1
|
Palkowitsch M, Kaufmann LM, Hennings F, Menkel S, Hahn C, Bensberg J, Lühr A, Seidlitz A, Troost EGC, Krause M, Löck S. Variable-RBE-induced NTCP predictions for various side-effects following proton therapy for brain tumors - Identification of high-risk patients and risk mitigation. Radiother Oncol 2025; 202:110590. [PMID: 39427934 DOI: 10.1016/j.radonc.2024.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND PURPOSE Disregarding the increase of relative biological effectiveness (RBE) may raise the risk of acute and late adverse events after proton beam therapy (PBT). This study aims to explore the relationship between variable RBE (above 1.1)-induced normal tissue complication probabilities (NTCP) and patient-specific factors, identify patients at high risk of RBE-induced NTCP increase, and assess risk mitigation by incorporating RBE variability into treatment planning. MATERIALS AND METHODS We retrospectively analyzed 105 primary brain tumor patients treated with PBT (RBE = 1.1). We calculated differences in estimated NTCP (ΔNTCP) using a variable RBE-weighted dose (DRBE, Wedenberg model) and a constant RBE-weighted dose (DRBE=1.1), across 16 NTCP models. These differences were correlated with patient-specific characteristics. Based on ΔNTCP, patients were classified as high risk (32 %) or low risk (68 %) for adverse events due to RBE-induced NTCP. This classification was compared with alternative classifications based on (a) relevant patient-specific characteristics, (b) DRBE=1.1, and (c) the difference between DRBE and DRBE=1.1 (ΔD), assessing the balanced accuracy. The potential to reduce RBE-induced NTCP through track-end and linear energy transfer (LET) optimization was evaluated in six example patients. RESULTS Using a variable RBE instead of a constant one resulted in NTCP increases (up to 32 percentage points). Variable-RBE-induced NTCP increases were strongly negatively correlated with the distance between the clinical target volume (CTV) and the organ at risk (OAR) for most side-effects, and positively correlated with CTV volume for certain side-effects. High increases were associated with (a) specific patient factors, particularly the proximity of the CTV to OARs, (b) DRBE=1.1, and (c) ΔD, with a balanced accuracy of 0.88, 0.94, and 0.86, respectively. Optimization of track-ends and LET considerably reduced NTCP values, achieving a mean reduction of 31 % for optimized OARs. CONCLUSION The risk of variable-RBE-induced NTCP strongly depends on patient-specific factors and the considered side-effect. A small distance between the tumor and OARs notably increases the risk. Integrating biologically-guided objectives into treatment planning can effectively mitigate the risk.
Collapse
Affiliation(s)
- Martina Palkowitsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
| | - Lisa-Marie Kaufmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Hennings
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Stefan Menkel
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Jona Bensberg
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Armin Lühr
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
2
|
Wagenaar D, Habraken SJM, Rinaldi I, Eekers DBP, Kramer M, Jaspers JPM, van Gent D, Barazzuol L, Klaver YLB, Zindler J, Coremans I, Compter I, Scandurra D, van der Weide HL, Both S, Hoogeman M, Unipan M, Méndez Romero A. Evaluating and reporting LET and RBE-weighted dose in proton therapy for glioma - The Dutch approach. Radiother Oncol 2025; 202:110653. [PMID: 39603511 DOI: 10.1016/j.radonc.2024.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE With proton therapy, the relative biological effectiveness (RBE) accounts for increased DNA damage caused by higher linear energy transfer (LET) compared to photons. However, the LET and hence the RBE varies along the proton range, particularly at the Bragg peak, introducing challenges in proton treatment planning for brain tumors. The aim of this paper is to standardize evaluating and reporting LET and RBE in proton therapy for patients with grade 2 and 3 IDH mutant gliomas among the Dutch proton therapy centers. MATERIALS AND METHODS A working group, comprising experts from three Dutch proton therapy centers, conducted nine meetings between 2020 and 2023. A joint literature review supported the standardized evaluation and reporting of LET and RBE. Questionnaires sent out to the three Dutch proton centers in 2020 and 2023 provided input for discussions on clinical practices. Three clinical examples were chosen to illustrate the application of the recommended methodology in treatment planning. RESULTS Following the literature review, a guideline on evaluation and reporting using the dose averaged LET (LETd) of primary and secondary protons calculated in water normalized to unit density was established. The McNamara variable RBE model with an α/β value of 2 Gy was selected for reporting. CONCLUSION The study presents a harmonization of approaches to evaluating and reporting LET and variable RBE in a guideline for the three Dutch proton therapy centers, providing clarity for future clinical interpretation. Having chosen a single variable RBE model offers practicality, although its accuracy remains a topic of ongoing research.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Steven J M Habraken
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Miranda Kramer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Dik van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Zindler
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Haaglanden MC, The Hague, The Netherlands
| | - Ida Coremans
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mischa Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| |
Collapse
|
3
|
Overgaard CB, Reaz F, Ankjærgaard C, Andersen CE, Sitarz M, Poulsen P, Spejlborg H, Johansen JG, Overgaard J, Grau C, Bassler N, Sørensen BS. The proton RBE and the distal edge effect for acute and late normal tissue damage in vivo. Radiother Oncol 2024; 203:110668. [PMID: 39675573 DOI: 10.1016/j.radonc.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND PURPOSE In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy. Few in vivo studies have investigated the increasing RBE with increasing LET. This study aims to test the hypothesis that the RBE varies between endpoints and has a distal edge effect in vivo. MATERIALS AND METHODS Unanesthetized micewere restrainedin jigs where their right hind legs were irradiated with a single dose of protons at the center (LET, all = 5.3 keV/μm) and distal edge (LET, all = 7.6 keV/μm) of a spread-out Bragg peak (SOBP). 6 MV photons were used as reference. The acute damage and skin toxicity were scored daily until day 30, and the late damage was evaluated using a joint contracture assay for one year after treatment. RESULTS An acute damage RBE of 1.06 ± 0.02(1.02-1.10) and late damage RBE of 1.16 ± 0.08(1.00-1.32) were found, displaying an enhanced RBE for late damage in the center SOBP. The distal edge RBE for acute and late damage was 1.15 ± 0.02(1.10-1.19) and 1.26 ± 0.09(1.07-1.43), showing a similar center-to-distal edge RBE enhancement of 8 % and 9 % for acute and late damage. CONCLUSION The findings demonstrate an increased RBE for late damage than acute damage and the distal edge effect is evident with increased RBE at the distal end of the proton SOBP in vivo.
Collapse
Affiliation(s)
| | - Fardous Reaz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | | | | | - Mateusz Sitarz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Harald Spejlborg
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jacob G Johansen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
4
|
Ödén J, Eriksson K, Kaushik S, Traneus E. Beyond a constant proton relative biological effectiveness: A survey of clinical and research perspectives among proton institutions in Europe and the United States. J Appl Clin Med Phys 2024:e14535. [PMID: 39492602 DOI: 10.1002/acm2.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE Although proton relative biological effectiveness (RBE) depends on factors like linear energy transfer (LET), tissue properties, dose, and biological endpoint, a constant RBE of 1.1 is recommended in clinical practice. This study surveys proton institutions to explore activities using functionalities beyond a constant proton RBE. METHODS Research versions of RayStation integrate functionalities considering variable proton RBE, LET, proton track-ends, and dirty dose. A survey of 19 institutions in Europe and the United States, with these functionalities available, investigated clinical adoption and research prospects using a 25-question online questionnaire. RESULTS Of the 16 institutions that responded (84% response rate), 13 were clinically active. These clinical institutions prescribe RBE = 1.1 but also employ planning strategies centered around special beam arrangements to address potentially enhanced RBE effects in serially structured organs at risk (OARs). Clinical plan evaluation encompassed beam angles/spot position (69%), dose-averaged LET (LETd) (46%), and variable RBE distributions (38%). High ratings (discrete scale: 1-5) were reported for the research functionalities using linear LETd-RBE models, LETd, track-end frequency and dirty dose (averages: 4.0-4.8), while LQ-based phenomenological RBE models dependent on LETd scored lower for optimization (average: 2.2) but congruent for evaluation (average: 4.1). The institutions preferred LET reported as LETd (94%), computed in unit-density water (56%), for all protons (63%), and lean toward LETd-based phenomenological RBE models for clinical use (> 50%). CONCLUSIONS Proton institutions recognize RBE variability but adhere to a constant RBE while actively mitigating potential enhancements, particularly in serially structured OARs. Research efforts focus on planning techniques that utilize functionalities beyond a constant RBE, emphasizing standardized LET and RBE calculations to facilitate their adoption in clinical practice and improve clinical data collection. LETd calculated in unit-density water for all protons as input to adaptable phenomenological RBE models was the most suggested approach, aligning with predominant clinical LET and variable RBE reporting.
Collapse
Affiliation(s)
- Jakob Ödén
- Department of Research, RaySearch Laboratories AB, Stockholm, Sweden
| | - Kjell Eriksson
- Department of Research, RaySearch Laboratories AB, Stockholm, Sweden
| | - Suryakant Kaushik
- Department of Research, RaySearch Laboratories AB, Stockholm, Sweden
| | - Erik Traneus
- Department of Research, RaySearch Laboratories AB, Stockholm, Sweden
| |
Collapse
|
5
|
Bernardo T, Heuchel L, Heinzelmann F, Esser J, Lüdemann L, Timmermann B, Lühr A, von Neubeck C. Linear energy transfer dependent variation in viability and proliferation along the Bragg peak curve in sarcoma and normal tissue cells. Phys Med Biol 2024; 69:195005. [PMID: 39137807 DOI: 10.1088/1361-6560/ad6edc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.The energy deposition of photons and protons differs. It depends on the position in the proton Bragg peak (BP) and the linear energy transfer (LET) leading to a variable relative biological effectiveness (RBE). Here, we investigate LET dependent alterations on metabolic viability and proliferation of sarcoma and endothelium cell lines following proton irradiation in comparison to photon exposure.Approach.Using a multi-step range shifter, each column of a 96-well plate was positioned in a different depth along four BP curves with increasing intensities. The high-throughput experimental setup covers dose, LET, and RBE changes seen in a treatment field. Photon irradiation was performed to calculate the RBE along the BP curve. Two biological information out of one experiment were extracted allowing a correlation between metabolic viability and proliferation of the cells.Main results.The metabolic viability and cellular proliferation were column-wise altered showing a depth-dose profile. Endothelium cell viability recovers within 96 h post BP irradiation while sarcoma cell viability remains reduced. Highest RBE values were observed at the BP distal fall-off regarding proliferation of the sarcoma and endothelial cells.Significance.The high-throughput experimental setup introduced here (I) covers dose, LET, and RBE changes seen in a treatment field, (II) measures short-term effects within 48 h to 96 h post irradiation, and (III) can additionally be transferred to various cell types without time consuming experimental adaptations. Traditionally, RBE values are calculated from clonogenic cell survival. Measured RBE profiles strongly depend on physical characteristics such as dose and LET and biological characteristics for example cell type and time point. Metabolic viability and proliferation proofed to be in a similar effect range compared to clonogenic survival results. Based on limited data of combined irradiation with doxorubicin, future experiments will test combined treatment with systemic therapies applied in clinics e.g. cyclin-dependent inhibitors.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Feline Heinzelmann
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
| | - Johannes Esser
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
| | - Lutz Lüdemann
- University Hospital Essen, Clinic and Polyclinic for Radiotherapy/Medical Physics, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
- German Cancer Consortium, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| |
Collapse
|
6
|
Kaushik S, Stützer K, Ödén J, Fredriksson A, Toma-Dasu I. Adaptive intensity modulated proton therapy using 4D robust planning: a proof-of-concept for the application of dose mimicking approach. Phys Med Biol 2024; 69:185010. [PMID: 39214132 DOI: 10.1088/1361-6560/ad75e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objective.A four-dimensional robust optimisation (4DRO) is usually employed when the tumour respiratory motion needs to be addressed. However, it is computationally demanding, and an automated method is preferable for adaptive planning to avoid manual trial-and-error. This study proposes a 4DRO technique based on dose mimicking for automated adaptive planning.Approach.Initial plans for 4DRO intensity modulated proton therapy were created on an average CT for four patients with clinical target volume (CTV) in the lung, oesophagus, or pancreas, respectively. These plans were robustly optimised using three phases of four-dimensional computed tomography (4DCT) and accounting for setup and density uncertainties. Weekly 4DCTs were used for adaptive replanning, using a constant relative biological effectiveness (cRBE) of 1.1. Two methods were used: (1) template-based adaptive (TA) planning and (2) dose-mimicking-based adaptive (MA) planning. The plans were evaluated using variable RBE (vRBE) weighted doses and biologically consistent dose accumulation (BCDA).Main results.MA and TA plans had comparable CTV coverage except for one patient where the MA plan had a higher D98 and lower D2 but with an increased D2 in few organs at risk (OARs). CTV D98 deviations in non-adaptive plans from the initial plans were up to -7.2 percentage points (p.p.) in individual cases and -1.8 p.p. when using BCDA. For the OARs, MA plans showed a reduced mean dose and D2 compared to the TA plans, with few exceptions. The vRBE-weighted accumulated doses had a mean dose and D2 difference of up to 0.3 Gy and 0.5 Gy, respectively, in the OARs with respect to cRBE-weighted doses.Significance.MA plans indicate better performance in target coverage and OAR dose sparing compared to the TA plans in 4DRO adaptive planning. Moreover, MA method is capable of handling both forms of anatomical variation, namely, changes in density and relative shifts in the position of OARs.
Collapse
Affiliation(s)
- Suryakant Kaushik
- RaySearch Laboratories AB (Publ), Stockholm, Sweden
- Department of Physics, Medical Radiation Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Kristin Stützer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB (Publ), Stockholm, Sweden
| | | | - Iuliana Toma-Dasu
- Department of Physics, Medical Radiation Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
8
|
Toussaint L, Matysiak W, Alapetite C, Aristu J, Bannink-Gawryszuk A, Bolle S, Bolsi A, Calvo F, Cerron Campoo F, Charlwood F, Demoor-Goldschmidt C, Doyen J, Drosik-Rutowicz K, Dutheil P, Embring A, Engellau J, Goedgebeur A, Goudjil F, Harrabi S, Kopec R, Kristensen I, Lægsdmand P, Lütgendorf-Caucig C, Meijers A, Mirandola A, Missohou F, Montero Feijoo M, Muren LP, Ondrova B, Orlandi E, Pettersson E, Pica A, Plaude S, Righetto R, Rombi B, Timmermann B, Van Beek K, Vela A, Vennarini S, Vestergaard A, Vidal M, Vondracek V, Weber DC, Whitfield G, Zimmerman J, Maduro JH, Lassen-Ramshad Y. Clinical practice in European centres treating paediatric posterior fossa tumours with pencil beam scanning proton therapy. Radiother Oncol 2024; 198:110414. [PMID: 38942120 DOI: 10.1016/j.radonc.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND PURPOSE As no guidelines for pencil beam scanning (PBS) proton therapy (PT) of paediatric posterior fossa (PF) tumours exist to date, this study investigated planning techniques across European PT centres, with special considerations for brainstem and spinal cord sparing. MATERIALS AND METHODS A survey and a treatment planning comparison were initiated across nineteen European PBS-PT centres treating paediatric patients. The survey assessed all aspects of the treatment chain, including but not limited to delineations, dose constraints and treatment planning. Each centre planned two PF tumour cases for focal irradiation, according to their own clinical practice but based on common delineations. The prescription dose was 54 Gy(RBE) for Case 1 and 59.4 Gy(RBE) for Case 2. For both cases, planning strategies and relevant dose metrics were compared. RESULTS Seventeen (89 %) centres answered the survey, and sixteen (80 %) participated in the treatment planning comparison. In the survey, thirteen (68 %) centres reported using the European Particle Therapy Network definition for brainstem delineation. In the treatment planning study, while most centres used three beam directions, their configurations varied widely across centres. Large variations were also seen in brainstem doses, with a brainstem near maximum dose (D2%) ranging from 52.7 Gy(RBE) to 55.7 Gy(RBE) (Case 1), and from 56.8 Gy(RBE) to 60.9 Gy(RBE) (Case 2). CONCLUSION This study assessed the European PBS-PT planning of paediatric PF tumours. Agreement was achieved in e.g. delineation-practice, while wider variations were observed in planning approach and consequently dose to organs at risk. Collaboration between centres is still ongoing, striving towards common guidelines.
Collapse
Affiliation(s)
- Laura Toussaint
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark.
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Claire Alapetite
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Javier Aristu
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Stephanie Bolle
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France; Institut Gustave Roussy, Department of Radiation Oncology, Villejuif, France; Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Alessandra Bolsi
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Felipe Calvo
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | | | - Frances Charlwood
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France; Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Jérôme Doyen
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Katarzyna Drosik-Rutowicz
- National Research Institute of Oncology Kraków/Gliwice branch, Department of Radiation Oncology, Kraków, Poland
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Anna Embring
- Karolinska University Hospital, Department of Radiotherapy, Stockholm, Sweden
| | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Anneleen Goedgebeur
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Farid Goudjil
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Centre, University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
| | - Renata Kopec
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Peter Lægsdmand
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - Arturs Meijers
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Alfredo Mirandola
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | | | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Barbora Ondrova
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy; University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Gothenburg, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Alessia Pica
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Sandija Plaude
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany
| | | | - Barbara Rombi
- Trento Proton Therapy Centre,epartment of Radiation Oncology, APSS Trento, Italy
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany; Department of Particle Therapy, University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Karen Van Beek
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Paediatric Radiotherapy Unit, IRCCS Foundation Institute of Cancer, Milano, Italy
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark
| | - Marie Vidal
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Damien C Weber
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Gillian Whitfield
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; University of Manchester, Royal Manchester Children's Hospital, The Children's Brain Tumour Research Network, Manchester, United Kingdom
| | - Jens Zimmerman
- Karolinska University Hospital, Department of Radiotherapy Physics and Engineering, Stockholm, Sweden
| | - John H Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | | |
Collapse
|
9
|
Marignol L, McMahon SJ. Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study. Radiat Res 2024; 202:177-184. [PMID: 38918000 DOI: 10.1667/rade-24-00023.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
Collapse
Affiliation(s)
- L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
10
|
Lyngholm E, Stokkevåg CH, Lühr A, Tian L, Meric I, Tjelta J, Henjum H, Handeland AH, Ytre-Hauge KS. An updated variable RBE model for proton therapy. Phys Med Biol 2024; 69:125025. [PMID: 38527373 DOI: 10.1088/1361-6560/ad3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Objective.While a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newin vitrodatasets have not yet been included in the existing models. In this study, an updatedin vitroproton RBE database was collected and used to examine current RBE model assumptions, and to propose an up-to-date RBE model as a tool for evaluating RBE effects in clinical settings.Approach.A proton database (471 data points) was collected from the literature, almost twice the size of the previously largest model database. Each data point included linear-quadratic model parameters and linear energy transfer (LET). Statistical analyses were performed to test the validity of commonly applied assumptions of phenomenological RBE models, and new model functions were proposed forRBEmaxandRBEmin(RBE at the lower and upper dose limits). Previously published models were refitted to the database and compared to the new model in terms of model performance and RBE estimates.Main results.The statistical analysis indicated that the intercept of theRBEmaxfunction should be a free fitting parameter and RBE estimates were clearly higher for models with free intercept.RBEminincreased with increasing LET, while a dependency ofRBEminon the reference radiation fractionation sensitivity (α/βx) did not significantly improve model performance. Evaluating the models, the new model gave overall lowest RMSE and highest R2 score. RBE estimates in the distal part of a spread-out-Bragg-peak in water (α/βx= 2.1 Gy) were 1.24-1.51 for original models, 1.25-1.49 for refits and 1.42 for the new model.Significance.An updated RBE model based on the currently largest database among published phenomenological models was proposed. Overall, the new model showed better performance compared to refitted published RBE models.
Collapse
Affiliation(s)
- Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Ilker Meric
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas Havsgård Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
11
|
Holtzman AL, Mohammadi H, Furutani KM, Koffler DM, McGee LA, Lester SC, Gamez ME, Routman DM, Beltran CJ, Liang X. Impact of Relative Biologic Effectiveness for Proton Therapy for Head and Neck and Skull-Base Tumors: A Technical and Clinical Review. Cancers (Basel) 2024; 16:1947. [PMID: 38893068 PMCID: PMC11171304 DOI: 10.3390/cancers16111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.
Collapse
Affiliation(s)
- Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel M. Koffler
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lisa A. McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Scott C. Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mauricio E. Gamez
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Heuchel L, Hahn C, Ödén J, Traneus E, Wulff J, Timmermann B, Bäumer C, Lühr A. The dirty and clean dose concept: Towards creating proton therapy treatment plans with a photon-like dose response. Med Phys 2024; 51:622-636. [PMID: 37877574 DOI: 10.1002/mp.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Applying tolerance doses for organs at risk (OAR) from photon therapy introduces uncertainties in proton therapy when assuming a constant relative biological effectiveness (RBE) of 1.1. PURPOSE This work introduces the novel dirty and clean dose concept, which allows for creating treatment plans with a more photon-like dose response for OAR and, thus, less uncertainties when applying photon-based tolerance doses. METHODS The concept divides the 1.1-weighted dose distribution into two parts: the clean and the dirty dose. The clean and dirty dose are deposited by protons with a linear energy transfer (LET) below and above a set LET threshold, respectively. For the former, a photon-like dose response is assumed, while for the latter, the RBE might exceed 1.1. To reduce the dirty dose in OAR, a MaxDirtyDose objective was added in treatment plan optimization. It requires setting two parameters: LET threshold and max dirty dose level. A simple geometry consisting of one target volume and one OAR in water was used to study the reduction in dirty dose in the OAR depending on the choice of the two MaxDirtyDose objective parameters during plan optimization. The best performing parameter combinations were used to create multiple dirty dose optimized (DDopt) treatment plans for two cranial patient cases. For each DDopt plan, 1.1-weighted dose, variable RBE-weighted dose using the Wedenberg RBE model and dose-average LETd distributions as well as resulting normal tissue complication probability (NTCP) values were calculated and compared to the reference plan (RefPlan) without MaxDirtyDose objectives. RESULTS In the water phantom studies, LET thresholds between 1.5 and 2.5 keV/µm yielded the best plans and were subsequently used. For the patient cases, nearly all DDopt plans led to a reduced Wedenberg dose in critical OAR. This reduction resulted from an LET reduction and translated into an NTCP reduction of up to 19 percentage points compared to the RefPlan. The 1.1-weighted dose in the OARs was slightly increased (patient 1: 0.45 Gy(RBE), patient 2: 0.08 Gy(RBE)), but never exceeded clinical tolerance doses. Additionally, slightly increased 1.1-weighted dose in healthy brain tissue was observed (patient 1: 0.81 Gy(RBE), patient 2: 0.53 Gy(RBE)). The variation of NTCP values due to variation of α/β from 2 to 3 Gy was much smaller for DDopt (2 percentage points (pp)) than for RefPlans (5 pp). CONCLUSIONS The novel dirty and clean dose concept allows for creating biologically more robust proton treatment plans with a more photon-like dose response. The reduced uncertainties in RBE can, therefore, mitigate uncertainties introduced by using photon-based tolerance doses for OAR.
Collapse
Affiliation(s)
- Lena Heuchel
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Christian Hahn
- Department of Physics, TU Dortmund University, Dortmund, Germany
- OncoRay-National Center of Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jörg Wulff
- West German Proton Therapy Center Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Center Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Christian Bäumer
- Department of Physics, TU Dortmund University, Dortmund, Germany
- West German Proton Therapy Center Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
13
|
Zlygosteva O, Juvkam IS, Arous D, Sitarz M, Sørensen BS, Ankjærgaard C, Andersen CE, Galtung HK, Søland TM, Edin NJ, Malinen E. Acute normal tissue responses in a murine model following fractionated irradiation of the head and neck with protons or X-rays. Acta Oncol 2023; 62:1574-1580. [PMID: 37703217 DOI: 10.1080/0284186x.2023.2254481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.
Collapse
Affiliation(s)
- Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Delmon Arous
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Georg D, Aznar MC, van der Heide U, Thwaites D. Radiotherapy dosimetry at multiple levels to improve precision, development and understanding of treatment. Radiother Oncol 2023; 182:109601. [PMID: 36889596 DOI: 10.1016/j.radonc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Dietmar Georg
- Division Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria.
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom; The Christie NHS Foundation Trust, United Kingdom
| | - Uulke van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Australia; Radiotherapy Research Group, St James's Hospital and University of Leeds, United Kingdom
| |
Collapse
|
15
|
Magrin G, Palmans H, Stock M, Georg D. State-of-the-art and potential of experimental microdosimetry in ion-beam therapy. Radiother Oncol 2023; 182:109586. [PMID: 36842667 DOI: 10.1016/j.radonc.2023.109586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
In radiotherapy, radiation-quality should be an expression of the biological and physical characteristics of ionizing radiation such as spatial distribution of ionization or energy deposition. Linear energy transfer (LET) and lineal energy (y) are two descriptors used to quantify the radiation quality. These two quantities are connected and exhibit similar features. In ion-beam therapy (IBT), lineal energy can be measured with microdosimeters, which are specifically designed to cope with the high fluence of particles in clinical beams, while the quantification of LET is generally based on calculations. In pre-clinical studies, microdosimetric spectra are used for the indirect determination of relative biological effectiveness (RBE), e.g., using the microdosimetric kinetic model (MKM) or biophysical response functions. In this context it is important to consider saturation effects, which occur when the highest values of y become less biologically relevant compared to the relative contribution they make to the physical dose. Recent clinical data suggests that local tumor control and normal tissue effects can be linked to macroscopic and microscopic dosimetry parameters. In particular, positive clinical outcomes have been correlated to the highest LET values in the density distribution, and there is no evident link to the saturation discussed above. A systematic collection of microdosimetric information in combination with clinical data in retrospective studies may clarify the role of radiation quality at the highest LET. In the clinical setting, microdosimetry is not widely used yet, despite its potential to be linked with LET by experimentally-determined y values. Through this connection, both play an important role in complex therapy techniques such as intensity modulated particle therapy (IMPT), LET-painting and multi-ion optimization. This review summarizes the current state of microdosimetry for IBT and its potential, as well as research and development needed to make experimental microdosimetry a mature procedure in a clinical context.
Collapse
Affiliation(s)
- Giulio Magrin
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, UK
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Karl Landsteiner Universität, Krems, Austria
| | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Medical University of Vienna, Austria.
| |
Collapse
|
16
|
Vaniqui A, Vaassen F, Di Perri D, Eekers D, Compter I, Rinaldi I, van Elmpt W, Unipan M. Linear Energy Transfer and Relative Biological Effectiveness Investigation of Various Structures for a Cohort of Proton Patients With Brain Tumors. Adv Radiat Oncol 2023; 8:101128. [PMID: 36632089 PMCID: PMC9827037 DOI: 10.1016/j.adro.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored. Methods and Materials For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were investigated. Results The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values. Conclusions Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists over a link between toxicity and LET hotspots. Visualizing DLETd or dose × LETd during treatment planning could allow for clinicians to make informed decisions.
Collapse
Affiliation(s)
- Ana Vaniqui
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
17
|
Eulitz J, G C Troost E, Klünder L, Raschke F, Hahn C, Schulz E, Seidlitz A, Thiem J, Karpowitz C, Hahlbohm P, Grey A, Engellandt K, Löck S, Krause M, Lühr A. Increased relative biological effectiveness and periventricular radiosensitivity in proton therapy of glioma patients. Radiother Oncol 2023; 178:109422. [PMID: 36435337 DOI: 10.1016/j.radonc.2022.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Currently, there is an intense debate on variations in intra-cerebral radiosensitivity and relative biological effectiveness (RBE) in proton therapy of primary brain tumours. Here, both effects were retrospectively investigated using late radiation-induced brain injuries (RIBI) observed in follow-up after proton therapy of patients with diagnosed glioma. METHODS In total, 42 WHO grade 2-3 glioma patients out of a consecutive patient cohort having received (adjuvant) proton radio(chemo)therapy between 2014 and 2017 were eligible for analysis. RIBI lesions (symptomatic or clinically asymptomatic) were diagnosed and delineated on contrast-enhanced T1-weighted magnetic resonance imaging scans obtained in the first two years of follow-up. Correlation of RIBI location and occurrence with dose (D), proton dose-averaged linear energy transfer (LET) and variable RBE dose parameters were tested in voxel- and in patient-wise logistic regression analyses. Additionally, anatomical and clinical parameters were considered. Model performance was estimated through cross-validated area-under-the-curve (AUC) values. RESULTS In total, 64 RIBI lesions were diagnosed in 21 patients. The median time between start of proton radio(chemo)therapy and RIBI appearance was 10.2 months. Median distances of the RIBI volume centres to the cerebral ventricles and to the clinical target volume border were 2.1 mm and 1.3 mm, respectively. In voxel-wise regression, the multivariable model with D, D × LET and periventricular region (PVR) revealed the highest AUC of 0.90 (95 % confidence interval: 0.89-0.91) while the corresponding model without D × LET revealed a value of 0.84 (0.83-0.86). In patient-level analysis, the equivalent uniform dose (EUD11, a = 11) in the PVR using a variable RBE was the most prominent predictor for RIBI with an AUC of 0.63 (0.32-0.90). CONCLUSIONS In this glioma cohort, an increased radiosensitivity within the PVR was observed as well as a spatial correlation of RIBI with an increased RBE. Both need to be considered when delivering radio(chemo)therapy using proton beams.
Collapse
Affiliation(s)
- Jan Eulitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lauritz Klünder
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Erik Schulz
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Justus Thiem
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Caroline Karpowitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia Hahlbohm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arne Grey
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kay Engellandt
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
18
|
Hahn C, Heuchel L, Ödén J, Traneus E, Wulff J, Plaude S, Timmermann B, Bäumer C, Lühr A. Comparing biological effectiveness guided plan optimization strategies for cranial proton therapy: potential and challenges. Radiat Oncol 2022; 17:169. [PMID: 36273132 DOI: 10.1186/s13014-022-02143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To introduce and compare multiple biological effectiveness guided (BG) proton plan optimization strategies minimizing variable relative biological effectiveness (RBE) induced dose burden in organs at risk (OAR) while maintaining plan quality with a constant RBE. METHODS Dose-optimized (DOSEopt) proton pencil beam scanning reference treatment plans were generated for ten cranial patients with prescription doses ≥ 54 Gy(RBE) and ≥ 1 OAR close to the clinical target volume (CTV). For each patient, four additional BG plans were created. BG objectives minimized either proton track-ends, dose-averaged linear energy transfer (LETd), energy depositions from high-LET protons or variable RBE-weighted dose (DRBE) in adjacent serially structured OARs. Plan quality (RBE = 1.1) was assessed by CTV dose coverage and robustness (2 mm setup, 3.5% density), dose homogeneity and conformity in the planning target volumes and adherence to OAR tolerance doses. LETd, DRBE (Wedenberg model, α/βCTV = 10 Gy, α/βOAR = 2 Gy) and resulting normal tissue complication probabilities (NTCPs) for blindness and brainstem necrosis were derived. Differences between DOSEopt and BG optimized plans were assessed and statistically tested (Wilcoxon signed rank, α = 0.05). RESULTS All plans were clinically acceptable. DOSEopt and BG optimized plans were comparable in target volume coverage, homogeneity and conformity. For recalculated DRBE in all patients, all BG plans significantly reduced near-maximum DRBE to critical OARs with differences up to 8.2 Gy(RBE) (p < 0.05). Direct DRBE optimization primarily reduced absorbed dose in OARs (average ΔDmean = 2.0 Gy; average ΔLETd,mean = 0.1 keV/µm), while the other strategies reduced LETd (average ΔDmean < 0.3 Gy; average ΔLETd,mean = 0.5 keV/µm). LET-optimizing strategies were more robust against range and setup uncertaintes for high-dose CTVs than DRBE optimization. All BG strategies reduced NTCP for brainstem necrosis and blindness on average by 47% with average and maximum reductions of 5.4 and 18.4 percentage points, respectively. CONCLUSIONS All BG strategies reduced variable RBE-induced NTCPs to OARs. Reducing LETd in high-dose voxels may be favourable due to its adherence to current dose reporting and maintenance of clinical plan quality and the availability of reported LETd and dose levels from clinical toxicity reports after cranial proton therapy. These optimization strategies beyond dose may be a first step towards safely translating variable RBE optimization in the clinics.
Collapse
Affiliation(s)
- Christian Hahn
- Department of Physics, TU Dortmund University, Dortmund, Germany. .,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jörg Wulff
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Sandija Plaude
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Bäumer
- Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
19
|
Tian L, Hahn C, Lühr A. An ion-independent phenomenological relative biological effectiveness (RBE) model for proton therapy. Radiother Oncol 2022; 174:69-76. [PMID: 35803365 DOI: 10.1016/j.radonc.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A relative biological effectiveness (RBE) of 1.1 is used for proton therapy though clinical evidence of varying RBE was raised. Clinical studies on RBE variability have been conducted for decades for carbon radiation, which could advance the understanding of the clinical proton RBE given an ion-independent RBE model. In this work, such a model, linear and simple, using the beam quantity Q = Z2/E (Z = ion charge, E = kinetic energy per nucleon) was tested and compared to the commonly used, proton-specific and linear energy transfer (LET) based Wedenberg RBE model. MATERIAL AND METHODS The Wedenberg and Q models, both predicting RBEmax and RBEmin (i.e., RBE at vanishing and very high dose, respectively), are compared in terms of ion-dependence and prediction power. An experimental in-vitro data ensemble covering 115 publications for various ions was used as dataset. RESULTS The model parameter of the Q model was observed to be similar for different ions (in contrast to LET). The Q model was trained without any prior knowledge of proton data. For proton RBE, the differences between experimental data and corresponding predictions of the Wedenberg or the Q model were highly comparable. CONCLUSIONS A simple linear RBE model using Q instead of LET was proposed and tested to be able to predict proton RBE using model parameter trained based on only RBE data of other particles in a clinical proton energy range for a large in-vitro dataset. Adding (pre)clinical knowledge from carbon ion therapy may, therefore, reduce the dominating biological uncertainty in proton RBE modelling. This would translate in reduced RBE related uncertainty in proton therapy treatment planning.
Collapse
Affiliation(s)
- Liheng Tian
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| | - Christian Hahn
- TU Dortmund University, Department of Physics, Dortmund, Germany; OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| |
Collapse
|