1
|
Pal S, Gavhane UA, S K A. Biocompatible PVAc- g-PLLA Acrylate Polymers for DLP 3D Printing with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62594-62605. [PMID: 39472155 DOI: 10.1021/acsami.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The technological advancement of Additive Manufacturing has enabled the fabrication of various customized artifacts and devices, which has prompted a huge demand for multimaterials that can cater to stringent mechanical, chemical, and other functional property requirements. Photocurable formulations that are widely used for Digital Light Processing (DLP)/Stereolithography (SLA) 3D printing applications are now expected to meet these new challenges of hard and soft or stretchable structural requirements in addition to good resolution in multiple scales. Here we present a biocompatible photocurable resin formulation with tunable mechanical properties that can produce hard or stretchable elastomeric 3D printed materials in a graded manner. Acrylate poly(lactic acid) (PLA) grafted polyvinyl acetate (PVAc) polymer was mixed with hydroxyl ethyl methacrylate (HEMA) and hydroxyl ethyl acrylate (HEA) as reactive diluents (50-70 wt %) in various compositions to form a series of photocurable resin formulations. Depending on the nature of the reactive diluent (HEMA or HEA) and their weight percentage, the mechanical properties of the 3D printed parts could be fine-tuned from hard (Tensile strength 20.6 ± 2 MPa, elongation 2 ± 1%) to soft (Tensile strength 1.1 ± 0.2 MPa, elongation 62 ± 8%) materials. The printed materials displayed remarkable dye absorption (95%), showing stimuli-responsive behavior for dye release (with respect to both pH and enzyme), while also demonstrating high cell viability (>90%) for mouse embryonic (WT-MEF) cells and degradability in PBS solution. These biobased 3D printing resins have the potential for a variety of applications, including tissue engineering, soft robotics, dye absorption, and elastomeric actuators.
Collapse
Affiliation(s)
- Shibam Pal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Asha S K
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
3
|
Jiménez-Arroyo C, Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. Simulated gastrointestinal digestion of polylactic acid (PLA) biodegradable microplastics and their interaction with the gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166003. [PMID: 37549707 DOI: 10.1016/j.scitotenv.2023.166003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The accumulation of microplastics (MPs) in the environment as well as their presence in foods and humans highlight the urgent need for studies on the effects of these particles on humans. Polylactic acid (PLA) is the most widely used bioplastic in the food industry and medical field. Despite its biodegradability, biocompatibility, and "Generally Recognized As Safe" (GRAS) status, recent animal model studies have shown that PLA MPs can alter the intestinal microbiota; however, to date, no studies have been reported on the possible gut and health consequences of its intake by humans. This work simulates the ingestion of a realistic daily amount of PLA MPs and their pass through the gastrointestinal tract by combining the INFOGEST method and the gastrointestinal simgi® model to evaluate possible effects on the human colonic microbiota composition (16S rRNA gene sequencing analysis) and metabolic functionality (lactic acid and short-chain fatty acids (SCFA) production). Although PLA MPs did not clearly alter the microbial community homeostasis, increased Bifidobacterium levels tended to increase in presence of millimetric PLA particles. Furthermore, shifts detected at the functional level suggest an alteration of microbial metabolism, and a possible biotransformation of PLA by the human microbial colonic community. Raman spectroscopy and field emission scanning electron microscopy (FESEM) characterization revealed morphological changes on the PLA MPs after the gastric phase of the digestion, and the adhesion of organic matter as well as a microbial biofilm, with surface biodegradation, after the intestinal and colonic phases. With this evidence and the emerging use of bioplastics, understanding their impact on humans and potential biodegradation through gastrointestinal digestion and the human microbiota merits critical investigation.
Collapse
Affiliation(s)
- C Jiménez-Arroyo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - A Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - N Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - J J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/ Kelsen, 28049 Madrid, Spain; Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - V Alcolea-Rodriguez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - R Portela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - M A Bañares
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - J F Fernández
- Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - M V Moreno-Arribas
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Shi K, Liu G, Sun H, Weng Y. Polylactic Acid/Lignin Composites: A Review. Polymers (Basel) 2023; 15:2807. [PMID: 37447453 DOI: 10.3390/polym15132807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
With the gradual depletion of petroleum resources and the increasing global awareness of environmental protection, biodegradable plastics are receiving more and more attention as a green substitute for traditional petroleum-based plastics. Poly (lactic acid) is considered to be the most promising biodegradable material because of its excellent biodegradability, biocompatibility, and good processability. However, the brittleness and high cost limit its application in more fields. Lignin, as the second largest renewable biopolymer in nature after cellulose, is not only rich in reserves and low in cost, but it also has an excellent UV barrier, antioxidant activity, and rigidity. The molecular structure of lignin contains a large number of functional groups, which are easy to endow with new functions by chemical modification. Currently, lignin is mostly treated as waste in industry, and the value-added utilization is insufficient. The combination of lignin and poly (lactic acid) can on the one hand solve the problems of the high cost of PLA and less efficient utilization of lignin; on the other hand, the utilization of lignocellulosic biomass in compounding with biodegradable synthetic polymers is expected to afford high-performance wholly green polymer composites. This mini-review summarizes the latest research achievements of poly (lactic acid)/lignin composites. Emphasis was put on the influence of lignin on the mechanical properties of its composite with poly (lactic acid), as well as the compatibility of the two components. Future research on these green composites is also prospected.
Collapse
Affiliation(s)
- Kang Shi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Guoshuai Liu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Sánchez-Barba LF, Tejeda J, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. One-pot terpolymerization of CHO, CO 2 and L-lactide using chloride indium catalysts. Dalton Trans 2023; 52:3482-3492. [PMID: 36843480 DOI: 10.1039/d3dt00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Ring-opening copolymerization reactions of epoxides, carbon dioxide and cyclic esters to produce copolymers is a promising strategy to prepare CO2-based polymeric materials. In this contribution, bimetallic chloride indium complexes have been developed as catalysts for the copolymerization processes of cyclohexene oxide, carbon dioxide and L-lactide under mild reaction conditions. The catalysts displayed good catalytic activity and excellent selectivity towards the preparation of poly(cyclohexene carbonate) (PCHC) at one bar CO2 pressure in the absence of a co-catalyst. Additionally, polyester-polycarbonate copolymers poly(lactide-co-cyclohexene carbonate) (PLA-co-PCHC) were obtained via an one-pot one-step route without the use of a co-catalyst. The degree of incorporation of carbon dioxide can be easily modulated by changing the CO2 pressure and the monomer feed, resulting in copolymers with different thermal properties.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Juan Tejeda
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - José A Castro-Osma
- Universidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| |
Collapse
|
6
|
Yu CF, Rwei SP, Shu YC. One-pot synthesis of liquid photocrosslinkable poly(l-lactide) with terminal triacrylate. RSC Adv 2023; 13:2331-2338. [PMID: 36741150 PMCID: PMC9841444 DOI: 10.1039/d2ra05937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023] Open
Abstract
We synthesized a poly(l-lactide)-pentaerythritol triacrylate (PETA) polymer modified with acrylic trifunctional groups using a one-pot method based on ring-opening polymerization of l-lactide and PETA. We calculated the molecular weight and structure of PLA-PETA using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) (1H, 13C, heteronuclear multiple bond correlation [HMBC]) spectroscopy. Photocrosslinking PLA-PETA using the Omnirad 1173 photoinitiator yielded a transparent sample with 91% crosslinkage. The crosslinked sample was analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) to determine its thermal properties and thermal expansion coefficient. In vitro cell toxicity tests showed an average cell viability >90%, indicating that the PLA-PETA polymer had good biocompatibility with cells after photocrosslinking.
Collapse
Affiliation(s)
- Chung-Fu Yu
- Institute of Organic and Polymeric Materials, Research, National Taipei University of Technology1, Sec. 3, Zhongxiao E. Rd.Taipei 10608TaiwanRepublic of China
| | - Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, Research, National Taipei University of Technology1, Sec. 3, Zhongxiao E. Rd.Taipei 10608TaiwanRepublic of China,Research and Development Center for Smart Textile TechnologyTaiwan
| | - Yao-Chi Shu
- Graduate School of Fabric Technology Management, Lee-Ming Institute of TechnologyTaiwan
| |
Collapse
|
7
|
Agustin-Salazar S, Ricciulli M, Ambrogi V, Cerruti P, Scarinzi G. Thermomechanical Properties and Biodegradation Behavior of Itaconic Anhydride-Grafted PLA/Pecan Nutshell Biocomposites. Polymers (Basel) 2022; 14:polym14245532. [PMID: 36559900 PMCID: PMC9785769 DOI: 10.3390/polym14245532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The use of lignocellulose-rich biowaste as reinforcing filler in biodegradable polymers represents a sustainable option to obtain cost-effective bio-based materials to be used for several applications. In addition, the scarce polymer-biofiller interaction can be improved by reactive functionalization of the matrix. However, the obtained biocomposites might show high thermal deformability and possibly a slow biodegradation rate. In this work, polylactic acid (PLA) was first chemically modified with itaconic anhydride, and then biocomposites containing 50 wt.% of pecan (Carya illinoinensis) nutshell (PNS) biowaste were prepared and characterized. Their physical and morphological properties were determined, along with their biodegradation behavior in soil. Moreover, the effects of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites, were assessed. Grafting increased PLA thermal-oxidative stability and crystallinity. The latter was further enhanced by the presence of PNS, achieving a 30% overall increase compared to the plain matrix. Accordingly, the biocomposites displayed mechanical properties comparable to those of the plain matrix. Thermal annealing dramatically increased the mechanical and thermomechanical properties of all materials, and the heat deflection temperature of the biocomposites dramatically increased up to 60 °C with respect to the non-annealed samples. Finally, PNS promoted PLA biodegradation, triggering the swelling of the composites under soil burial, and accelerating the removal of the polymer amorphous phase. These results highlight the potential of combining natural fillers and environmentally benign physicochemical treatments to tailor the properties of PLA biocomposites. The high biofiller content used in this work, in conjunction with the chemical and physico-mechanical treatments applied, increased the thermal, mechanical, and thermomechanical performance of PLA biocomposites while improving their biodegradation behavior. These outcomes allow for widening the application field of PLA biocomposites in those areas requiring a stiff and lightweight material with low deformability and faster biodegradability.
Collapse
Affiliation(s)
- Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical and Metallurgical Engineering (DIQyM), University of Sonora, Building 5B, Del Conocimiento, Centro, Hermosillo C.P. 83000, Sonora, Mexico
- Correspondence: (S.A.-S.); (P.C.)
| | - Marco Ricciulli
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Veronica Ambrogi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy
- Correspondence: (S.A.-S.); (P.C.)
| | - Gennaro Scarinzi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
8
|
Fabrication of innocuous hydrogel scaffolds based on modified dextran for biotissues. Carbohydr Res 2022; 522:108699. [DOI: 10.1016/j.carres.2022.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
|
9
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
10
|
Verbeek CJR, Smith MJ. Functionalization of poly(butylene adipate‐co‐terephthalate) with itaconic anhydride through graft copolymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.52435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Marano S, Laudadio E, Minnelli C, Stipa P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers (Basel) 2022; 14:1626. [PMID: 35458376 PMCID: PMC9029979 DOI: 10.3390/polym14081626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.
Collapse
Affiliation(s)
- Stefania Marano
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Pierluigi Stipa
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| |
Collapse
|
12
|
A New Approach to The Synthesis of Polylactide/Polyacrylonitrile Block Copolymers. Polymers (Basel) 2022; 14:polym14081529. [PMID: 35458278 PMCID: PMC9031765 DOI: 10.3390/polym14081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
As a result of the search for alternatives to the known methods for the synthesis of PLA/vinyl polymer block copolymers, a new approach based on the “iniferter” concept was demonstrated in this article. In this approach, the introduction of a group that was capable of forming radicals and initiating radical polymerization into the polylactide (PLA) chain was conducted. Then, the obtained functional PLA was heated in the presence of a radically polymerizable monomer. The tetraphenylethane (TPE) group was chosen as a group that could dissociate to radicals. PLA with a TPE group in the middle of the chain was prepared in several steps as follows: (1) the synthesis of 4-(2-hydroxyethoxy)benzophenone (HBP-ET); (2) the polymerization of lactide, which was initiated with HBP-ET; and (3) the coupling of HBP-ET chains under UV radiation to form TPE-diET_PLA. A “macroiniferter”, i.e., TPE-diET_PLA, was used to initiate the polymerization of acrylonitrile (AN) by heating substrates at 85 °C. 1H and 13C NMR and SEC analyses of the products indicated that the triblock copolymer PLA-PAN-PLA formed and thus confirmed the assumed mechanism of the initiation of AN polymerization, which relied on the addition of the radical that formed from TPE (linked with the PLA chain) to the monomer molecule. Copolymerizations were performed with the application of prepared TPE-diET_PLA with three different Mn’s (1400, 2200, and 3300) and with different AN/PLA ratios, producing copolymers with varied compositions, i.e., with AN/LA ratios in the range of 2.3–11.1 and Mn’s in the range of 5100–9400. It was shown that the AN/LA ratio in the copolymer was increasable by the applied excess of AN with respect to the PLA macroiniferter in the feed and that more AN monomer was able to be introduced to PLA with shorter chains.
Collapse
|
13
|
Reungdech W, Tachaboonyakiat W. Functionalization of polylactide with multibranched poly(ethyleneimine) by in situ reactive extrusion. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Grafting of Cellulose and Microcrystalline Cellulose with Oligo(L-lactic acid) by Polycondensation Reaction. REACTIONS 2022. [DOI: 10.3390/reactions3010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oligo(L-lactic acid) (OLLA) was synthesized by ring opening polymerization of L-lactides using stannous octoate (0.03 wt% of lactide). While this served as the initiator, L-lactic acids were the co-initiators at 140 °C for 10 h, wherein L-lactic acids were prepared by hydrolytic degradation of L-lactides at 100 °C for 1 h. The molecular weight or degree of polymerization was controlled with monomer/co-initiator ratio (mol/mol). α-cellulose and microcrystalline cellulose (MCC) were extracted from jute fiber by subsequent treatment with sodium chlorite (Na2ClO2), NaOH and H2SO4. Grafting of OLLA onto α-cellulose and MCC in toluene was carried out using para-toluene sulphonic acid as a catalyst and potassium persulphate (KPS) as an initiator at 130 °C under 380 mm (Hg) pressure for 3, 6, 9, 12, 15, and 18 h. New properties of α-cellulose and MCC were observed due to the successful grafting onto α-cellulose and MCC. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were conducted in order to confirm grafting of OLLA onto cellulose and MCC. The FTIR analysis results showed there are some new characteristic absorption peaks appeared (1728 to 1732 cm−1) in the spectrum, which confirmed the grafting of OLLA onto α-cellulose and MCC was successful. SEM images of α-cellulose and MCC before and after grafting revealed significant changes in surface morphology. Grafting of MCC could be more effective for further application in comparison to α-cellulose.
Collapse
|
15
|
Chen X, Michinobu T. Postpolymerization Modification: A Powerful Tool for the Synthesis and Function Tuning of Stimuli‐Responsive Polymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xu Chen
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
16
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
17
|
Puthumana M, Santhana Gopala Krishnan P, Nayak SK. Chemical modifications of PLA through copolymerization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1830650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Manju Puthumana
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - P. Santhana Gopala Krishnan
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - Sanjay Kumar Nayak
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| |
Collapse
|
18
|
Abstract
With the rapid exhaustion of fossil resources, and environmental pollution relative to the use of fossil-based products, developing eco-friendly products using biomass and/or biodegradable resources is becoming increasingly conspicuous. In this study, ecofriendly and biodegradable composite membranes containing varying MC/PLA (methylcellulose/polylactic acid) mass ratios were prepared. The properties and structures of the MC/PLA membranes were studied by mechanical testing, 13C NMR techniques, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and hot compression. The MC/PLA membranes displayed markedly improved tensile strength and elongation at the MC/PLA mass ratio range of 99:1 to 9:1. The tensile strength and elongation of the MC/PLA (97:3) membrane was found to be the optimum, at 30% and 35% higher than the neat MC, respectively. It was also found that hot compression could improve the tensile strength and elongation of the membranes. At the same time, the membranes showed enough good thermal stability. In addition, the effect of MC/PLA mass ratio on morphologies of the membranes were studied by microscopy technique.
Collapse
|
19
|
Zhai XY, Wang XQ, Ding YX, Zhou YG. Partially biobased polymers: The synthesis of polysilylethers via dehydrocoupling catalyzed by an anionic iridium complex. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kaliva M, Georgopoulou A, Dragatogiannis DA, Charitidis CA, Chatzinikolaidou M, Vamvakaki M. Biodegradable Chitosan- graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers (Basel) 2020; 12:E316. [PMID: 32033024 PMCID: PMC7077469 DOI: 10.3390/polym12020316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
The design and synthesis of new biomaterials with adjustable physicochemical and biological properties for tissue engineering applications have attracted great interest. In this work, chitosan-graft-poly(l-lactide) (CS-g-PLLA) copolymers were prepared by chemically binding poly(l-lactide) (PLLA) chains along chitosan (CS) via the "grafting to" approach to obtain hybrid biomaterials that present enhanced mechanical stability, due to the presence of PLLA, and high bioactivity, conferred by CS. Two graft copolymers were prepared, CS-g-PLLA(80/20) and CS-g-PLLA(50/50), containing 82 wt % and 55 wt % CS, respectively. Degradation studies of compressed discs of the copolymers showed that the degradation rate increased with the CS content of the copolymer. Nanomechanical studies in the dry state indicated that the copolymer with the higher CS content had larger Young modulus, reduced modulus and hardness values, whereas the moduli and hardness decreased rapidly following immersion of the copolymer discs in alpha-MEM cell culture medium for 24 h. Finally, the bioactivity of the hybrid copolymers was evaluated in the adhesion and growth of MC3T3-E1 pre-osteoblastic cells. In vitro studies showed that MC3T3-E1 cells exhibited strong adhesion on both CS-g-PLLA graft copolymer films from the first day in cell culture, whereas the copolymer with the higher PLLA content, CS-g-PLLA(50/50), supported higher cell growth.
Collapse
Affiliation(s)
- Maria Kaliva
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Anthie Georgopoulou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Dimitrios A. Dragatogiannis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Costas A. Charitidis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
21
|
Olsén P, Herrera N, Berglund LA. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling. Biomacromolecules 2019; 21:597-603. [PMID: 31769663 DOI: 10.1021/acs.biomac.9b01333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical modification of wood cellulose fibers is important for tailored wood-polymer interfaces, reduced moisture sorption, and novel grades of chemical wood pulp. The present study shows how the reaction solvent system influences hydroxyl accessibility during chemical fiber modification. Surface initiated ring-opening polymerization of ε-caprolactone from wood cellulose fibers was investigated in a wide range of solvent systems. The hydrogen bond donor strength of the solvent increased graft density and the amount of grafted polycaprolactone (PCL) on the fiber surface, and on nanoscale fibrils inside the fiber. Specifically, the reaction system with acetic acid as a new, green solvent for cellulose grafting increased graft density 24 times compared to bulk polymerization conditions. The results show relationships between solvent properties, hydroxyl accessibility, and grafting results in cellulosic plant fibers. The study clarifies the opportunities provided by controlling the interior of the cellulosic plant fiber cell wall during chemical modification so that the fiber becomes a swollen cellulose nanofibril gel.
Collapse
Affiliation(s)
- Peter Olsén
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , 100 44 Stockholm , Sweden
| | - Natalia Herrera
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , 100 44 Stockholm , Sweden
| | - Lars A Berglund
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , 100 44 Stockholm , Sweden
| |
Collapse
|
22
|
Hydrolytic Degradation of Comb-Like Graft Poly (Lactide-co-Trimethylene Carbonate): The Role of Comonomer Compositions and Sequences. Polymers (Basel) 2019; 11:polym11122024. [PMID: 31817765 PMCID: PMC6960914 DOI: 10.3390/polym11122024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
The effect of sequence on copolymer properties is rarely studied, especially the degradation behavior of the biomaterials. A series of linear-comb block, gradient, random copolymers were successfully achieved using hydroxylated polybutadiene as the macroinitiator by simple ring-opening polymerization of l-lactide (l-LA) and 1,3-trimethylene carbonate (TMC). The hydrolytic degradation behaviors of the copolymers were systemically evaluated by using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) to illustrate the influences of comonomer compositions and sequence structures. The linear-comb block copolymers (lcP(TMC-b-LLA)) with different compositions had different degradation rates, which increased with l-LA content. Thermal property changes were observed with decreased Tm and increased ΔHm in all block copolymers during the degradation. To combine different sequence structures, unique degradation behaviors were observed for the linear-comb block, gradient and random copolymers even with similar comonomer composition. The degradation rates of linear-comb PLLA-gradient-PTMC (lcP(LLA-grad-TMC)) and linear-comb PLLA-random-PTMC (lcP(LLA-ran-TMC)) were accelerated due to the loss of regularity and crystallinity, resulting in a remarkable decrease on weight retention and molar mass. The hydrolysis degradation rate increased in the order lcP(TMC-b-LLA), lcP(LLA-ran-TMC), lcP(LLA-grad-TMC). Therefore, the hydrolytic degradation behavior of comb-like graft copolymers depends on both the compositions and the sequences dramatically.
Collapse
|
23
|
Boonpavanitchakul K, Jarussophon S, Pimpha N, Kangwansupamonkon W, Magaraphan R. Silk sericin as a bio-initiator for grafting from synthesis of polylactide via ring-opening polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Han G, Wen S, Wang H, Feng Q. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
26
|
Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase. Appl Biochem Biotechnol 2019; 190:982-996. [DOI: 10.1007/s12010-019-03134-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
|
27
|
Bian Y, Leng X, Wei Z, Wang Z, Tu Z, Wang Y, Li Y. End-Chain Fluorescent Highly Branched Poly(l-lactide)s: Synthesis, Architecture-Dependence, and Fluorescent Visible Paclitaxel-Loaded Microspheres. Biomacromolecules 2019; 20:3952-3968. [PMID: 31490668 DOI: 10.1021/acs.biomac.9b01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile method in combination of "grafting from" and "end-functionalization" was developed for the synthesis of fluorescent highly branched poly(l-lactide)s (PLLA-COU) via ring opening polymerization (ROP) and esterification end-capping. These resulting PLLA-COU with four kinds of architectures, including linear, star, linear-comb, and star-comb structures, were subjected to characterization and application as fluorescent visible paclitaxel-loaded microspheres. The mutual effects of architecture and end-groups on thermal and fluorescence properties, enzymatic degradation, and drug release behaviors were focused. Contrast to linear and star PLLA-COU, two comb-shaped analogues demonstrated higher fluorescence quantum yield, faster drug release, and lower enzymatic degradation rate. All the fluorescent microspheres could maintain fluorescence traceability. The fluorescent PLLA-COU displayed negligible toxicity and good biocompatibility. This work highlights that the fluorescent highly branched poly(l-lactide)s are properties-tailored and used as fluorescent visible drug delivery systems (DDS) for potential theranostic applications.
Collapse
Affiliation(s)
- Yufei Bian
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Zefeng Wang
- Department of Chemistry , Lishui University , Lishui 323000 , China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
28
|
Lopera-Valle A, Elias A. Amine Responsive Poly(lactic acid) (PLA) and Succinic Anhydride (SAh) Graft-Polymer: Synthesis and Characterization. Polymers (Basel) 2019; 11:E1466. [PMID: 31500310 PMCID: PMC6780798 DOI: 10.3390/polym11091466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
Amines are known to react with succinic anhydride (SAh), which in reactions near room temperature, undergoes a ring opening amidation reaction to form succinamic acid (succinic acid-amine). In this work, we propose to form an amine-responsive polymer by grafting SAh to a poly(lactic acid) (PLA) backbone, such that the PLA can provide chemical and mechanical stability for the functional SAh during the amidation reaction. Grafting is performed in a toluene solution at mass content from 10 wt% to 75 wt% maleic anhydride (MAh) (with respect to PLA and initiator), and films are then cast. The molecular weight and thermal properties of the various grafted polymers are measured by gel permeation chromatography and differential scanning calorimetry, and the chemical modification of these materials is examined using infrared spectroscopy. The efficiency of the grafting reaction is estimated with thermogravimetric analysis. The degree of grafting is determined to range from 5% to 42%; this high degree of grafting is desirable to engineer an amine-responsive material. The response of the graft-polymers to amines is characterized using X-ray photoelectron spectroscopy, infrared spectroscopy, and differential scanning calorimetry. Changes in the chemical and thermal properties of the graft-polymers are observed after exposure to the vapors from a 400 ppm methylamine solution. In contrast to these changes, control samples of neat PLA do not undergo comparable changes in properties upon exposure to methylamine vapor. In addition, the PLA-g-SAh do not undergo changes in structure when exposed to vapors from deionized water without amines. This work presents potential opportunities for the development of real-time amine sensors.
Collapse
Affiliation(s)
- Adrián Lopera-Valle
- Department of Chemical and Materials Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, AB T6G 1H9, Canada.
| | - Anastasia Elias
- Department of Chemical and Materials Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
29
|
Amarasekara AS, Nguyen LH, Du H, Kommalapati RR. Kinetics and mechanism of the solid-acid catalyzed one-pot conversion of d-fructose to 5, 5′-[oxybis(methylene)]bis[2-furaldehyde] in dimethyl sulfoxide. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0994-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
30
|
Vacaras S, Baciut M, Lucaciu O, Dinu C, Baciut G, Crisan L, Hedesiu M, Crisan B, Onisor F, Armencea G, Mitre I, Barbur I, Kretschmer W, Bran S. Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites – a review of the clinical and metabolic impact. Drug Metab Rev 2019; 51:570-588. [DOI: 10.1080/03602532.2019.1642911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sergiu Vacaras
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Liana Crisan
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Bogdan Crisan
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioan Barbur
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Winfried Kretschmer
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Xiao Y, Tang C, Chen Y, Lang M. Dual stimuli-responsive polypeptide prepared by thiol-ene click reaction of poly(l-cysteine) and N, N-dimethylaminoethyl acrylate. Biopolymers 2019; 110:e23318. [PMID: 31274198 DOI: 10.1002/bip.23318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive polymers that can undergo conformational changes with external triggers have enabled themselves as smart materials for various utilizations, among which biodegradability is of particular importance to be engineered for biomedical application. In this study, a thermo and pH dual responsive polypeptide (N, N-dimethylaminoethyl acrylate-modified poly(l-cysteine)) (PLC-g-DMAEA) was prepared by the combination of N-carboxyanhydride ring-open polymerization and thiol-ene click chemistry. The biodegradable poly(l-cysteine) (PLC) with pendant thiol groups provided an easily clickable backbone for postmodification, which was demonstrated by reacting with a well-known monomer of N, N-dimethylaminoethyl acrylate (DMAEA) to achieve both temperature and pH responsiveness. The irreversible thermo-response of PLC-g-DMAEA could be attributed to the ordered β-sheets formed upon heating, leading to the trapped side groups with poor water accessibility. Moreover, this copolymer precipitated at pH ranging from 7.5 to 9.7, but protonation of tertiary amine groups (pH < 7.5) and salt forming of masked thiol groups (pH > 9.7) rendered it soluble in water. Our results revealed that a ready available vinyl monomer could be easily clicked onto the biodegradable PLC and its stimuli responsiveness would be reserved. Moreover, the primary and secondary structures of PLC might influence the conformation, thus leading to the unique responsive behavior of the resulted copolymer.
Collapse
Affiliation(s)
- Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenna Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
32
|
Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
|
35
|
Phetphaisit CW, Wapanyakul W, Phinyocheep P. Effect of modified rubber powder on the morphology and thermal and mechanical properties of blown poly(lactic acid)-hydroxyl epoxidized natural rubber films for flexible film packaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chor Wayakron Phetphaisit
- Department of Chemistry, Faculty of Science; Naresuan University; Phitsanulok 65000 Thailand
- Center of Excellence in Biomaterials; Naresuan University; Phitsanulok 65000 Thailand
| | - Wittawat Wapanyakul
- Department of Chemistry, Faculty of Science; Naresuan University; Phitsanulok 65000 Thailand
- Center of Excellence in Biomaterials; Naresuan University; Phitsanulok 65000 Thailand
| | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science; Mahidol University; 10400 Thailand
| |
Collapse
|
36
|
Ramakers G, D'Incal C, Gagliardi M, Molin DGM, Junkers T. Synthesis of Functional Polymer Particles from Morita-Baylis-Hillman Polymerization. Macromol Rapid Commun 2018; 39:e1800678. [PMID: 30387221 DOI: 10.1002/marc.201800678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Functional synthetic polymers are frequently explored for their use in the biomedical field. To fulfill the stringent demands of biodegradability and compatibility, the materials need to be versatile and tunable. Post-modification is often considered challenging for well-known degradable materials like poly(lactic acid) because of their chemical inertness. In this work a procedure is proposed to produce densely functionalized polymer particles using oligomeric precursors synthesized via the Morita-Baylis-Hillman reaction. This allows for a variety of post-modification reactions to serve bio-conjugation or tuning of the material properties. The particles are subjected to basic media and found to be degradable. Furthermore, cytotoxicity tests confirm good biocompatibility. Finally, as a proof of concept to demonstrate the versatility of the particles, post-modification reactions are carried out through the formation of imines.
Collapse
Affiliation(s)
- Gijs Ramakers
- Polymer Reaction Design group, Institute for Materials Research, Universiteit Hasselt, Martelarenlaan 42, B-3500, Hasselt, Belgium
| | - Claudio D'Incal
- Polymer Reaction Design group, Institute for Materials Research, Universiteit Hasselt, Martelarenlaan 42, B-3500, Hasselt, Belgium
| | - Mick Gagliardi
- Department of Physiology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Daniël G M Molin
- Department of Physiology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Tanja Junkers
- Polymer Reaction Design group, Institute for Materials Research, Universiteit Hasselt, Martelarenlaan 42, B-3500, Hasselt, Belgium.,Polymer Reaction Design group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
37
|
Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int J Biol Macromol 2018; 119:1090-1097. [DOI: 10.1016/j.ijbiomac.2018.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
|
38
|
Novel osteogenic growth peptide C-terminal pentapeptide grafted poly(d,l-lactic acid) improves the proliferation and differentiation of osteoblasts: The potential bone regenerative biomaterial. Int J Biol Macromol 2018; 119:874-881. [DOI: 10.1016/j.ijbiomac.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
|
39
|
Li L, Li H, Yan B, Yu S, Ge X. Preparation and properties of porous gels from poly(
l
‐lactic acid) and poly(
d
‐lactic acid) with ionic liquids as solvents and porogens. J Appl Polym Sci 2018. [DOI: 10.1002/app.47058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lu Li
- Shandong Provincial Key Laboratory of Biochemical EngineeringCollege of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao, 266042 China
| | - Huaxiao Li
- College of Chemical EngineeringQingdao University of Science and Technology Qingdao, 266042 China
| | - Bin Yan
- College of Chemical EngineeringQingdao University of Science and Technology Qingdao, 266042 China
| | - Shitao Yu
- College of Chemical EngineeringQingdao University of Science and Technology Qingdao, 266042 China
| | - Xiaoping Ge
- Shandong Provincial Key Laboratory of Biochemical EngineeringCollege of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao, 266042 China
| |
Collapse
|
40
|
Lv J, Yin X, Li R, Chen J, Lin Q, Zhu L. Superhydrophobic PCL/PS composite nanofibrous membranes prepared through solution blow spinning with an airbrush for oil adsorption. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ju Lv
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan, 570228 P.R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan, 570228 P.R. China
| | - Rongguo Li
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan, 570228 P.R. China
| | - Junhua Chen
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan, 570228 P.R. China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Plant Chemistry Ministry of Education; Hainan Normal University; Haikou Hainan, 571158 P.R. China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan, 570228 P.R. China
| |
Collapse
|
41
|
Self-assembled supramolecular hydrogels formed by biodegradable PLA/CS diblock copolymers and β-cyclodextrin for controlled dual drug delivery. Int J Biol Macromol 2018; 108:18-23. [DOI: 10.1016/j.ijbiomac.2017.11.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
|
42
|
Suryani, Agusnar H, Wirjosentono B, Rihayat T, Salisah Z. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/953/1/012015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Zhou C, Wei Z, Jin C, Wang Y, Yu Y, Leng X, Li Y. Fully biobased thermoplastic elastomers: Synthesis of highly branched linear comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Bher A, Auras R, Schvezov CE. Improving the toughening in poly(lactic acid)-thermoplastic cassava starch reactive blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.46140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anibal Bher
- School of Packaging; Michigan State University; East Lansing Michigan USA, 48824
- Instituto Sabato, UNSAM-CNEA; San Martin Buenos Aires Argentina
- Instituto de Materiales de Misiones (IMAM), CONICET-UNaM; Posadas Misiones Argentina
| | - Rafael Auras
- School of Packaging; Michigan State University; East Lansing Michigan USA, 48824
| | - Carlos E. Schvezov
- Instituto de Materiales de Misiones (IMAM), CONICET-UNaM; Posadas Misiones Argentina
| |
Collapse
|
46
|
Osten KM, Mehrkhodavandi P. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Acc Chem Res 2017; 50:2861-2869. [PMID: 29087695 DOI: 10.1021/acs.accounts.7b00447] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inexorably, the environmental persistence and damage caused by polyolefins have become major drawbacks to their continued long-term use. Global shifts in thinking from fossil-fuel to renewable biobased resources have urged researchers to focus their attention on substituting fossil-fuel based polymers with renewable and biodegradable alternatives on an industrial scale. The recent development of biodegradable polyesters from ring opening polymerization (ROP) of bioderived cyclic ester monomers has emerged as a promising new avenue toward this goal. Ever increasing numbers of metal-based initiators have been reported in the literature for the controlled ROP of cyclic esters, in particular for the polymerization of lactide to produce poly(lactic acid) (PLA). PLA has several material weaknesses, which hinder its use as a replacement for commodity plastics. Despite many advances in developing highly active and controlled catalysts for lactide polymerization, no single catalyst system has emerged to replace industrially used catalysts and provide access to PLA materials with improved properties. We reported the first example of indium(III) for the ring opening polymerization of lactide. Since then, indium(III) has emerged as a useful Lewis acid in initiators for the controlled polymerization of lactide and other cyclic esters. In particular, we have developed a large family of chiral dinuclear indium complexes bearing tridentate diaminophenolate ligands and tetradentate salen and salan ligands. Complexes within our tridentate ligand family are highly active initiators for the moderately isoselective living and immortal polymerization of rac-lactide, as well as other cyclic esters. We have shown that subtle steric effects influence aggregation in these systems, with polymerization typically proceeding through a dinuclear propagating species. In addition, profound effects on polymerization activities have been observed for central tertiary versus secondary amine donors in these and other related systems. In contrast, our well-controlled and highly active chiral indium salen systems are more isoselective than the tridentate analogues and polymerize lactide via a mononuclear propagating species. Again, we have noticed that subtle steric and electronic changes to the ligand can influence both polymerization activity and stereoselectivity via aggregation phenomena. Recently, we have reported a promising new chiral indium catalyst supported by a tetradentate salan ligand. This catalyst is remarkably water and air stable and can be activated by linear and branched alcohols to provide controlled access to multiblock copolymers in air. This catalyst represents an important step forward toward generating new, commercially relevant catalysts for ROP of cyclic esters to produce novel biodegradable polymers, and highlights the unique value of indium-based catalysts in the field.
Collapse
Affiliation(s)
- Kimberly M. Osten
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| |
Collapse
|
47
|
|
48
|
Demina TS, Gilman AB, Zelenetskii AN. Application of high-energy chemistry methods to the modification of the structure and properties of polylactide (a review). HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Guo H, Wang Y, Huang Y, Huang F, Li S, Shen Y, Zhu M, Xie A. A GO@PLA@HA Composite Microcapsule: Its Preparation and Multistage and Controlled Drug Release. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hailing Guo
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Yunlong Wang
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Yiping Huang
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Fangzhi Huang
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Shikuo Li
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Yuhua Shen
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Manzhou Zhu
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| | - Anjian Xie
- College of Chemistry and Chemical Engineering Collaborative Innovation Center of Modern Bio‐Manufacture Anhui University 230601 Hefei P. R. China
| |
Collapse
|
50
|
Kučera F, Petruš J, Matláková J, Jančář J. Itaconic anhydride homopolymerization during radical grafting of poly(lactic acid) in melt. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|