1
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
2
|
Hahn T, Alzate MO, Leonhardt S, Tamang P, Zibek S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng Life Sci 2024; 24:2300211. [PMID: 38845815 PMCID: PMC11151071 DOI: 10.1002/elsc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) have gained interest recently due to their biodegradability and versatility. In particular, the chemical compositions of medium-chain-length (mcl)-PHAs are highly diverse, comprising different monomers containing 6-14 carbon atoms. This review summarizes different feedstocks and fermentation strategies to enhance mcl-PHA production and briefly discusses the downstream processing. This review also provides comprehensive details on analytical tools for determining the composition and properties of mcl-PHA. Moreover, this study provides novel information by statistically analyzing the data collected from several reports on mcl-PHA to determine the optimal fermentation parameters (specific growth rate, PHA productivity, and PHA yield from various structurally related and unrelated substrates), mcl-PHA composition, molecular weight (MW), and thermal and mechanical properties, in addition to other relevant statistical values. The analysis revealed that the median PHA productivity observed in the fed-batch feeding strategy was 0.4 g L-1 h-1, which is eight times higher than that obtained from batch feeding (0.05 g L-1 h-1). Furthermore, 3-hydroxyoctanoate and -decanoate were the primary monomers incorporated into mcl-PHA. The investigation also determined the median glass transition temperature (-43°C) and melting temperature (47°C), which indicated that mcl-PHA is a flexible amorphous polymer at room temperature with a median MW of 104 kDa. However, information on the monomer composition or heterogeneity and the associated physical and mechanical data of mcl-PHAs is inadequate. Based on their mechanical values, the mcl-PHAs can be classified as semi-crystalline polymers (median crystallinity 23%) with rubber-like properties and a median elongation at break of 385%. However, due to the limited mechanical data available for mcl-PHAs with known monomer composition, identifying suitable processing tools and applications to develop mcl-PHAs further is challenging.
Collapse
Affiliation(s)
- Thomas Hahn
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Melissa Ortega Alzate
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Department of Chemical EngineeringUniversity of AntioquiaEl Carmen de ViboralColombia
| | - Steven Leonhardt
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Pravesh Tamang
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Susanne Zibek
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Institute of Interfacial Engineering and Plasma Technology IGVPUniversity of StuttgartStuttgartGermany
| |
Collapse
|
3
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
4
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
5
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
6
|
Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 369:128323. [PMID: 36400275 DOI: 10.1016/j.biortech.2022.128323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
7
|
Kanzariya R, Gautam A, Parikh S, Shah M, Gautam S. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Biotechnol Genet Eng Rev 2023:1-40. [PMID: 36641590 DOI: 10.1080/02648725.2023.2165222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 01/16/2023]
Abstract
In the present scenario, rising environmental concerns of non-biodegradable plastic pollution and depletion of petroleum based raw materials lead to the development of biopolymers. The biodegradability of biopolymers gives them a specific advantage for the environmental concerns. Polyhydroxyalkanoates (PHAs) are a type of biopolymers which are synthesized by microorganisms. Although there are different substrates available in pure forms which are currently used in the production of PHA, 40% of production cost depends on the expensive substrate which is a major disadvantage and make it far from many applications. The use of an inexpensive carbon source which is high in organic matter content such as waste streams of process industries can make this process viable and diminish PHA production cost. This study explores the current research initiatives on various agricultural and industrial waste feedstocks, formulations and processing conditions for producing PHA in a way that is both inexpensive and beneficial to the environment. The creation of fermentation conditions and metabolic engineering techniques for promoting microbial growth and PHA synthesis were also discussed in the review.
Collapse
Affiliation(s)
- Rekha Kanzariya
- Department of Chemical Engineering, Government Engineering College, Bhuj, India
- Gujarat Technological University, Gandhinagar, India
| | - Alok Gautam
- Gujarat Technological University, Gandhinagar, India
- Shroff S R Rotary Institute of Chemical Technology, Vataria, India
| | - Sachin Parikh
- Gujarat Technological University, Gandhinagar, India
- Directorate of Technical Education, Gandhinagar, India
| | - Maulin Shah
- Department of Microbiology, Environmental Microbiology Lab, Enviro Tech Limited, Ankleshwar, India
| | - Shina Gautam
- Gujarat Technological University, Gandhinagar, India
- Shroff S R Rotary Institute of Chemical Technology, Vataria, India
| |
Collapse
|
8
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
9
|
Rodríguez-Fabià S, Chinga-Carrasco G. Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Acedos MG, Moreno-Cid J, Verdú F, González JA, Tena S, López JC. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production. CHEMOSPHERE 2022; 287:132401. [PMID: 34600930 DOI: 10.1016/j.chemosphere.2021.132401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The progressive increase of slaughterhouse waste production requires actions for both addressing an environmental issue and creating additional value within a biorefinery concept. In this regard, some of these animal by-products exhibit a significant content of fatty acids that could be efficiently converted into bioplastics such as polyhydroxyalkanoates (PHAs) by adequately performing substrate screening with producing bacterial strains and applying affordable pretreatments. One of the main challenges also relies on the difficulty to emulsify these fat-rich substrates within culture broth and make the fatty acids accessible for the producing bacteria. In this work, the potential of two fat-rich animal by-products, grease trap waste (GTW) and tallow-based jelly (TBJ), as inexpensive carbon sources for microbial growth and PHA production was evaluated for the first time. Upon substrate screening, using different pseudomonadal strains (P. resinovorans, P. putida GPo1, P. putida KT2440) and pretreatment conditions (autoclave-based, thermally-treated or saponified substrates), the highest growth and mcl-PHA production performance was obtained for P. resinovorans, thus producing up to 47% w/w mcl-PHA simply using hygienized GTW. The novel bioprocess described in this study was successfully scaled up to 5 and 15 L, resulting in CDW concentrations of 5.9-12.8 g L-1, mcl-PHA contents of 33-62% w/w and PHA yields of 0.1-0.4 gPHA g-1fatty acids, greatly depending on the substrate dosing strategy used and depending on culture conditions. Moreover, process robustness was confirmed along Test Series by the roughly stable monomeric composition of the biopolymer produced, mainly formed by 3-hydroxyoctanoate and 3-hydroxydecanoate. The research here conducted is crucial for the cost-effectiveness of mcl-PHA production along this new slaughterhouse waste-based biorefinery concept.
Collapse
Affiliation(s)
- Miguel G Acedos
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Moreno-Cid
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Fuensanta Verdú
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - José Antonio González
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Sara Tena
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Carlos López
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Adamus G, Domiński A, Kowalczuk M, Kurcok P, Radecka I. From Anionic Ring-Opening Polymerization of β-Butyrolactone to Biodegradable Poly(hydroxyalkanoate)s: Our Contributions in This Field. Polymers (Basel) 2021; 13:4365. [PMID: 34960919 PMCID: PMC8707542 DOI: 10.3390/polym13244365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
The feasibility of synthesis of functionalized poly(3-hydroxybutanoic acid) analogue and its copolymers via ring-opening polymerization of β-butyrolactone mediated by activated anionic initiators is presented. Using these new synthetic approaches, polyesters with a defined chemical structure of the end groups, as well as block, graft, and random copolymers, have been obtained and characterized by modern instrumental techniques, with special emphasis on ESI-MS. The relationship between the structure and properties of the prepared polymeric materials is also discussed.
Collapse
Affiliation(s)
- Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-800 Zabrze, Poland; (G.A.); (A.D.)
| | - Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-800 Zabrze, Poland; (G.A.); (A.D.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-800 Zabrze, Poland; (G.A.); (A.D.)
- Wolverhampton School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-800 Zabrze, Poland; (G.A.); (A.D.)
| | - Iza Radecka
- Wolverhampton School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
12
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
13
|
Mahato RP, Kumar S, Singh P. Optimization of Growth Conditions to Produce Sustainable Polyhydroxyalkanoate Bioplastic by Pseudomonas aeruginosa EO1. Front Microbiol 2021; 12:711588. [PMID: 34721317 PMCID: PMC8555948 DOI: 10.3389/fmicb.2021.711588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellularly synthesized by bacteria as carbonosomes that exhibit biodegradable thermoplastics and elastomeric properties. The use of cheaper edible oils as a source of carbon assists in the reduction of the production cost of such biopolyesters. In this work, different edible oils, such as groundnut oil (GNO), mustard oil, sesame oil, and soybean oil (SBO) were used to check their effect on PHA production from Pseudomonas aeruginosa EO1 (MK049902). Pseudomonas aeruginosa EO1 was used in a two-stage production system. In the first stage, bacterial growth was favored and, in the second, PHA was synthesized. GNO was found as the best carbon source for PHA production. The use of 2% (v/v) GNO, rich in saturated fatty acids, allowed PHA content of 58.41% and dry cell weight (DCW) of 10.5g/L at pH7 and temperature 35°C for 72h. Groundnut has a high potential for oil production and for the diversification of co-products with some potential of value aggregation. Such a perennial and sustainable species will almost certainly meet the criteria for becoming a significant commercial oilseed crop. Fourier transform infrared spectroscopy (FTIR) spectra showed strong characteristic bands at 1,282, 1,725, 2,935, 2,999, and 3,137cm−1 for the PHA polymer. Gas chromatography-mass spectrometry (GC-MS) detects the presence of PHA copolymers.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, India
| | - Saurabh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, India
| |
Collapse
|
14
|
Kondratyev V, Goryacheva D, Nepomnyaschiy A, Zubkov I, Shishlyannikov S, Sorokoumov P. Quantitative analysis of medium-chain polyhydroxyalkanoates in bacterial cells via gas chromatography-mass spectrometry: classical method revision and optimization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1992581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vadim Kondratyev
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Darya Goryacheva
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Anatoliy Nepomnyaschiy
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Ilya Zubkov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Sergey Shishlyannikov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Pavel Sorokoumov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| |
Collapse
|
15
|
Li D, Ma X, Yin F, Qiu Y, Yan X. Creating biotransformation of volatile fatty acids and octanoate as co-substrate to high yield medium-chain-length polyhydroxyalkanoate. BIORESOURCE TECHNOLOGY 2021; 331:125031. [PMID: 33798859 DOI: 10.1016/j.biortech.2021.125031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Using mixed microbial consortium (MMC) to accumulate polyhydroxyalkanoate (PHA) is an effective strategy to solve high production cost and reduce the amount of excess sludge. In this study, a process for the production of short-chain-length and medium-chain-length PHA using volatile fatty acids (VFAs) from pretreated wood hydrolysate synergistic with octanoate as co-substrate was proposed. The effects of co-substrate ratios on PHA accumulation ability and physical properties were investigated. The incorporation of co-substrate accelerated the time of PHA and 3-hydroxyoctanoate reaching the maximum production (1834 and 280 mg COD/L). The highest PHA content was 53.0% (w/w), which was equivalent to that reported previously. The biopolymer films possessed high tensile strength, Young's modulus, and could be used in the field of water vapor barrier requirements. The accumulation strategy applied for converting fermentation products VFAs and octanoate co-substrate into high value and yield PHA could potentially demonstrate the valuable for low-cost large-scale production.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Fen Yin
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| |
Collapse
|
16
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
17
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
18
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Dutt Tripathi A, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Khosravi Darani K. Production of polyhydroxyalkanoates using dairy processing waste - A review. BIORESOURCE TECHNOLOGY 2021; 326:124735. [PMID: 33508643 DOI: 10.1016/j.biortech.2021.124735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.
Collapse
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Fataneh Hashempour-Baltork
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran
| | - Ladan Rashidi
- Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Kianoush Khosravi Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
20
|
Degli Esposti M, Morselli D, Fava F, Bertin L, Cavani F, Viaggi D, Fabbri P. The role of biotechnology in the transition from plastics to bioplastics: an opportunity to reconnect global growth with sustainability. FEBS Open Bio 2021; 11:967-983. [PMID: 33595898 PMCID: PMC8016133 DOI: 10.1002/2211-5463.13119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
Building new value chains, through the valorization of biomass components for the development of innovative bio-based products (BBPs) aimed at specific market sectors, will accelerate the transition from traditional production technologies to the concept of biorefineries. Recent studies aimed at mapping the most relevant innovations undergoing in the field of BBPs (Fabbri et al. 2019, Final Report of the Task 3 BIOSPRI Tender Study on Support to R&I Policy in the Area of Bio-based Products and Services, delivered to the European Commission (DG RTD)), clearly showed the dominant position played by the plastics sector, in which new materials and innovative technical solutions based on renewable resources, concretely contribute to the achievement of relevant global sustainability goals. New sustainable solutions for the plastic sector, either bio-based or bio-based and biodegradable, have been intensely investigated in recent years. The global bioplastics and biopolymers market size is expected to grow from USD 10.5 billion in 2020 to USD 27.9 billion by 2025 (Markets and Markets, 2020, Bioplastics & Biopolymers Market by Type (Non-Biodegradable/Bio-Based, Biodegradable), End-Use Industry (Packaging, Consumer Goods, Automotive & Transportation, Textiles, Agriculture & Horticulture), Region - Global Forecast to 2025), and this high growth is driven primarily by the growth of the global packaging end-use industry. Such relevant opportunities are the outcomes of intensive scientific and technological research devoted to the development of new materials with selected technical features, which can represent feasible substitutes for the fossil-based plastic materials currently used in the packaging sectors and other main fields. This article offers a map of the latest developments connected to the plastic sector, achieved through the application of biotechnological routes for the preparation of completely new polymeric structures, or drop-in substitutes derived from renewable resources, and it describes the specific role played by biotechnology in promoting and making this transition faster.
Collapse
Affiliation(s)
- Micaela Degli Esposti
- Department of Civil, ChemicalEnvironmental and Materials EngineeringAlma Mater Studiorum Università di BolognaItaly
- Bologna UnitNational Interuniversity Consortium for Materials Science and Technology (INSTM)FirenzeItaly
| | - Davide Morselli
- Department of Civil, ChemicalEnvironmental and Materials EngineeringAlma Mater Studiorum Università di BolognaItaly
- Bologna UnitNational Interuniversity Consortium for Materials Science and Technology (INSTM)FirenzeItaly
| | - Fabio Fava
- Department of Civil, ChemicalEnvironmental and Materials EngineeringAlma Mater Studiorum Università di BolognaItaly
| | - Lorenzo Bertin
- Department of Civil, ChemicalEnvironmental and Materials EngineeringAlma Mater Studiorum Università di BolognaItaly
| | - Fabrizio Cavani
- Bologna UnitNational Interuniversity Consortium for Materials Science and Technology (INSTM)FirenzeItaly
- Department of Industrial Chemistry ‘Toso Montanari’Alma Mater StudiorumUniversità di BolognaItaly
| | - Davide Viaggi
- Department of Agricultural and Food SciencesAlma Mater Studiorum Università di BolognaItaly
| | - Paola Fabbri
- Department of Civil, ChemicalEnvironmental and Materials EngineeringAlma Mater Studiorum Università di BolognaItaly
- Bologna UnitNational Interuniversity Consortium for Materials Science and Technology (INSTM)FirenzeItaly
| |
Collapse
|
21
|
Silva JB, Pereira JR, Marreiros BC, Reis MA, Freitas F. Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Pereira JR, Araújo D, Freitas P, Marques AC, Alves VD, Sevrin C, Grandfils C, Fortunato E, Reis MAM, Freitas F. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. Int J Biol Macromol 2020; 167:85-92. [PMID: 33249156 DOI: 10.1016/j.ijbiomac.2020.11.162] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Pseudomonas chlororaphis subsp. aurantiaca DSM 19603 was cultivated on apple pulp, a glucose- and fructose-rich waste generated during juice production, to produce medium-chain length polyhydroxyalkanoates. A cell dry mass of 8.74 ± 0.20 g/L, with a polymer content of 49.25 ± 4.08% were attained. The produced biopolymer was composed of 42.7 ± 0.1 mol% 3-hydroxydecanoate, 17.9 ± 1.0 mol% 3-hydroxyoctanoate, 14.5 ± 1.1 mol% 3-hydroxybutyrate, 11.1 ± 0.6 mol% 3-hydroxytetradecanoate, 10.1 ± 0.5 mol% 3-hydroxydodecanoate and 3.7 ± 0.2 mol% 3-hydroxyhexanoate. It presented low glass transition and melting temperatures (-40.9 ± 0.7 °C and 42.0 ± 0.1 °C, respectively), and a degradation temperature of 300.0 ± 0.1 °C, coupled to a low crystallinity index (12.7 ± 2.7%), a molecular weight (Mw) of 1.34 × 105 ± 0.18 × 105 Da and a polydispersity index of 2.70 ± 0.03. The biopolymer's films were dense and had a smooth surface, as demonstrated by Scanning Electron Microscopy. They presented a tension at break of 5.21 ± 1.09 MPa, together with an elongation of 400.5 ± 55.8% and an associated Young modulus of 4.86 ± 1.49 MPa, under tensile tests. These attractive filming properties of this biopolymer could potentially be valorised in several areas such as the fine chemicals industry, biomedicine, pharmaceuticals, or food packaging.
Collapse
Affiliation(s)
- João R Pereira
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana Araújo
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Patrícia Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana C Marques
- i3N
- CENIMAT, Department of Materials Science, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Caparica, Portugal
| | - Vítor D Alves
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia/Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Sevrin
- CEIB - Interfaculty Research Centre of Biomaterials, University of Liège, Liège, Belgium
| | - Christian Grandfils
- CEIB - Interfaculty Research Centre of Biomaterials, University of Liège, Liège, Belgium
| | - Elvira Fortunato
- i3N
- CENIMAT, Department of Materials Science, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
23
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|
24
|
Revalorization of adsorbed residual oil in spent bleaching clay as a sole carbon source for polyhydroxyalkanoate (PHA) accumulation in Cupriavidus necator Re2058/pCB113. Polym J 2020. [DOI: 10.1038/s41428-020-00418-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Sanhueza C, Diaz-Rodriguez P, Villegas P, González Á, Seeger M, Suárez-González J, Concheiro A, Alvarez-Lorenzo C, Acevedo F. Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. Int J Biol Macromol 2020; 152:11-20. [DOI: 10.1016/j.ijbiomac.2020.02.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
|
26
|
Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Malte Winnacker
- WACKER‐Chair of Macromolecular ChemistryTechnical University of Munich Lichtenbergstraße 4 85747 Garching bei München Germany
- Catalysis Research Center Ernst‐Otto‐Fischer Straße 1 85748 Garching bei München Germany
| |
Collapse
|
27
|
Cerrone F, Radivojevic J, Nikodinovic-Runic J, Walsh M, Kenny ST, Babu R, O’Connor KE. Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters. Colloids Surf B Biointerfaces 2019; 182:110333. [DOI: 10.1016/j.colsurfb.2019.06.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
|
28
|
Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ. Production of bioplastic through food waste valorization. ENVIRONMENT INTERNATIONAL 2019; 127:625-644. [PMID: 30991219 DOI: 10.1016/j.envint.2019.03.076] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The tremendous amount of food waste from diverse sources is an environmental burden if disposed of inappropriately. Thus, implementation of a biorefinery platform for food waste is an ideal option to pursue (e.g., production of value-added products while reducing the volume of waste). The adoption of such a process is expected to reduce the production cost of biodegradable plastics (e.g., compared to conventional routes of production using overpriced pure substrates (e.g., glucose)). This review focuses on current technologies for the production of polyhydroxyalkanoates (PHA) from food waste. Technical details were also described to offer clear insights into diverse pretreatments for preparation of raw materials for the actual production of bioplastic (from food wastes). In this respect, particular attention was paid to fermentation technologies based on pure and mixed cultures. A clear description on the chemical modification of starch, cellulose, chitin, and caprolactone is also provided with a number of case studies (covering PHA-based products) along with a discussion on the prospects of food waste valorization approaches and their economic/technical viability.
Collapse
Affiliation(s)
- Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Pallabi Samadar
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Yi Yang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Pusan 48513, Republic of Korea
| |
Collapse
|
29
|
Rodrigues PR, Nunes JMN, Lordelo LN, Druzian JI. ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20170267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Raza ZA, Tariq MR, Majeed MI, Banat IM. Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 2019; 42:901-919. [PMID: 30810810 DOI: 10.1007/s00449-019-02093-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/17/2019] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs producers. They store PHAs as cellular inclusions to use as an energy source backup. They can be produced in shake flasks and in bioreactors under defined fermentation and physiological culture conditions using suitable nutrients. Their production at bioreactor scale depends on various factors such as carbon source, nutrients supply, temperature, dissolved oxygen level, pH, and production modes. Once produced, PHAs find diverse applications in multiple fields of science and technology particularly in the medical sector. The present review covers some recent developments in sustainable bioreactor scale production of PHAs and identifies some areas in which future research in this field might be focused.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - Muhammad Rizwan Tariq
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.,Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
31
|
de Jesus Assis D, Santos J, de Jesus CS, de Souza CO, Costa SS, Miranda AL, da Silva JR, Oliveira MBPP, Druzian JI. Valorization of crude glycerol based on biological processes for accumulation of lipophilic compounds. Int J Biol Macromol 2019; 129:728-736. [PMID: 30772411 DOI: 10.1016/j.ijbiomac.2019.02.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
Bacteria that are capable of accumulating lipids in their cells as storage compounds can also produce polyhydroxyalkanoates of high technological value, depending on the specific culture conditions. The objective of this study was to utilize crude glycerol from biodiesel (CGB) as a substrate, which is a major byproduct from biodiesel production, to produce lipophilic compounds. Bacillus megaterium INCQS 425 was cultivated and evaluated for the production of lipophilic compounds and the properties of these compounds were investigated. Cultivation of the bacteria in a medium with a C:N ratio of 0.60:1 favored the accumulation of lipids by (17.5%) comprising mainly palmitic acid (13.08%), palmitoleic (39.48%), and especially oleic acid (37.02%), which imparts good characteristics to biodiesel. Meanwhile, cultivation of the bacteria in a medium with a C:N ratio of 4:1 favored the accumulation of polyhydroxyalkanoates (PHA) (3.31gL-1) mainly comprising medium and long chain PHA. Low crystallinity (<30%) and excellent thermal properties make them suitable for processes that demand high temperatures, such as extrusion. The lipids produced in the present study had satisfactory oxidative stability for the production of quality biodiesel. The polyhydroxyalkanoates produced in the study are of low cost and have promising thermal properties that justify its technological potential, thereby configuring highly competitive bioproducts.
Collapse
Affiliation(s)
- Denilson de Jesus Assis
- Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil.
| | - Joana Santos
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristiane Santos de Jesus
- Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | - Carolina Oliveira de Souza
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Samantha Serra Costa
- Institute of Health Sciences, RENORBIO, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Andréa Lobo Miranda
- Institute of Health Sciences, RENORBIO, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Jaff Ribeiro da Silva
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Janice Izabel Druzian
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
32
|
Pereira JR, Araújo D, Marques AC, Neves LA, Grandfils C, Sevrin C, Alves VD, Fortunato E, Reis MA, Freitas F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int J Biol Macromol 2019; 122:1144-1151. [DOI: 10.1016/j.ijbiomac.2018.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
33
|
Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Chen Z, Zhang C, Shen L, Li H, Peng Y, Wang H, He N, Li Q, Wang Y. Synthesis of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Blends from Activated Sludge by Manipulating Octanoic Acid and Nonanoic Acid as Carbon Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11043-11054. [PMID: 30265532 DOI: 10.1021/acs.jafc.8b04001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of octanoic acid/nonanoic acid and acclimation time on the synthesis of short-chain-length and medium-chain-length PHA blends from activated sludge were investigated. An increased concentration (847-1366 mg/L) of PHAs resulted from 4-month acclimation compared with the concentration derived from 2-month acclimation (450-1126 mg/L). The content of octanoic acid had a positive linear relationship with the content of even-numbered carbon monomers among the PHAs. The blending products were identified mainly with scl-PHAs during the 2-month acclimation period and were thereafter dominated by mcl-PHAs until 4 months of acclimation. Thermal properties analysis demonstrated that the products derived from 4-month acclimation were a mixture of scl-PHAs and mcl-PHAs rather than a copolymer of scl-PHAs and mcl-PHAs. High-throughput sequencing results indicated that Pseudofulvimonas, Paracoccus, and Blastocatella were the dominant genera that might be responsible for scl-PHAs production during the 2-month acclimation period, whereas Comamonas and Pseudomonas that were responsible for mcl-PHAs production then became the dominant genera after 4-months acclimation.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
- Key Laboratory of Measurement and Control System for Coastal Environment , Fuqing Branch of Fujian Normal University , Fuqing 350300 , People's Republic of China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Heng Li
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
| | - Yajuan Peng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- College of Food and Biological Engineering , Jimei University , Xiamen 361021 , People's Republic of China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| |
Collapse
|
35
|
Biomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of Polyhydroxyalkanoates. Polymers (Basel) 2018; 10:polym10070731. [PMID: 30960656 PMCID: PMC6403533 DOI: 10.3390/polym10070731] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
An economically viable method to extract polyhydroxyalkanoates (PHAs) from cells is desirable for this biodegradable polymer of potential biomedical applications. In this work, two non-chlorinated solvents, cyclohexanone and γ-butyrolactone, were examined for extracting PHA produced by the bacterial strain Cupriavidus necator H16 cultivated on vegetable oil as a sole carbon source. The PHA produced was determined as a poly(3-hydroxybutyrate) (PHB) homopolyester. The extraction kinetics of the two solvents was determined using gel permeation chromatography (GPC). When cyclohexanone was used as the extraction solvent at 120 °C in 3 min, 95% of the PHB was recovered from the cells with a similar purity to that extracted using chloroform. With a decrease in temperature, the recovery yield decreased. At the same temperatures, the recovery yield of γ-butyrolactone was significantly lower. The effect of the two solvents on the quality of the extracted PHB was also examined using GPC and elemental analysis. The molar mass and dispersity of the obtained polymer were similar to that extracted using chloroform, while the nitrogen content of the PHB extracted using the two new solvents was slightly higher. In a nutshell, cyclohexanone in particular was identified as an expedient candidate to efficiently drive novel, sustainable PHA extraction processes.
Collapse
|
36
|
|
37
|
Anis SNS, Mohd Annuar MS, Simarani K. Microbial biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates as potential route to platform chemicals. Biotechnol Appl Biochem 2018; 65:784-796. [PMID: 29806235 DOI: 10.1002/bab.1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/23/2018] [Indexed: 01/15/2023]
Abstract
Biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid were studied. Highest mcl-PHA fraction (>50 % of total biomass) and cell concentration (8 g L-1 ) were obtained at carbon-to-nitrogen (C/N) ratio 20, starting cell concentration 1 g L-1 , and 48 H fermentation. The mcl-PHA comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanote (C8 ), 3-hydroxydecanoate (C10 ), and 3-hydroxydodecanoate (C12 ) monomers. In vivo action was studied in a mineral liquid medium without carbon source, and in different buffer solutions with varied pH, molarity, ionic strength, and temperature. The monomer liberation rate reflected the mol percentage distribution of the initial polymer subunit composition. Rate and percentage of in vivo depolymerization were highest in 0.2 M Tris-HCl buffer (pH 9, strength = 0.2 M, 30 °C) at 0.21 g L-1 H-1 and 98.6 ± 1.3 wt%, respectively. There is a congruity vis-à-vis to specific buffer type, molarity, pH, ionic strength, and temperature values for superior in vivo depolymerization activities. Direct products from in vivo depolymerization matched the individual monomeric composition of native mcl-PHA. It points to exo-type reaction for the in vivo process, and potential biological route to chiral molecules.
Collapse
Affiliation(s)
- Siti Nor Syairah Anis
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Suffian Mohd Annuar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.
“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.
In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.
The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.
Collapse
|
39
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Chang CK, Wang HMD, Lan JCW. Investigation and Characterization of Plasma-Treated Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an In Vitro Cellular Study of Mouse Adipose-Derived Stem Cells. Polymers (Basel) 2018; 10:E355. [PMID: 30966390 PMCID: PMC6415170 DOI: 10.3390/polym10040355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a type of thermoprocessable and biodegradable polyester, which represent a potential sustainable replacement for fossil-fuel synthetic polymers, such as polypropylene and polyethylene. In recent years, copolymers of PHAs, i.e., poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), have received attention for medical and packaging industrial applications, due to their biodegradable, toxic-free, and biocompatible nature. This study investigated and characterized plasma-treated PHB and PHBV films fermented with Ralstonia eutropha H16. The X-ray photoelectron spectroscopy (XPS) and water contact angle analyses on the plasma-treated PHB and PHBV film surfaces revealed an increase in the number of functional groups and contact angle degree, respectively, compared to that of the untreated films. In addition, an in vitro experiment of mouse adipose-derived stem cells showed better growth and adhesion of the cells on the surface of plasma-treated PHBV film. Overall, these results reveal that plasma surface modifications are useful in biomaterial development.
Collapse
Affiliation(s)
- Chih-Kai Chang
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung 402, Taiwan.
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
41
|
Marszałek-Harych A, Jędrzkiewicz D, Ejfler J. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cell Mol Biol Lett 2017; 22:28. [PMID: 29225630 PMCID: PMC5715637 DOI: 10.1186/s11658-017-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
The development and integration of bio- and chemocatalytic processes to convert renewable or biomass feedstocks into polymers is a vibrant field of research with enormous potential for environmental protection and the mitigation of global warming. Here, we review the biotechnological and chemical synthetic strategies for producing platform monomers from bio-based sources and transforming them into eco-polymers. We also discuss their advanced bio-application using the example of polylactide (PLA), the most valuable green polymer on the market.
Collapse
Affiliation(s)
| | - Dawid Jędrzkiewicz
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jolanta Ejfler
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
42
|
Sharma PK, Munir RI, de Kievit T, Levin DB. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 2017; 63:1009-1024. [DOI: 10.1139/cjm-2017-0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas chlororaphis PA23 was isolated from soybean roots as a plant-growth-promoting rhizobacterium. This strain secretes a wide range of compounds, including the antibiotics phenazine-1-carboxylic acid (PCA), pyrrolnitrin, and 2-hydroxyphenazine. We have determined that P. chlororaphis PA23 can synthesize medium-chain-length polyhydroxyalkanoate (PHA) polymers utilizing free fatty acids, such as octanoic acid and nonanoic acid, as well as vegetable oils as sole carbon sources. Genome analysis identified a pha operon containing 7 genes in P. chlororaphis PA23 that were highly conserved. A nonpigmented strain that does not synthesize PCA, P. chlororaphis PA23-63, was also studied for PHA production. Pseudomonas chlororaphis PA23-63 produced 2.42–5.14 g/L cell biomass and accumulated PHAs from 11.7% to 32.5% cdm when cultured with octanoic acid, nonanoic acid, fresh canola oil, waste canola fryer oil, or biodiesel-derived waste free fatty acids under batch culture conditions. The subunit composition of the PHAs produced from fresh canola oil, waste canola fryer oil, or biodiesel-derived free fatty acids did not differ significantly. Addition of octanoic acid and nonanoic acid to canola oil cultures increased PHA production, but addition of glucose did not. PHA production in the phz mutant, P. chlororaphis PA23-63, was greater than that in the parent strain.
Collapse
Affiliation(s)
- Parveen K. Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat I. Munir
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
43
|
Basnett P, Lukasiewicz B, Marcello E, Gura HK, Knowles JC, Roy I. Production of a novel medium chain length poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microb Biotechnol 2017; 10:1384-1399. [PMID: 28905518 PMCID: PMC5658593 DOI: 10.1111/1751-7915.12782] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/18/2017] [Accepted: 06/24/2017] [Indexed: 01/10/2023] Open
Abstract
This study demonstrated the utilization of unprocessed biodiesel waste as a carbon feedstock for Pseudomonas mendocinaCH50, for the production of PHAs. A PHA yield of 39.5% CDM was obtained using 5% (v/v) biodiesel waste substrate. Chemical analysis confirmed that the polymer produced was poly(3‐hydroxyhexanoate‐co‐3‐hydroxyoctanoate‐co‐3‐hydroxydecanoate‐co‐3‐hydroxydodecanoate) or P(3HHx‐3HO‐3HD‐3HDD). P(3HHx‐3HO‐3HD‐3HDD) was further characterized and evaluated for its use as a tissue engineering scaffold (TES). This study demonstrated that P(3HHx‐3HO‐3HD‐3HDD) was biocompatible with the C2C12 (myoblast) cell line. In fact, the % cell proliferation of C2C12 on the P(3HHx‐3HO‐3HD‐3HDD) scaffold was 72% higher than the standard tissue culture plastic confirming that this novel PHA was indeed a promising new material for soft tissue engineering.
Collapse
Affiliation(s)
- Pooja Basnett
- Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Elena Marcello
- Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Jonathan C Knowles
- Eastman Dental Institute, University College London, London, UK.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Ipsita Roy
- Faculty of Science and Technology, University of Westminster, London, UK
| |
Collapse
|
44
|
Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, Ismail IMI, Koller M. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:73-85. [PMID: 28595804 DOI: 10.1016/j.wasman.2017.05.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/20/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years.
Collapse
Affiliation(s)
- Khurram Shahzad
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, P.O Box: 80216, Jeddah 21589, Saudi Arabia.
| | - Michael Narodoslawsky
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse13/3, 8010 Graz, Austria
| | - Muhammad Sagir
- Chemical Engineering Department, University of Gujrat, Gujrat, Pakistan
| | - Nadeem Ali
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, P.O Box: 80216, Jeddah 21589, Saudi Arabia
| | - Shahid Ali
- Department of Energy Technology, Aalborg University, Pontoppidanstræde 101, Building: 67, 9220 Aalborg Ø, Denmark
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, P.O Box: 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan
| | - Iqbal Mohammad Ibrahim Ismail
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, P.O Box: 80216, Jeddah 21589, Saudi Arabia
| | - Martin Koller
- Institute of Chemistry, University of Graz, Heinrichstrasse 28/III, 8010 Graz, Austria.
| |
Collapse
|
45
|
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37:24-38. [DOI: 10.1016/j.nbt.2016.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
46
|
Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 2017; 4:bioengineering4020036. [PMID: 28952515 PMCID: PMC5590455 DOI: 10.3390/bioengineering4020036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain’s wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L·h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L·h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Collapse
|
47
|
Wang Y, Chung A, Chen GQ. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila. Adv Healthc Mater 2017; 6. [PMID: 28128887 DOI: 10.1002/adhm.201601017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 11/11/2022]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of Tm , Tg , and Td5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Department of Biological Engineering; School of Life Science; Beijing Institute of Technology; Beijing 100081 China
| | - Ahleum Chung
- School of Life Science; Tsinghua University; Beijing 100084 China
| | - Guo-Qiang Chen
- School of Life Science; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Center for Nano and Micro Mechanics; Tsinghua University; Beijing 100084 China
- MOE Key Lab for Industrial Biocatalysis; Tsinghua University; Beijing 100084 China
| |
Collapse
|
48
|
Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech 2016; 6:142. [PMID: 28330214 PMCID: PMC4919136 DOI: 10.1007/s13205-016-0452-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/03/2022] Open
Abstract
The purpose of present study was to optimize polyhydroxyalkanotes (PHAs) production in a gamma ray mutant strain of Pseudomonas aeruginosa grown on soybean oil in minimal salts media under shake flask conditions. The production kinetics was studied by sampling on daily basis for 6 days to investigate the best conditions for PHAs production like biomass estimation, carbon source utilization and PHAs yield. The PHA accumulation was observed up to 50.27 % (w/w) of cell dry mass. The Pseudomonas species synthesized medium chain length PHA copolyester as per identified by LCMS and confirmed by FTIR spectroscopy. The ESI-MS analysis exhibited the major polyhydroxybutyrate with a molecular mass of m/z 448.5.
Collapse
|
49
|
Michalak M, Kurcok P, Hakkarainen M. Polyhydroxyalkanoate-based drug delivery systems. POLYM INT 2016. [DOI: 10.1002/pi.5282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michał Michalak
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M Curie-Skłodowskiej 34 41-819 Zabrze Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M Curie-Skłodowskiej 34 41-819 Zabrze Poland
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
50
|
Ansari NF, Annuar MSM, Murphy BP. A porous medium-chain-length poly(3-hydroxyalkanoates)/hydroxyapatite composite as scaffold for bone tissue engineering. Eng Life Sci 2016; 17:420-429. [PMID: 32624787 DOI: 10.1002/elsc.201600084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are hydrophobic biopolymers with huge potential for biomedical applications due to their biocompatibility, excellent mechanical properties and biodegradability. A porous composite scaffold made of medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) and hydroxyapatite (HA) was fabricated using particulate leaching technique and NaCl as a porogen. Different percentages of HA loading was investigated that would support the growth of osteoblast cells. Ultrasonic irradiation was applied to facilitate the dispersion of HA particles into the mcl-PHA matrix. The different P(3HO-co-3HHX)/HA composites were investigated using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA). The scaffolds were found to be highly porous with interconnecting pore structures and the HA particles were homogeneously dispersed in the polymer matrix. The scaffolds biocompatibility and osteoconductivity were also assessed following the proliferation and differentiation of osteoblast cells on the scaffolds. From the results, it is clear that scaffolds made from P(3HO-co-3HHX)/HA composites are viable candidate materials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nor Faezah Ansari
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia.,Department of Biotechnology Kuliyyah of Sciences International Islamic University of Malaysia Kuantan Pahang Malaysia
| | - M Suffian M Annuar
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR) University of Malaya Kuala Lumpur Malaysia
| | - Belinda Pingguan Murphy
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|