Gurney-Champion OJ, Landry G, Redalen KR, Thorwarth D. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Semin Radiat Oncol 2022; 32:377-388. [DOI: 10.1016/j.semradonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
A novel 3D pillar/well array platform using patient-derived head and neck tumor to predict the individual radioresponse. Transl Oncol 2022; 24:101483. [PMID: 35850059 PMCID: PMC9294182 DOI: 10.1016/j.tranon.2022.101483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is a critical modality in head and neck cancer treatment. A novel 3D pillar/well array platform provides the individual radioresponse biomarker, RTauc. Poor and good radioresponse group by RTauc correlates with other clinical features. RTauc shows potential for radioresponse biomarker, useful in clinical decision-making.
Predicting individual radiotherapy (RT) response is valuable in managing head and neck squamous cell carcinoma (HNSCC). We assessed the feasibility of our novel 3D culture platform to measure radioresponse using patient-derived cells (PDCs) from HNSCC patients. Cells from the FaDu line and tumor samples from 39 HNSCC patients were cultivated serially in MatrigelTM on a 3D pillar/well array culture system. The 3D tumor models were exposed to 0 to 8 Gy of radiation dose, and the radioresponse index (RTauc, area under the dose-response curve) was measured quantitatively with Calcein AM staining of live tumor cells. Calcein AM fluorescence showed reduced density and the number of FaDu colonies as radiation increased, implying a dose-dependent effect on cell viability in the 3D pillar/well culture system. 3D tumor models using PDCs were established successfully from 39 HNSCC patient tumor samples, maintaining original genomic and pathological characteristics. These 3D tumor models were exposed to ionizing radiation on a 3D pillar/well array, with a mean period of 12 days from tumor harvest to the measurement of RTauc. The RTauc of all PDCs varied from 3.5 to 9.4, and the lower 40th percentile (Z-score = -0.26) was considered a good radioresponse group with a threshold RTauc of 4.6. The good radioresponse group showed fewer adverse features than others. As of the last follow-up, recurrence-free survival was better in the good radioresponse group (p = 0.037). 3D pillar/well array platforms using PDC could rapidly quantify radioresponse index in patients with HNSCC, showing potential as a novel prognosticator.
Collapse
|
34
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
35
|
Kooreman ES, van Pelt V, Nowee ME, Pos F, van der Heide UA, van Houdt PJ. Longitudinal Correlations Between Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced (DCE) MRI During Radiotherapy in Prostate Cancer Patients. Front Oncol 2022; 12:897130. [PMID: 35747819 PMCID: PMC9210504 DOI: 10.3389/fonc.2022.897130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Intravoxel incoherent motion (IVIM) is a promising technique that can acquire perfusion information without the use of contrast agent, contrary to the more established dynamic contrast-enhanced (DCE) technique. This is of interest for treatment response monitoring, where patients can be imaged on each treatment fraction. In this study, longitudinal correlations between IVIM- and DCE parameters were assessed in prostate cancer patients receiving radiation treatment. Materials and Methods 20 prostate cancer patients were treated on a 1.5 T MR-linac with 20 x 3 or 3.1 Gy. Weekly IVIM and DCE scans were acquired. Tumors, the peripheral zone (PZ), and the transition zone (TZ) were delineated on a T2-weighted scan acquired on the first fraction. IVIM and DCE scans were registered to this scan and the delineations were propagated. Median values from these delineations were used for further analysis. The IVIM parameters D, f, D* and the product fD* were calculated. The Tofts model was used to calculate the DCE parameters Ktrans, kep and ve. Pearson correlations were calculated for the IVIM and DCE parameters on values from the first fraction for each region of interest (ROI). For longitudinal analysis, the repeated measures correlation coefficient was used to determine correlations between IVIM and DCE parameters in each ROI. Results When averaging over patients, an increase during treatment in all IVIM and DCE parameters was observed in all ROIs, except for D in the PZ and TZ. No significant Pearson correlations were found between any pair of IVIM and DCE parameters measured on the first fraction. Significant but low longitudinal correlations were found for some combinations of IVIM and DCE parameters in the PZ and TZ, while no significant longitudinal correlations were found in the tumor. Notably in the TZ, for both f and fD*, significant longitudinal correlations with all DCE parameters were found. Conclusions The increase in IVIM- and DCE parameters when averaging over patients indicates a measurable response to radiation treatment with both techniques. Although low, significant longitudinal correlations were found which suggests that IVIM could potentially be used as an alternative to DCE for treatment response monitoring.
Collapse
|
36
|
El Naqa I, Pogue BW, Zhang R, Oraiqat I, Parodi K. Image guidance for FLASH radiotherapy. Med Phys 2022; 49:4109-4122. [PMID: 35396707 PMCID: PMC9844128 DOI: 10.1002/mp.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
FLASH radiotherapy (FLASH-RT) is an emerging ultra-high dose (>40 Gy/s) delivery that promises to improve the therapeutic potential by limiting toxicities compared to conventional RT while maintaining similar tumor eradication efficacy. Image guidance is an essential component of modern RT that should be harnessed to meet the special emerging needs of FLASH-RT and its associated high risks in planning and delivering of such ultra-high doses in short period of times. Hence, this contribution will elaborate on the imaging requirements and possible solutions in the entire chain of FLASH-RT treatment, from the planning, through the setup and delivery with online in vivo imaging and dosimetry, up to the assessment of biological mechanisms and treatment response. In patient setup and delivery, higher temporal sampling than in conventional RT should ensure that the short treatment is delivered precisely to the targeted region. Additionally, conventional imaging tools such as cone-beam computed tomography will continue to play an important role in improving patient setup prior to delivery, while techniques based on magnetic resonance imaging or positron emission tomography may be extremely valuable for either linear accelerator (Linac) or particle FLASH therapy, to monitor and track anatomical changes during delivery. In either planning or assessing outcomes, quantitative functional imaging could supplement conventional imaging for more accurate utilization of the biological window of the FLASH effect, selecting for or verifying things such as tissue oxygen and existing or transient hypoxia on the relevant timescales of FLASH-RT delivery. Perhaps most importantly at this time, these tools might help improve the understanding of the biological mechanisms of FLASH-RT response in tumor and normal tissues. The high dose deposition of FLASH provides an opportunity to utilize pulse-to-pulse imaging tools such as Cherenkov or radiation acoustic emission imaging. These could provide individual pulse mapping or assessing the 3D dose delivery superficially or at tissue depth, respectively. In summary, the most promising components of modern RT should be used for safer application of FLASH-RT, and new promising developments could be advanced to cope with its novel demands but also exploit new opportunities in connection with the unique nature of pulsed delivery at unprecedented dose rates, opening a new era of biological image guidance and ultrafast, pulse-based in vivo dosimetry.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
| | - Rongxiao Zhang
- Giesel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany
| |
Collapse
|
37
|
Knuth F, Groendahl AR, Winter RM, Torheim T, Negård A, Holmedal SH, Bakke KM, Meltzer S, Futsæther CM, Redalen KR. Semi-automatic tumor segmentation of rectal cancer based on functional magnetic resonance imaging. Phys Imaging Radiat Oncol 2022; 22:77-84. [PMID: 35602548 PMCID: PMC9114680 DOI: 10.1016/j.phro.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Machine learning on magnetic resonance images (MRI) was used for tumor segmentation. Voxelwise machine learning with morphological post-processing achieved good segmentation results. Combining T2-weighted with functional MRI improved semi-automatic tumor segmentation. Dynamic contrast enhanced MRI was the most valuable functional MRI information. Tumor volume and interobserver variation were linked to measured segmentation quality.
Background and purpose Tumor delineation is required both for radiotherapy planning and quantitative imaging biomarker purposes. It is a manual, time- and labor-intensive process prone to inter- and intraobserver variations. Semi or fully automatic segmentation could provide better efficiency and consistency. This study aimed to investigate the influence of including and combining functional with anatomical magnetic resonance imaging (MRI) sequences on the quality of automatic segmentations. Materials and methods T2-weighted (T2w), diffusion weighted, multi-echo T2*-weighted, and contrast enhanced dynamic multi-echo (DME) MR images of eighty-one patients with rectal cancer were used in the analysis. Four classical machine learning algorithms; adaptive boosting (ADA), linear and quadratic discriminant analysis and support vector machines, were trained for automatic segmentation of tumor and normal tissue using different combinations of the MR images as input, followed by semi-automatic morphological post-processing. Manual delineations from two experts served as ground truth. The Sørensen-Dice similarity coefficient (DICE) and mean symmetric surface distance (MSD) were used as performance metric in leave-one-out cross validation. Results Using T2w images alone, ADA outperformed the other algorithms, yielding a median per patient DICE of 0.67 and MSD of 3.6 mm. The performance improved when functional images were added and was highest for models based on either T2w and DME images (DICE: 0.72, MSD: 2.7 mm) or all four MRI sequences (DICE: 0.72, MSD: 2.5 mm). Conclusion Machine learning models using functional MRI, in particular DME, have the potential to improve automatic segmentation of rectal cancer relative to models using T2w MRI alone.
Collapse
|
38
|
Pang Y, Wang H, Li H. Medical Imaging Biomarker Discovery and Integration Towards AI-Based Personalized Radiotherapy. Front Oncol 2022; 11:764665. [PMID: 35111666 PMCID: PMC8801459 DOI: 10.3389/fonc.2021.764665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intensity-modulated radiation therapy (IMRT) has been used for high-accurate physical dose distribution sculpture and employed to modulate different dose levels into Gross Tumor Volume (GTV), Clinical Target Volume (CTV) and Planning Target Volume (PTV). GTV, CTV and PTV can be prescribed at different dose levels, however, there is an emphasis that their dose distributions need to be uniform, despite the fact that most types of tumour are heterogeneous. With traditional radiomics and artificial intelligence (AI) techniques, we can identify biological target volume from functional images against conventional GTV derived from anatomical imaging. Functional imaging, such as multi parameter MRI and PET can be used to implement dose painting, which allows us to achieve dose escalation by increasing doses in certain areas that are therapy-resistant in the GTV and reducing doses in less aggressive areas. In this review, we firstly discuss several quantitative functional imaging techniques including PET-CT and multi-parameter MRI. Furthermore, theoretical and experimental comparisons for dose painting by contours (DPBC) and dose painting by numbers (DPBN), along with outcome analysis after dose painting are provided. The state-of-the-art AI-based biomarker diagnosis techniques is reviewed. Finally, we conclude major challenges and future directions in AI-based biomarkers to improve cancer diagnosis and radiotherapy treatment.
Collapse
Affiliation(s)
- Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hui Wang
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - He Li
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Overgaard J, Aznar MC, Bacchus C, Coppes RP, Deutsch E, Georg D, Haustermans K, Hoskin P, Krause M, Lartigau EF, Lee AWM, Löck S, Offersen BV, Thwaites DI, van der Kogel AJ, van der Heide UA, Valentini V, Baumann M. Personalised radiation therapy taking both the tumour and patient into consideration. Radiother Oncol 2022; 166:A1-A5. [PMID: 35051440 DOI: 10.1016/j.radonc.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, United Kingdom
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rob P Coppes
- Departments of Radiation Oncology and Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Eric Deutsch
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, France
| | - Dietmar Georg
- Division Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Austria
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium
| | - Peter Hoskin
- Mount Vernon Cancer Centre and University of Manchester, United Kingdom
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Eric F Lartigau
- Academic Department of Radiotherapy, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Anne W M Lee
- Department of Clinical Oncology, University of Hong Kong - Shenzhen Hospital and University of Hong Kong, China
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Birgitte V Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, The University of Sydney, Australia; Medical Physics Group, Leeds Institute of Medical Research, School of Medicine, University of Leeds, United Kingdom
| | - Albert J van der Kogel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | |
Collapse
|
40
|
Bisgaard ALH, Brink C, Fransen ML, Schytte T, Behrens CP, Vogelius I, Nissen HD, Mahmood F. Robust extraction of biological information from diffusion-weighted magnetic resonance imaging during radiotherapy using semi-automatic delineation. Phys Imaging Radiat Oncol 2022; 21:146-152. [PMID: 35284662 PMCID: PMC8908275 DOI: 10.1016/j.phro.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 10/26/2022] Open
|
41
|
Morelli L, Buizza G, Palombo M, Riva G, Fontana G, Imparato S, Iannalfi A, Orlandi E, Paganelli C, Baroni G. Analysis of tumour microstructure estimation from conventional diffusion MRI and application to skull-base chordoma . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3761-3764. [PMID: 34892054 DOI: 10.1109/embc46164.2021.9630129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skull-base chordoma (SBC) is a rare tumour whose molecular and radiological characteristics are still being investigated. In neuro-oncology microstructural imaging techniques, like diffusion-weighted MRI (DW-MRI), have been widely investigated, with the apparent diffusion coefficient (ADC) being one of the most used DW-MRI parameters due to its ease of acquisition and computation. ADC is a potential biomarker without a clear link to microstructure. The aim of this work was to derive microstructural information from conventional ADC, showing its potential for the characterisation of skull-base chordomas. Sixteen patients affected by SBC, who underwent conventional DW-MRI were retrospectively selected. From mono-exponential fits of DW-MRI, ADC maps were estimated using different sets of b-values. DW-MRI signals were simulated from synthetic substrates , which mimic the cellular packing of a tumour tissue with well-defined microstructural features. Starting from a published method, an error-driven procedure was evaluated to improve the estimates of microstructural parameters obtained through the simulated signals. A quantitative description of the tumour microstructure was then obtained from the DW-MRI images. This allowed successfully differentiating patients according to histologically-verified cell proliferation information.Clinical Relevance - The impact on cancer management derives from the expected improvement of radiation treatment quality tailored to a patient-specific non-invasive description of tumour microstructure.
Collapse
|
42
|
Ferjančič P, van der Heide UA, Ménard C, Jeraj R. Probabilistic target definition and planning in patients with prostate cancer. Phys Med Biol 2021; 66. [PMID: 34644696 DOI: 10.1088/1361-6560/ac2f8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Intro.Current radiation therapy (RT) planning guidelines handle uncertainties in RT using geometric margins. This approach is simple to use but oversimplifies complex underlying processes and is cumbersome for non-homogeneous dose prescriptions. In this work, we characterize the performance of a novel probabilistic target definition and planning (PTP) approach, which uses voxel-level tumor likelihood information in treatment plan optimization.Methods.We expanded a treatment planning system with probabilistic therapy planning functionality that utilizes non-binary target maps (TM) as voxel-level input to dose plan optimization. Different dose plans were calculated and compared for twelve prostate cancer patients with multiparametric magnetic resonance imaging derived TMs. Dose plans were created using both classical and PTP approaches for uniform and integrated dose boost prescriptions. Dose performance between the different approaches was compared using dose benchmarks on target and organ-at-risk (OAR) volumes.Results.Over all dose metrics, PTP was shown to be comparable to classical planning. For plans of uniform dose prescription, the PTP approach created plans within 1 Gy of the classical planning approach across all dose metrics, with no significant differences (p > 0.2). For plans with the integrated dose boost, PTP plans exhibited higher dose heterogeneity, but still showed target doses comparable to the classical approach, without increasing doses to OAR.Conclusion.In this work we introduce direct incorporation of probabilistic target definition into treatment planning. This treatment planning approach can produce both uniform dose plans and plans with integrated dose boosts that are comparable to ones created using classical dose planning. PTP is a flexible way to optimize external beam radiotherapy, as it is not limited by the use of margins. PTP can produce dose plans equivalent to classical planning, while also allows for greater versatility in dose prescription and direct incorporation of patient target definition uncertainty into treatment planning.
Collapse
Affiliation(s)
- Peter Ferjančič
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Room 7033, Madison, WI 53705, United States of America
| | | | - Cynthia Ménard
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Canada
| | - Robert Jeraj
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Room 7033, Madison, WI 53705, United States of America
| |
Collapse
|
43
|
Lawrence LSP, Chan RW, Chen H, Keller B, Stewart J, Ruschin M, Chugh B, Campbell M, Theriault A, Stanisz GJ, MacKenzie S, Myrehaug S, Detsky J, Maralani PJ, Tseng CL, Czarnota GJ, Sahgal A, Lau AZ. Accuracy and precision of apparent diffusion coefficient measurements on a 1.5 T MR-Linac in central nervous system tumour patients. Radiother Oncol 2021; 164:155-162. [PMID: 34592363 DOI: 10.1016/j.radonc.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE MRI linear accelerators (MR-Linacs) may allow treatment adaptation to be guided by quantitative MRI including diffusion-weighted imaging (DWI). The aim of this study was to evaluate the accuracy and precision of apparent diffusion coefficient (ADC) measurements from DWI on a 1.5 T MR-Linac in patients with central nervous system (CNS) tumours through comparison with a diagnostic scanner. MATERIALS AND METHODS CNS patients were treated using a 1.5 T Elekta Unity MR-Linac. DWI was acquired during MR-Linac treatment and on a Philips Ingenia 1.5 T. The agreement between the two scanners on median ADC over the gross tumour/clinical target volumes (GTV/CTV) and in brain regions (white/grey matter, cerebrospinal fluid (CSF)) was computed. Repeated scans were used to estimate ADC repeatability. Daily changes in ADC over the GTV of high-grade gliomas were characterized from MR-Linac scans. RESULTS DWI from 59 patients was analyzed. MR-Linac ADC measurements showed a small bias relative to Ingenia measurements in white matter, grey matter, GTV, and CTV (bias: -0.05 ± 0.03, -0.08 ± 0.05, -0.1 ± 0.1, -0.08 ± 0.07 μm2/ms). ADC differed substantially in CSF (bias: -0.5 ± 0.3 μm2/ms). The repeatability of MR-Linac ADC over white/grey matter was similar to previous reports (coefficients of variation for median ADC: 1.4%/1.8%). MR-Linac ADC changes in the GTV were detectable. CONCLUSIONS It is possible to obtain ADC measurements in the brain on a 1.5 T MR-Linac that are comparable to those of diagnostic-quality scanners. This technical validation study adds to the foundation for future studies that will correlate brain tumour ADC with clinical outcomes.
Collapse
Affiliation(s)
- Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Rachel W Chan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Brian Keller
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Brige Chugh
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Physics, Ryerson University, Toronto, Canada
| | - Mikki Campbell
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Aimee Theriault
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Scott MacKenzie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Pejman J Maralani
- Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Greg J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
44
|
Riva G, Imparato S, Savietto G, Pecorilla M, Iannalfi A, Barcellini A, Ronchi S, Fiore MR, Paganelli C, Buizza G, Ciocca M, Baroni G, Preda L, Orlandi E. Potential role of functional imaging in predicting outcome for patients treated with carbon ion therapy: a review. Br J Radiol 2021; 94:20210524. [PMID: 34520670 DOI: 10.1259/bjr.20210524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Carbon ion radiation therapy (CIRT) is an emerging radiation technique with advantageous physical and radiobiologic properties compared to conventional radiotherapy (RT) providing better response in case of radioresistant and hypoxic tumors. Our aim is to critically review if functional imaging techniques could play a role in predicting outcome of CIRT-treated tumors, as already proven for conventional RT. METHODS 14 studies, concerning Magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), were selected after a comprehensive search on multiple electronic databases from January 2000 to March 2020. RESULTS MRI studies (n = 5) focused on diffusion-weighted MRI and, even though quantitative parameters were the same in all studies (apparent diffusion coefficient, ADC), results were not univocal, probably due to different imaging acquisition protocols and tumoral histology. For PET studies (n = 9), different tracers were used such as [18F]FDG and other uncommon tracers ([11C]MET, [18F]FLT), with a relevant heterogeneity regarding parameters used for outcome assessment. CONCLUSION No conclusion can be drawn on the predictive value of functional imaging in CIRT-treated tumors. A standardization of image acquisition, multi-institutional large trials and external validations are needed in order to establish the prognostic value of functional imaging in CIRT and to guide clinical practice. ADVANCES IN KNOWLEDGE Emerging studies focused on functional imaging's role in predicting CIRT outcome. Due to the heterogeneity of images acquisition and studies, results are conflicting and prospective large studies with imaging standardized protocol are needed.
Collapse
Affiliation(s)
- Giulia Riva
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Imparato
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giovanni Savietto
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mattia Pecorilla
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alberto Iannalfi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Mario Ciocca
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Lorenzo Preda
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Radiology, I.R.C.C.S. Policlinico San Matteo Foundation, Pavia, Italy
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
45
|
Li M, Zhang Q, Yang K. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment. Front Oncol 2021; 11:645177. [PMID: 34513659 PMCID: PMC8429950 DOI: 10.3389/fonc.2021.645177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/30/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future.
Collapse
Affiliation(s)
- Mei Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixuan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
47
|
van Houdt PJ, Saeed H, Thorwarth D, Fuller CD, Hall WA, McDonald BA, Shukla-Dave A, Kooreman ES, Philippens MEP, van Lier ALHMW, Keesman R, Mahmood F, Coolens C, Stanescu T, Wang J, Tyagi N, Wetscherek A, van der Heide UA. Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac Consortium Imaging Biomarker Working Group. Eur J Cancer 2021; 153:64-71. [PMID: 34144436 PMCID: PMC8340311 DOI: 10.1016/j.ejca.2021.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Quantitative imaging biomarkers (QIBs) derived from MRI techniques have the potential to be used for the personalised treatment of cancer patients. However, large-scale data are missing to validate their added value in clinical practice. Integrated MRI-guided radiotherapy (MRIgRT) systems, such as hybrid MRI-linear accelerators, have the unique advantage that MR images can be acquired during every treatment session. This means that high-frequency imaging of QIBs becomes feasible with reduced patient burden, logistical challenges, and costs compared to extra scan sessions. A wealth of valuable data will be collected before and during treatment, creating new opportunities to advance QIB research at large. The aim of this paper is to present a roadmap towards the clinical use of QIBs on MRIgRT systems. The most important need is to gather and understand how the QIBs collected during MRIgRT correlate with clinical outcomes. As the integrated MRI scanner differs from traditional MRI scanners, technical validation is an important aspect of this roadmap. We propose to integrate technical validation with clinical trials by the addition of a quality assurance procedure at the start of a trial, the acquisition of in vivo test-retest data to assess the repeatability, as well as a comparison between QIBs from MRIgRT systems and diagnostic MRI systems to assess the reproducibility. These data can be collected with limited extra time for the patient. With integration of technical validation in clinical trials, the results of these trials derived on MRIgRT systems will also be applicable for measurements on other MRI systems.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 102, Amsterdam, 1066CX, the Netherlands.
| | - Hina Saeed
- Department of Radiation Oncology, Medical College of Wisconsin, 9200 W Wisconsin Av, Milwaukee, WI, 53226, USA.
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, Tübingen, 72076, Germany.
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX, 77030, USA.
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, 9200 W Wisconsin Av, Milwaukee, WI, 53226, USA.
| | - Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX, 77030, USA.
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Ernst S Kooreman
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 102, Amsterdam, 1066CX, the Netherlands.
| | - Marielle E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Astrid L H M W van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Rick Keesman
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, 6525GA, the Netherlands.
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Kløvervænget 19, Odense C, 5000, Denmark; Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19.3, Odense C, 5000, Denmark.
| | - Catherine Coolens
- Department of Medical Physics, Princess Margaret Cancer Centre and University Health Network, 700 University Avenue, Toronto, Ontario, M5M 1G7, Canada.
| | - Teodor Stanescu
- Department of Medical Physics, Princess Margaret Cancer Centre and University Health Network, 700 University Avenue, Toronto, Ontario, M5M 1G7, Canada; Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX, 77030, USA.
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London, SM2 5NG, United Kingdom.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 102, Amsterdam, 1066CX, the Netherlands.
| |
Collapse
|
48
|
Wilson M, Chopra R, Wilson MZ, Cooper C, MacWilliams P, Liu Y, Wulczyn E, Florea D, Hughes CO, Karthikesalingam A, Khalid H, Vermeirsch S, Nicholson L, Keane PA, Balaskas K, Kelly CJ. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. JAMA Ophthalmol 2021; 139:964-973. [PMID: 34236406 PMCID: PMC8444027 DOI: 10.1001/jamaophthalmol.2021.2273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Question Is deep learning–based segmentation of macular disease in optical coherence tomography (OCT) suitable for clinical use? Findings In this diagnostic study of OCT data from 173 patients with age-related macular degeneration or diabetic macular edema, model segmentations qualitatively ranked better or comparable for clinical applicability to 1 or more expert grader segmentations in 127 scans (73%) by a panel of 3 retinal specialists. Scans with high quantitative accuracy scores were not reliably associated with higher rankings. Meaning These findings suggest that qualitative evaluation adds to quantitative approaches when assessing clinical applicability of segmentation tools and clinician satisfaction in practice. Importance Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential clinical applicability of these systems is largely unknown. Objective To evaluate a deep learning model for whole-volume segmentation of 4 clinically important pathological features and assess clinical applicability. Design, Setting, Participants This diagnostic study used OCT data from 173 patients with a total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans) and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points during treatment. Two expert graders performed pixel-level segmentations of intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment, including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative evaluation of whole-volume model segmentations was performed. Qualitative evaluation of clinical applicability by 3 retinal experts was also conducted. Data were collected from June 1, 2012, to January 31, 2017, for set 1 and from January 1 to December 31, 2017, for set 2; graded between November 2018 and January 2020; and analyzed from February 2020 to November 2020. Main Outcomes and Measures Rating and stack ranking for clinical applicability by retinal specialists, model-grader agreement for voxelwise segmentations, and total volume evaluated using Dice similarity coefficients, Bland-Altman plots, and intraclass correlation coefficients. Results Among the 173 patients included in the analysis (92 [53%] women), qualitative assessment found that automated whole-volume segmentation ranked better than or comparable to at least 1 expert grader in 127 scans (73%; 95% CI, 66%-79%). A neutral or positive rating was given to 135 model segmentations (78%; 95% CI, 71%-84%) and 309 expert gradings (2 per scan) (89%; 95% CI, 86%-92%). The model was rated neutrally or positively in 86% to 92% of diabetic macular edema scans and 53% to 87% of age-related macular degeneration scans. Intraclass correlations ranged from 0.33 (95% CI, 0.08-0.96) to 0.96 (95% CI, 0.90-0.99). Dice similarity coefficients ranged from 0.43 (95% CI, 0.29-0.66) to 0.78 (95% CI, 0.57-0.85). Conclusions and Relevance This deep learning–based segmentation tool provided clinically useful measures of retinal disease that would otherwise be infeasible to obtain. Qualitative evaluation was additionally important to reveal clinical applicability for both care management and research.
Collapse
Affiliation(s)
| | - Reena Chopra
- Google Health, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | | | | | | | - Yun Liu
- Google Health, Palo Alto, California
| | | | - Daniela Florea
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | | | | | - Hagar Khalid
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | - Sandra Vermeirsch
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | - Luke Nicholson
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | - Pearse A Keane
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | - Konstantinos Balaskas
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS (National Health Service) Foundation Trust, London, United Kingdom.,University College London Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
49
|
RESUME N: A flexible class of multi-parameter qMRI protocols. Phys Med 2021; 88:23-36. [PMID: 34171573 DOI: 10.1016/j.ejmp.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To introduce a class of fast 3D quantitative MRI (qMRI) schemes (RESUMEN, for N=1,…,4) that allow for a thorough characterization of microstructural properties of brain tissues. METHODS An arbitrary multi-echo GRE acquisition optimized for quantitative susceptibility mapping (QSM) is complemented with an appropriate low flip-angle GRE sequence drawn from four possible choices. The acquired signals are processed to analytically derive the longitudinal relaxation (R1) and free induction decay (R2∗) rates, as well as the proton density (PD) and QSM. A comprehensive modeling of the excitation and B1- profiles and of the RF-spoiling is included in the acquisition and processing pipeline. RESULTS The RESUMEN maps appear homogeneous throughout the field-of-view and exhibit comparable values and high SNR across the considered range of N values. CONCLUSIONS The introduced schemes represent a class of robust and flexible strategies to derive a thorough and fast qMRI study, suitable for a whole-brain acquisition with isotropic voxel resolution of 700 μm in less than 15 min.
Collapse
|
50
|
Wang YF, Tadimalla S, Hayden AJ, Holloway L, Haworth A. Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment. J Med Imaging Radiat Oncol 2021; 65:612-626. [PMID: 34060219 DOI: 10.1111/1754-9485.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy J Hayden
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, New South Wales, Australia
- Faculty of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|