1
|
Hessels AC, Frederiks ML, Muijs CT, van Luijk P. Regarding: "Olloni A, et al. Heart and Lung Dose as Predictors of Overall Survival in Patients With Locally Advanced Lung Cancer. A National Multicenter Study". JTO Clin Res Rep 2024; 5:100718. [PMID: 39399796 PMCID: PMC11470268 DOI: 10.1016/j.jtocrr.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Affiliation(s)
- Arno C. Hessels
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark L. Frederiks
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christina T. Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Ghita-Pettigrew M, Edgar KS, Kuburas R, Brown KH, Walls GM, Facchi C, Grieve DJ, Watson CJ, McWilliam A, van Herk M, Williams KJ, Butterworth KT. Dose-dependent changes in cardiac function, strain and remodelling in a preclinical model of heart base irradiation. Radiother Oncol 2024; 193:110113. [PMID: 38301958 DOI: 10.1016/j.radonc.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND PURPOSE Radiation induced cardiotoxicity (RICT) is as an important sequela of radiotherapy to the thorax for patients. In this study, we aim to investigate the dose and fractionation response of RICT. We propose global longitudinal strain (GLS) as an early indicator of RICT and investigate myocardial deformation following irradiation. METHODS RICT was investigated in female C57BL/6J mice in which the base of the heart was irradiated under image-guidance using a small animal radiation research platform (SARRP). Mice were randomly assigned to a treatment group: single-fraction dose of 16 Gy or 20 Gy, 3 consecutive fractions of 8.66 Gy, or sham irradiation; biological effective doses (BED) used were 101.3 Gy, 153.3 Gy and 101.3 Gy respectively. Longitudinal transthoracic echocardiography (TTE) was performed from baseline up to 50 weeks post-irradiation to detect structural and functional effects. RESULTS Irradiation of the heart base leads to BED-dependent changes in systolic and diastolic function 50 weeks post-irradiation. GLS showed significant decreases in a BED-dependent manner for all irradiated animals, as early as 10 weeks after irradiation. Early changes in GLS indicate late changes in cardiac function. BED-independent increases were observed in the left ventricle (LV) mass and volume and myocardial fibrosis. CONCLUSIONS Functional features of RICT displayed a BED dependence in this study. GLS showed an early change at 10 weeks post-irradiation. Cardiac remodelling was observed as increases in mass and volume of the LV, further supporting our hypothesis that dose to the base of the heart drives the global heart toxicity.
Collapse
Affiliation(s)
- Mihaela Ghita-Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.
| | - Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Refik Kuburas
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Gerard M Walls
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Cecilia Facchi
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan McWilliam
- Department of Radiotherapy Related Research, University of Manchester, Manchester, United Kingdom
| | - Marcel van Herk
- Department of Radiotherapy Related Research, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
McWilliam A, Palma G, Abravan A, Acosta O, Appelt A, Aznar M, Monti S, Onjukka E, Panettieri V, Placidi L, Rancati T, Vasquez Osorio E, Witte M, Cella L. Voxel-based analysis: Roadmap for clinical translation. Radiother Oncol 2023; 188:109868. [PMID: 37683811 DOI: 10.1016/j.radonc.2023.109868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radiotherapy outcome analysis. This provides new insights into anatomical variability of pathophysiology and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose response associated with patient outcomes. This approach may offer powerful biological insights demonstrating the heterogeneity of the radiobiology across tissues and potential associations of the radiotherapy dose with further factors. As this methodological approach becomes established, consideration needs to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robustness to methodology, where clinical validation must show generalisability to external datasets and link to a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key considerations are discussed and recommendations provided for best practice.
Collapse
Affiliation(s)
- Alan McWilliam
- The Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - Giuseppe Palma
- Institute of Nanotechnology, National Research Council, Lecce, Italy.
| | - Azadeh Abravan
- The Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - Oscar Acosta
- University Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000, Rennes, France
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Marianne Aznar
- The Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - Serena Monti
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Eva Onjukka
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden
| | - Vanessa Panettieri
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Eliana Vasquez Osorio
- The Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - Marnix Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Cella
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
4
|
McWilliam A, Abravan A, Banfill K, Faivre-Finn C, van Herk M. Reply to the Letter by Ma et al. J Thorac Oncol 2023; 18:e64-e66. [PMID: 37210186 DOI: 10.1016/j.jtho.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Alan McWilliam
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.
| | - Azadeh Abravan
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Kathryn Banfill
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
5
|
McWilliam A, Abravan A, Banfill K, Faivre-Finn C, van Herk M. Demystifying the Results of RTOG 0617: Identification of Dose Sensitive Cardiac Subregions Associated With Overall Survival. J Thorac Oncol 2023; 18:599-607. [PMID: 36738929 DOI: 10.1016/j.jtho.2023.01.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The RTOG 0617 trial presented a worse survival for patients with lung cancer treated in the high-dose (74 Gy) arm. In multivariable models, radiation level and whole-heart volumetric dose parameters were associated with survival. In this work, we consider heart subregions to explain the observed survival difference between radiation levels. METHODS Voxel-based analysis identified anatomical regions where the dose was associated with survival. Bootstrapping clinical and dosimetric variables into an elastic net model selected variables associated with survival. Multivariable Cox regression survival models assessed the significance of dose to the heart subregion, compared with whole heart v5 and v30. Finally, the trial outcome was assessed after propensity score matching of patients on lung dose, heart subregion dose, and tumor volume. RESULTS A total of 458 patients were eligible for voxel-based analysis. A region of significance (p < 0.001) was identified in the base of the heart. Bootstrapping selected mean lung dose, radiation level, log tumor volume, and heart region dose. The multivariable Cox model exhibited dose to the heart region (p = 0.02), and tumor volume (p = 0.03) were significantly associated with survival, and radiation level was not significant (p = 0.07). The models exhibited that whole heart v5 and v30 were not associated with survival, with radiation level being significant (p < 0.05). In the matched cohort, no significant survival difference was seen between radiation levels. CONCLUSIONS Dose to the base of the heart is associated with overall survival, partly removing the radiation level effect, and explaining that worse survival in the high-dose arm is owing, in part, to the heart subregion dose. By defining a heart avoidance region, future dose escalation trials may be feasible.
Collapse
Affiliation(s)
- Alan McWilliam
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.
| | - Azadeh Abravan
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Kathryn Banfill
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
6
|
Eber J, Blondet C, Schmitt M, Cox DG, Vit C, Le Fèvre C, Antoni D, Hubele F, Noel G. Efficacity of Deep Inspiration Breath Hold and Intensity-Modulated Radiotherapy in Preventing Perfusion Defect for Left Sided Breast Cancer (EDIPE): A Prospective Cohort Study Protocol. Cancers (Basel) 2023; 15:cancers15092467. [PMID: 37173933 PMCID: PMC10177370 DOI: 10.3390/cancers15092467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast radiotherapy can lead to radiation-induced cardiac disease, particularly in left breast cancers. Recent studies have shown that subclinical cardiac lesions, such as myocardial perfusion deficits, may occur early after radiotherapy. The primary method for irradiating breast cancer, known as opposite tangential field radiotherapy, can cause the anterior interventricular coronary artery to receive a high dose of radiation during left breast irradiation. To explore alternative approaches that could reduce the risk of myocardial perfusion defects in patients with left breast cancer, we plan to conduct a prospective single-center study using a combination of deep inspiration breath hold radiotherapy and intensity modulated radiation therapy. The study will use stress and, if necessary, resting myocardial scintigraphy to assess myocardial perfusion. The trial aims to show that reducing the cardiac dose with these techniques can prevent the appearance of early (3-month) and medium-term (6- and 12-month) perfusion disorders.
Collapse
Affiliation(s)
- Jordan Eber
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Cyrille Blondet
- Department of Nuclear Medicine, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Martin Schmitt
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - David G Cox
- Department of Nuclear Medicine, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Claire Vit
- Clinical Research Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Clara Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Delphine Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Fabrice Hubele
- Department of Nuclear Medicine, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
| | - Georges Noel
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033 Strasbourg, France
- Radiotherapy Department, ICANS, University of Strasbourg, 67098 Strasbourg, France
| |
Collapse
|
7
|
Melam A, Pedersen LN, Klaas A, Xu Z, Bergom C. Methods to assess radiation-induced cardiotoxicity in rodent models. Methods Cell Biol 2023; 180:127-146. [PMID: 37890926 DOI: 10.1016/bs.mcb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cancer survivors who have received thoracic radiation as part of their primary treatment are at risk for developing radiation-induced cardiotoxicity (RICT) due to incidental radiation delivered to the heart. In recent decades, advancements in radiation delivery have dramatically improved the therapeutic ratio of radiation therapy (RT)-efficiently targeting malignancies while sparing the heart; yet, in many patients, incidental radiation to the heart cannot be fully avoided. Cardiac radiation exposure can cause long-term morbidity and contribute to poorer survival in cancer patients. Severe cardiac effects can occur within 2years of treatment. Currently, there is no way to predict who is at higher or lower risk of developing cardiotoxicity from radiation, and the critical factors that alter RICT have not yet been clearly identified. Thus, pre-clinical investigations are an important step towards better prevention, detection, and management of RICT in cancer survivors. The overarching aim of this chapter is to provide researchers with foundational and technical knowledge in the use of mice and rats for RICT investigations. After a brief overview of RICT pathophysiology and clinical manifestations, we discuss important considerations of RICT study design, including animal selection and radiation planning. We then provide example protocols for murine tissue harvesting and processing that can support use in downstream applications of the reader's choosing.
Collapse
Affiliation(s)
- Anupama Melam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Lauren N Pedersen
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Zhiqiang Xu
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
8
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Mercantepe F, Tumkaya L, Mercantepe T, Rakici S. Histopathological evaluation of the effects of dexmedetomidine against pituitary damage ınduced by X-ray irradiation. Biomarkers 2023; 28:168-176. [PMID: 36453587 DOI: 10.1080/1354750x.2022.2154385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: The present study, aimed to investigate the potential negative effects of x-ray radiation and the effects of the α2-adrenergic receptor agonist dexmedetomidine on the pituitary gland.Methods: Twenty-four Sprague-Dawley rats were divided into three groups: Rats in Group 1 (control group). Group 2 (X-ray irradiation) and group 3 (X-ray irradiation + Dexmedetomidine) were given a total of 10 Gy external beam total body irradiation. Group 3 was given a single intraperitoneal dose of 200 µg/kg dexmedetomidine 30 minutes before RT.Results: In sections obtained from the x-ray irradiation group, we observed many necrotic in adenohypophysis and neurohypophysis. In addition, there were extensive oedematous areas and vascular congestions due to the necrotic cells in both the adenohypophysis and neurohypophysis. In contrast, we observed a reduction in necrotic chromophobic and chromophilic cells in adenohypophyseal tissue and a reduction in necrotic pituicytes in neurohypophyseal tissue in the dexmedetomidine treatment group. In addition, we determined lower caspase-3 and TUNEL expression in the dexmedetomidine treatment group compared with the x-ray irradiation group. Dexmedetomidine reduced x-ray radiation-induced pituitary damage by preventing apoptosis.Conclusions: The present study demonstrated the use of dexmedetomidine in situations related to radiation toxicity and offers the potential for a comprehensive study.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
10
|
Walls GM, Ghita M, Queen R, Edgar KS, Gill EK, Kuburas R, Grieve DJ, Watson CJ, McWilliam A, Van Herk M, Williams KJ, Cole AJ, Jain S, Butterworth KT. Spatial Gene Expression Changes in the Mouse Heart After Base-Targeted Irradiation. Int J Radiat Oncol Biol Phys 2023; 115:453-463. [PMID: 35985456 DOI: 10.1016/j.ijrobp.2022.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Radiation cardiotoxicity (RC) is a clinically significant adverse effect of treatment for patients with thoracic malignancies. Clinical studies in lung cancer have indicated that heart substructures are not uniformly radiosensitive, and that dose to the heart base drives RC. In this study, we aimed to characterize late changes in gene expression using spatial transcriptomics in a mouse model of base regional radiosensitivity. METHODS AND MATERIALS An aged female C57BL/6 mouse was irradiated with 16 Gy delivered to the cranial third of the heart using a 6 × 9 mm parallel opposed beam geometry on a small animal radiation research platform, and a second mouse was sham-irradiated. After echocardiography, whole hearts were collected at 30 weeks for spatial transcriptomic analysis to map gene expression changes occurring in different regions of the partially irradiated heart. Cardiac regions were manually annotated on the capture slides and the gene expression profiles compared across different regions. RESULTS Ejection fraction was reduced at 30 weeks after a 16 Gy irradiation to the heart base, compared with the sham-irradiated controls. There were markedly more significant gene expression changes within the irradiated regions compared with nonirradiated regions. Variation was observed in the transcriptomic effects of radiation on different cardiac base structures (eg, between the right atrium [n = 86 dysregulated genes], left atrium [n = 96 dysregulated genes], and the vasculature [n = 129 dysregulated genes]). Disrupted biological processes spanned extracellular matrix as well as circulatory, neuronal, and contractility activities. CONCLUSIONS This is the first study to report spatially resolved gene expression changes in irradiated tissues. Examination of the regional radiation response in the heart can help to further our understanding of the cardiac base's radiosensitivity and support the development of actionable targets for pharmacologic intervention and biologically relevant dose constraints.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland.
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, England
| | - Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Eleanor K Gill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Alan McWilliam
- Division of Cancer Sciences, University of Manchester, Oglesby Building, Manchester, England; Department of Radiation Therapy Related Research, The Christie Foundation Trust, Manchester, England
| | - Marcel Van Herk
- Division of Cancer Sciences, University of Manchester, Oglesby Building, Manchester, England; Department of Radiation Therapy Related Research, The Christie Foundation Trust, Manchester, England
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| |
Collapse
|
11
|
Sridharan V, Krager KJ, Pawar SA, Bansal S, Li Y, Cheema AK, Boerma M. Effects of Whole and Partial Heart Irradiation on Collagen, Mast Cells, and Toll-like Receptor 4 in the Mouse Heart. Cancers (Basel) 2023; 15:cancers15020406. [PMID: 36672353 PMCID: PMC9856613 DOI: 10.3390/cancers15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In radiation therapy of tumors in the chest, such as in lung or esophageal cancer, part of the heart may be situated in the radiation field. This can lead to the development of radiation-induced heart disease. The mechanisms by which radiation causes long-term injury to the heart are not fully understood, but investigations in pre-clinical research models can contribute to mechanistic insights. Recent developments in X-ray technology have enabled partial heart irradiation in mouse models. In this study, adult male and female C57BL/6J mice were exposed to whole heart (a single dose of 8 or 16 Gy) and partial heart irradiation (16 Gy to 40% of the heart). Plasma samples were collected at 5 days and 2 weeks after the irradiation for metabolomics analysis, and the cardiac collagen deposition, mast cell numbers, and left ventricular expression of Toll-like receptor 4 (TLR4) were examined in the irradiated and unirradiated parts of the heart at 6 months after the irradiation. Small differences were found in the plasma metabolite profiles between the groups. However, the collagen deposition did not differ between the irradiated and unirradiated parts of the heart, and radiation did not upregulate the mast cell numbers in either part of the heart. Lastly, an increase in the expression of TLR4 was seen only after a single dose of 8 Gy to the whole heart. These results suggest that adverse tissue remodeling was not different between the irradiated and unirradiated portions of the mouse heart. While there were no clear differences between male and female animals, additional work in larger cohorts may be required to confirm this result, and to test the inhibition of TLR4 as an intervention strategy in radiation-induced heart disease.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kimberly J. Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Snehalata A. Pawar
- Department of Radiation Oncology, Upstate Cancer Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Shivani Bansal
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Yaoxiang Li
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Amrita K. Cheema
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
12
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
13
|
Abravan A, Price G, Banfill K, Marchant T, Craddock M, Wood J, Aznar MC, McWilliam A, van Herk M, Faivre-Finn C. Role of Real-World Data in Assessing Cardiac Toxicity After Lung Cancer Radiotherapy. Front Oncol 2022; 12:934369. [PMID: 35928875 PMCID: PMC9344971 DOI: 10.3389/fonc.2022.934369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced heart disease (RIHD) is a recent concern in patients with lung cancer after being treated with radiotherapy. Most of information we have in the field of cardiac toxicity comes from studies utilizing real-world data (RWD) as randomized controlled trials (RCTs) are generally not practical in this field. This article is a narrative review of the literature using RWD to study RIHD in patients with lung cancer following radiotherapy, summarizing heart dosimetric factors associated with outcome, strength, and limitations of the RWD studies, and how RWD can be used to assess a change to cardiac dose constraints.
Collapse
Affiliation(s)
- Azadeh Abravan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Gareth Price
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Kathryn Banfill
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tom Marchant
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Matthew Craddock
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Joe Wood
- Christie Medical Physics and Engineering, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marianne C. Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
14
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
15
|
Lange F, Kirschstein T, Davis J, Paino J, Barnes M, Klein M, Porath K, Stöhlmacher P, Fiedler S, Frank M, Köhling R, Hildebrandt G, Hausermann D, Lerch M, Schültke E. Microbeam irradiation of the beating rodent heart: an ex vivo study of acute and subacute effects on cardiac function. Int J Radiat Oncol Biol Phys 2022; 114:143-152. [PMID: 35533907 DOI: 10.1016/j.ijrobp.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Microbeam radiation therapy (MRT) has shown several advantages compared to conventional broad-beam radiotherapy in small animal models, including a better preservation of normal tissue function and improved drug delivery based on a rapidly increased vascular permeability in the target region. Normal tissue tolerance is the limiting factor in clinical radiotherapy. Knowledge of the normal tissue tolerance of organs at risk is therefore a prerequisite in evaluating any new radiotherapy approach. With an irradiation target in the thoracic cavity, the heart would be the most important organ at risk. METHODS AND MATERIALS We used the ex vivo beating rodent heart in the Langendorff perfusion system at the synchrotron in order to administer microbeam irradiation (MBI) with a peak dose of 40 or 400 Gy. By continuously recording the electrocardiogram, the left ventricular pressure, and the aortic pressure before, during and after MBI, we were able to assess acute and subacute effects of MBI on electrophysiological and mechanical cardiac function. In addition, we analyzed histological and ultrastructural sequelae caused by MBI. RESULTS There were no significant changes in heart rate, heart rate variability, systolic increase of left ventricular pressure or aortic pressure. Moreover, the changes of heart rate, left ventricular pressure and aortic pressure by adding 10-5 mol/l norepinephrine to the perfusate, were also not significant between MBI and sham experiments. However, the rate-pressure product as a surrogate marker for maximum workload after MBI was significantly lower compared to sham-irradiated controls. On the structural level, no severe membranous, sarcomeric, mitochondrial or nuclear changes caused by MBI were detected by desmin immunohistochemistry and electron microscopy. CONCLUSION With respect to acute and subacute toxicity, an MBI peak dose up to 400 Gy did not result in severe changes in cardiac electrophysiology or mechanics.
Collapse
Affiliation(s)
- Falko Lange
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany.
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Micah Barnes
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Mitzi Klein
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany
| | - Paula Stöhlmacher
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation/ Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Centre, Rostock, Germany
| | - Daniel Hausermann
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
16
|
Boerma M, Sridharan V, Krager KJ, Pawar SA. Small animal models of localized heart irradiation. Methods Cell Biol 2022; 168:221-234. [PMID: 35366984 PMCID: PMC9642084 DOI: 10.1016/bs.mcb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A subset of cancer patients treated with radiation therapy may experience radiation-induced heart disease (RIHD) that develops within weeks to several years after cancer treatment. Rodent models are most commonly used to examine the biological effects of local X-rays in the heart and test potential strategies to reduce RIHD. While developments in technology over the last decades have changed the procedures for local heart irradiation in animal models, the X-ray settings and radiation doses have remained quite consistent in time and between different research laboratories. This chapter provides a protocol for whole heart irradiation in rodent models, using an X-ray machine with cone beam computed tomography (CBCT) capabilities. Some methods for the quantification of common histological changes after whole heart irradiation in the rodent are also described.
Collapse
Affiliation(s)
- Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States.
| | - Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Division of Radiation Health, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, United States
| | - Kimberly J. Krager
- University of Arkansas for Medical Sciences, Division of Radiation Health, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, United States
| | - Snehalata A. Pawar
- SUNY Upstate Medical University, Department of Radiation Oncology, 505 Irving Avenue, Syracuse, NY 13210, United States
| |
Collapse
|
17
|
Melam A, Pedersen LN, Klaas A, Xu Z, Bergom C. Methods to assess radiation-induced cardiotoxicity in rodent models. Methods Cell Biol 2022. [DOI: 10.1016/bs.mcb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Harms J, Zhang J, Kayode O, Wolf J, Tian S, McCall N, Higgins KA, Castillo R, Yang X. Implementation of a Knowledge-Based Treatment Planning Model for Cardiac-Sparing Lung Radiation Therapy. Adv Radiat Oncol 2021; 6:100745. [PMID: 34604606 PMCID: PMC8463738 DOI: 10.1016/j.adro.2021.100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE High radiation doses to the heart have been correlated with poor overall survival in patients receiving radiation therapy for stage III non-small cell lung cancer (NSCLC). We built a knowledge-based planning (KBP) tool to limit the dose to the heart during creation of volumetric modulated arc therapy (VMAT) treatment plans for patients being treated to 60 Gy in 30 fractions for stage III NSCLC. METHODS AND MATERIALS A previous study at our institution retrospectively delineated intracardiac volumes and optimized VMAT treatment plans to reduce dose to these substructures and to the whole heart. Two RapidPlan (RP) KBP models were built from this cohort, 1 model using the clinical plans and a separate model using the cardiac-optimized plans. Using target volumes and 6 organs at risk (OARs), models were trained to generate treatment plans in a semiautomated process. The cardiac-sparing KBP model was tested in the same cohort used for training, and both models were tested on an external validation cohort of 30 patients. RESULTS Both RP models produced clinically acceptable plans in terms of target coverage, dose uniformity, and dose to OARs. Compared with the previously created cardiac-optimized plans, cardiac-sparing RPs showed significant reductions in the mean dose to the esophagus and lungs while performing similarly or better in all evaluated heart dose metrics. When comparing the 2 models, the cardiac-sparing RP showed reduced (P < .05) heart mean and maximum doses as well as volumes receiving 60 Gy, 50 Gy, and 30 Gy. CONCLUSIONS By using a set of cardiac-optimized treatment plans for training, the proposed KBP model provided a means to reduce the dose to the heart and its substructures without the need to explicitly delineate cardiac substructures. This tool may offer reduced planning time and improved plan quality and might be used to improve patient outcomes.
Collapse
Affiliation(s)
- Joseph Harms
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jiahan Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Oluwatosin Kayode
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jonathan Wolf
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Neal McCall
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kristin A. Higgins
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Richard Castillo
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Eber J, Nannini S, Chambrelant I, Le Fèvre C, Noël G, Antoni D. [Impact of thoracic irradiation on cardiac structures]. Cancer Radiother 2021; 26:526-536. [PMID: 34728116 DOI: 10.1016/j.canrad.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Thoracic irradiation requires protection of the heart as an organ at risk of complications. The mean heart dose is the most studied dosimetric parameter in the literature. Recent studies question its relevance in view of the multiplicity of cardiac injuries, the heterogeneity of the cardiac dose distribution and the current technical possibilities to refine cardiac dosimetric protection. The objective of this literature review is to analyze the available scientific data on the impact of the dose received by the cardiac substructures. A search of articles using the PubMed search engine was used to select the most relevant studies. A total of 19 articles were selected according to pre-established criteria to answer the issue. Several studies found significant associations between dosimetric parameters of substructures and clinical cardiological impact. Some proposed dose constraints for substructures.
Collapse
Affiliation(s)
- J Eber
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - S Nannini
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - I Chambrelant
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - C Le Fèvre
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - G Noël
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| | - D Antoni
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| |
Collapse
|
20
|
Garrett Fernandes M, Bussink J, Stam B, Wijsman R, Schinagl DAX, Monshouwer R, Teuwen J. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing. Radiother Oncol 2021; 165:52-59. [PMID: 34688808 DOI: 10.1016/j.radonc.2021.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Large radiotherapy (RT) planning imaging datasets with consistently contoured cardiovascular structures are essential for robust cardiac radiotoxicity research in thoracic cancers. This study aims to develop and validate a highly accurate automatic contouring model for the heart, cardiac chambers, and great vessels for RT planning computed tomography (CT) images that can be used for dose-volume parameter estimation. MATERIALS AND METHODS A neural network model was trained using a dataset of 127 expertly contoured planning CT images from RT treatment of locally advanced non-small-cell lung cancer (NSCLC) patients. Evaluation of geometric accuracy and quality of dosimetric parameter estimation was performed on 50 independent scans with contrast and without contrast enhancement. The model was further evaluated regarding the clinical acceptability of the contours in 99 scans randomly sampled from the RTOG-0617 dataset by three experienced radiation oncologists. RESULTS Median surface dice at 3 mm tolerance for all dedicated thoracic structures was 90% in the test set. Median absolute difference between mean dose computed with model contours and expert contours was 0.45 Gy averaged over all structures. The mean clinical acceptability rate by majority vote in the RTOG-0617 scans was 91%. CONCLUSION This model can be used to contour the heart, cardiac chambers, and great vessels in large datasets of RT planning thoracic CT images accurately, quickly, and consistently. Additionally, the model can be used as a time-saving tool for contouring in clinic practice.
Collapse
Affiliation(s)
- Miguel Garrett Fernandes
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Johan Bussink
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Stam
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Dominic A X Schinagl
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Monshouwer
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021; 33:723-734. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Radiation therapy is a well-established approach for safely and non-invasively treating solid tumours and benign diseases with high precision and accuracy. Cardiac radiation therapy has recently emerged as a non-invasive treatment option for the management of refractory ventricular tachycardia. Here we summarise existing clinical and preclinical literature surrounding cardiac radiobiology and discuss how these studies may inform basic and translational research, as well as clinical treatment paradigms in the management of arrhythmias.
Collapse
Affiliation(s)
- D M Zhang
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C Bergom
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - P S Cuculich
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C G Robinson
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J K Schwarz
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - S L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
22
|
Boda-Heggemann J, Blanck O, Mehrhof F, Ernst F, Buergy D, Fleckenstein J, Tülümen E, Krug D, Siebert FA, Zaman A, Kluge AK, Parwani AS, Andratschke N, Mayinger MC, Ehrbar S, Saguner AM, Celik E, Baus WW, Stauber A, Vogel L, Schweikard A, Budach V, Dunst J, Boldt LH, Bonnemeier H, Rudic B. Interdisciplinary Clinical Target Volume Generation for Cardiac Radioablation: Multicenter Benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) Trial. Int J Radiat Oncol Biol Phys 2021; 110:745-756. [PMID: 33508373 DOI: 10.1016/j.ijrobp.2021.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for therapy-refractory ventricular tachycardia (VT) ineligible for catheter ablation. Three-dimensional clinical target volume (CTV) definition is a key step, and this complex interdisciplinary procedure includes VT-substrate identification based on electroanatomical mapping (EAM) and its transfer to the planning computed tomography (PCT). Benchmarking of this process is necessary for multicenter clinical studies such as the RAVENTA trial. METHODS AND MATERIALS For benchmarking of the RAVENTA trial, patient data (epicrisis, electrocardiogram, high-resolution EAM, contrast-enhanced cardiac computed tomography, PCT) of 3 cases were sent to 5 university centers for independent CTV generation, subsequent structure analysis, and consensus finding. VT substrates were first defined on multiple EAM screenshots/videos and manually transferred to the PCT. The generated structure characteristics were then independently analyzed (volume, localization, surface distance and conformity). After subsequent discussion, consensus structures were defined. RESULTS VT substrate on the EAM showed visible variability in extent and localization for cases 1 and 2 and only minor variability for case 3. CTVs ranged from 6.7 to 22.9 cm3, 5.9 to 79.9 cm3, and 9.4 to 34.3 cm3; surface area varied from 1087 to 3285 mm2, 1077 to 9500 mm2, and 1620 to 4179 mm2, with a Hausdorff-distance of 15.7 to 39.5 mm, 23.1 to 43.5 mm, and 15.9 to 43.9 mm for cases 1 to 3, respectively. The absolute 3-dimensional center-of-mass difference was 5.8 to 28.0 mm, 8.4 to 26 mm, and 3.8 to 35.1 mm for cases 1 to 3, respectively. The entire process resulted in CTV structures with a conformity index of 0.2 to 0.83, 0.02 to 0.85, and 0.02 to 0.88 (ideal 1) with the consensus CTV as reference. CONCLUSIONS Multicenter efficacy endpoint assessment of cardiac radioablation for therapy-refractory VT requires consistent CTV transfer methods from the EAM to the PCT. VT substrate definition and CTVs were comparable with current clinical practice. Remarkable differences regarding the degree of agreement of the CTV definition on the EAM and the PCT were noted, indicating a loss of agreement during the transfer process between EAM and PCT. Cardiac radioablation should be performed under well-defined protocols and in clinical trials with benchmarking and consensus forming.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Floris Ernst
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erol Tülümen
- I. Medizinische Klinik, Universitätsklinikum Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Anne K Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Abdul Shokor Parwani
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, UniversitätsSpital Zürich, Zürich, CH
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annina Stauber
- Klinik III für Kardiologie, Angiologie, Pneumologie und Internistische Intensivmedizin, Universitätsklinikum Köln, Köln, Germany
| | - Lena Vogel
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Boris Rudic
- I. Medizinische Klinik, Universitätsklinikum Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
23
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers (Basel) 2021; 13:cancers13030367. [PMID: 33498403 PMCID: PMC7864176 DOI: 10.3390/cancers13030367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.
Collapse
Affiliation(s)
- Daniëlle C. Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| |
Collapse
|