1
|
Xu G, Xiao W, Sun P, Sun Y, Yang X, Yin X, Liu Y. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. J Lipid Res 2024; 66:100713. [PMID: 39579983 PMCID: PMC11719853 DOI: 10.1016/j.jlr.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024] Open
Abstract
Diastolic dysfunction in aging mice is linked to mitochondrial abnormalities, including mitochondrial morphology disorders and decreases in membrane potential. Studies also show that aberrant mitochondrial lipid metabolism impairs mitochondrial function in aging cardiomyocytes. Our lipidomic analysis revealed that phosphatidylethanolamine (PE) levels were significantly decreased in aging myocardial mitochondria. Here, we investigated whether a reduction in PE levels in myocardial mitochondria contributes to mitochondrial injury as well as HFpEF pathogenesis and whether modulation of PE levels could ameliorate aging-induced HFpEF. Echocardiography was used to assess cardiac diastolic function in adult and aging mice treated with lysophosphatidylethanolamine (LPE) or saline. Mitochondrial morphologies from tissue samples were evaluated by transmission electron microscopy (TEM), while mitochondrial membrane potential and reactive oxygen species (ROS) levels were assessed using JC-1, MitoSOX, and DCFH-DA detection assays. We performed GO enrichment analysis between adult and aging mice and discovered significant enrichment in transcriptional programs associated with mitochondria and lipid metabolism. Also, mitochondrial PE levels were significantly decreased in aging cardiomyocytes. Treatment with LPE (200 μg/kg) significantly enhanced PE content in aging mice and improved the structure of mitochondria in cardiac cells. Also, LPE treatment protects against aging-induced deterioration of mitochondrial injury, as evidenced by increased mitochondrial membrane potential and decreased mitochondrial ROS. Furthermore, treatment with LPE alleviated severe diastolic dysfunction in aging mice. Taken together, our results suggest that LPE treatment enhances PE levels in mitochondria and ameliorates aging-induced diastolic dysfunction in mice through a mechanism involving improved mitochondrial structure and function.
Collapse
Affiliation(s)
- Guiwen Xu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Xiao
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengqi Sun
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanjun Sun
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Yang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomeng Yin
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
3
|
Yan CY, Ye Y, Mu HL, Wu T, Huang WS, Wu YP, Sun WY, Liang L, Duan WJ, Ouyang SH, Huang RT, Wang R, Sun XX, Kurihara H, Li YF, He RR. Prenatal hormone stress triggers embryonic cardiac hypertrophy outcome by ubiquitin-dependent degradation of mitochondrial mitofusin 2. iScience 2024; 27:108690. [PMID: 38235340 PMCID: PMC10792244 DOI: 10.1016/j.isci.2023.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Prenatal stress has been extensively documented as a contributing factor to adverse cardiac development and function in fetuses and infants. The release of glucocorticoids (GCs), identified as a significant stressor, may be a potential factor inducing cardiac hypertrophy. However, the underlying mechanism remains largely unknown. Herein, we discovered that corticosterone (CORT) overload induced cardiac hypertrophy in embryonic chicks and fetal mice in vivo, as well as enlarged cardiomyocytes in vitro. The impaired mitochondria dynamics were observed in CORT-exposed cardiomyocytes, accompanied by dysfunction in oxidative phosphorylation and ATP production. This phenomenon was found to be linked to decreased mitochondrial fusion protein mitofusin 2 (MFN2). Subsequently, we found that CORT facilitated the ubiquitin-proteasome-system-dependent degradation of MFN2 with an enhanced binding of appoptosin to MFN2, serving as the underlying cause. Collectively, our findings provide a comprehensive understanding of the mechanisms by which exposure to stress hormones induces cardiac hypertrophy in fetuses.
Collapse
Affiliation(s)
- Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yue Ye
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Han-Lu Mu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Tong Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Shan Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xin-Xin Sun
- Jiujiang Maternal and Child Health Hospital, Jiujiang 332000, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
4
|
Barbero NM, Oller J, Sanz AB, Ramos AM, Ortiz A, Ruiz-Ortega M, Rayego-Mateos S. Mitochondrial Dysfunction in the Cardio-Renal Axis. Int J Mol Sci 2023; 24:ijms24098209. [PMID: 37175915 PMCID: PMC10179675 DOI: 10.3390/ijms24098209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Nerea Mendez Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Ana B Sanz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Adrian M Ramos
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Marta Ruiz-Ortega
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| |
Collapse
|
5
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
6
|
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28:836-849. [PMID: 35879138 PMCID: PMC9509460 DOI: 10.1016/j.molmed.2022.06.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
With the growing prevalence of cardiovascular disease (CVD), there is an urgent need to explore non-conventional therapeutic measures to alleviate the burden of CVD on global healthcare. Mitochondrial injury plays a cardinal role in the pathogenesis of CVD. Mitochondrial dynamics and mitophagy are essential machineries that govern mitochondrial health in cardiomyocytes in physiological and pathophysiological settings. However, with the onset and progression of CVD, homeostasis of mitophagy is disturbed through largely unknown pathological mechanisms, causing mitochondrial damage and ultimately cardiomyocyte death. In this review we decipher the dual regulatory role of mitophagy in CVD pathogenesis, summarize controversies in mitophagy, and highlight recently identified compounds capable of modulating mitophagy. We share our perspectives on future mitophagy research directions in the context of CVD.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mario Chiong
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Lian N, Mao X, Su Y, Wang Y, Wang Y, Wang Y, Chen H, Zhu R, Yu Y, Xie K. Hydrogen-rich medium ameliorates lipopolysaccharides-induced mitochondrial fission and dysfunction in human umbilical vein endothelial cells (HUVECs) via up-regulating HO-1 expression. Int Immunopharmacol 2022; 110:108936. [PMID: 35738091 DOI: 10.1016/j.intimp.2022.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. It has been showed that the change of mitochondrial dynamics has been proved to be one of the main causes of death in patients with severe sepsis. And hydrogen has been proved to exert its protective effects against sepsis via heme oxygenase-1 (HO-1). This study was designed to demonstrate that whether the benefit effects of hydrogen can maintain the dynamic process of mitochondrial fusion/fission to mitigate human umbilical vein endothelial cells (HUVECs) injury exposed to endotoxin through HO-1. METHODS HUVECs cells cultured with medium which contained Lipopolysaccharides (LPS), Saline, hydrogen, Mdivi-1 (a dynamin-related protein 1 [Drp1] inhibitor) or zinc protoporphyrin IX (Znpp) (a HO-1 inhibitor) were also used in the research. Cell death and apoptosis were assessed using FITC annexin V and PI. Mitochondria were stained with Mitotracker orange and observed by confocal microscope. Oxygen consumption rate was assessed by seahorse xf24 extracellular analyzer. Mitochondrial membrane potential monitored by JC-1 dye. The expressions of Drp1 and HO-1 were tested by Western blot. The co-localization of Drp1 and mitochondria was determined by immunofluorescence. RESULTS LPS caused a decrease in ATP content, mitochondrial membrane potential, and maximal respiration rate. At the same time, increased expression of Drp1 were observed in LPS-stimulated HUVECs, concomitantly with excessive mitochondrial fission. We found that hydrogen-rich medium can increase ATP content, mitochondrial membrane potential and maximal respiration rate, and decrease the expression of Drp1 in LPS-treated HUVECs. Meanwhile, hydrogen can ameliorate excessive mitochondrial fission caused by LPS. Furthermore, hydrogen-rich medium had a similar effect to Mdivi-1, a mitochondrial fission blocker. Both of them rescued the up-regulation of Drp1 and mitochondrial fission induced by LPS, then normalized mitochondrial shape after LPS stimulation. But after Znpp pretreatment, HO-1 expression was inhibited and the protective effects of hydrogen were abrogated. CONCLUSIONS Hydrogen-rich medium can alleviate the LPS-induced mitochondrial fusion/fission and dysfunction in HUVECs via HO-1 up-regulation.
Collapse
Affiliation(s)
- Naqi Lian
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xing Mao
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanchao Su
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanyan Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yuzun Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Ruqing Zhu
- Department of Anesthesiology, Stomatology Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, China; Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
8
|
Wang F, Fan X, Kong J, Wang C, Ma B, Sun W, Ye Z, Liu P, Wen J. Inhibition of mitochondrial fission alters neo-intimal hyperplasia via PI3K/Akt signaling in arteriovenous fistulas. Vascular 2022; 31:533-543. [PMID: 35130772 DOI: 10.1177/17085381211068685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND/OBJECTIVE Arteriovenous fistulas (AVFs) are the preferred vascular access for hemodialysis of patients with end-stage renal disease. However, there is a high incidence of AVF failures caused by insufficient outward remodeling or venous neo-intimal hyperplasia formation. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in many cardiovascular diseases. Abnormal VSMC proliferation and migration could be abolished by inhibition of mitochondrial division. METHOD We found that abnormal proliferation and migration of VSMCs and increased mitochondrial fission were associated with AVF stenosis in patients. We also investigated the mechanisms, particularly the role of mitochondrial dynamics, underlying these VSMC behaviors. In vitro, we observed that inhibition of mitochondrial fission and Akt phosphorylation can diminish proliferation and migration of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB). In vivo, daily intraperitoneal injections of mitochondrial division inhibitor 1 (Mdivi-1) decreased VSMC proliferation and reduced AVF wall thickness in a rat AVF model. CONCLUSION AND RESULT Our results suggest that inhibition of mitochondrial fission improves AVF patency by reducing wall thickening through the PI3K/Akt signaling pathway. Therefore, inhibition of mitochondrial fission has the clinical potential to improve AVF patency.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bo Ma
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Weiliang Sun
- 36635Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Luan Y, Ren KD, Luan Y, Chen X, Yang Y. Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Front Cardiovasc Med 2021; 8:770574. [PMID: 34938787 PMCID: PMC8685340 DOI: 10.3389/fcvm.2021.770574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular diseases, particularly atherosclerosis, are associated with high morbidity and mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction leads to blood vessel abnormalities, which cause a series of vascular diseases. The mitochondria are the core sites of cell energy metabolism and function in blood vessel development and vascular disease pathogenesis. Mitochondrial dynamics, including fusion and fission, affect a variety of physiological or pathological processes. Multiple studies have confirmed the influence of mitochondrial dynamics on vascular diseases. This review discusses the regulatory mechanisms of mitochondrial dynamics, the key proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wang F, Zhen Y, Si C, Wang C, Pan L, Chen Y, Liu X, Kong J, Nie Q, Sun M, Han Y, Ye Z, Liu P, Wen J. WNT5B promotes vascular smooth muscle cell dedifferentiation via mitochondrial dynamics regulation in chronic thromboembolic pulmonary hypertension. J Cell Physiol 2021; 237:789-803. [PMID: 34368954 DOI: 10.1002/jcp.30543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by proliferative vascular remodeling. Abnormal vascular smooth muscle cell (VSMC) phenotype switching is crucial to this process, highlighting the need for VSMC metabolic changes to cover cellular energy demand in CTEPH. We report that elevated Wnt family member 5B (WNT5B) expression is associated with vascular remodeling and promotes VSMC phenotype switching via mitochondrial dynamics regulation in CTEPH. Using primary culture of pulmonary artery smooth muscle cells, we show that high WNT5B expression activates VSMC proliferation and migration and results in mitochondrial fission via noncanonical Wnt signaling in CTEPH. Abnormal VSMC proliferation and migration were abolished by mitochondrial division inhibitor 1, an inhibitor of mitochondrial fission. Secreted frizzled-related protein 2, a soluble scavenger of Wnt signaling, attenuates VSMC proliferation and migration by accelerating mitochondrial fusion. These findings indicate that WNT5B is an essential regulator of mitochondrial dynamics, contributing to VSMC phenotype switching in CTEPH.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yongxin Han
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
13
|
Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166208. [PMID: 34214606 DOI: 10.1016/j.bbadis.2021.166208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.
Collapse
Affiliation(s)
- Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Perez
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| |
Collapse
|
14
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
15
|
Ammonium Glycyrrhizinate Prevents Apoptosis and Mitochondrial Dysfunction Induced by High Glucose in SH-SY5Y Cell Line and Counteracts Neuropathic Pain in Streptozotocin-Induced Diabetic Mice. Biomedicines 2021; 9:biomedicines9060608. [PMID: 34073550 PMCID: PMC8227813 DOI: 10.3390/biomedicines9060608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023] Open
Abstract
Glycyrrhiza glabra, commonly known as liquorice, contains several bioactive compounds such as flavonoids, sterols, triterpene, and saponins; among which, glycyrrhizic acid, an oleanane-type saponin, is the most abundant component in liquorice root. Diabetic peripheral neuropathy is one of the major complications of diabetes mellitus, leading to painful condition as neuropathic pain. The pathogenetic mechanism of diabetic peripheral neuropathy is very complex, and its understanding could lead to a more suitable therapeutic strategy. In this work, we analyzed the effects of ammonium glycyrrhizinate, a derivate salt of glycyrrhizic acid, on an in vitro system, neuroblastoma cells line SH-SY5Y, and we observed that ammonium glycyrrhizinate was able to prevent cytotoxic effect and mitochondrial fragmentation after high-glucose administration. In an in vivo experiment, we found that a short-repeated treatment with ammonium glycyrrhizinate was able to attenuate neuropathic hyperalgesia in streptozotocin-induced diabetic mice. In conclusion, our results showed that ammonium glycyrrhizinate could ameliorate diabetic peripheral neuropathy, counteracting both in vitro and in vivo effects induced by high glucose, and might represent a complementary medicine for the clinical management of diabetic peripheral neuropathy.
Collapse
|
16
|
All-Trans Retinoic Acid Increases DRP1 Levels and Promotes Mitochondrial Fission. Cells 2021; 10:cells10051202. [PMID: 34068960 PMCID: PMC8156392 DOI: 10.3390/cells10051202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.
Collapse
|
17
|
Horvath O, Ordog K, Bruszt K, Kalman N, Kovacs D, Radnai B, Gallyas F, Toth K, Halmosi R, Deres L. Modulation of Mitochondrial Quality Control Processes by BGP-15 in Oxidative Stress Scenarios: From Cell Culture to Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643871. [PMID: 33728024 PMCID: PMC7937466 DOI: 10.1155/2021/6643871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a complex chronic clinical disease characterized by among others the damage of the mitochondrial network. The disruption of the mitochondrial quality control and the imbalance in fusion-fission processes lead to a lack of energy supply and, finally, to cell death. BGP-15 (O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic acid amidoxime dihydrochloride) is an insulin sensitizer molecule and has a cytoprotective effect in a wide variety of experimental models. In our recent work, we aimed to clarify the mitochondrial protective effects of BGP-15 in a hypertension-induced heart failure model and "in vitro." Spontaneously hypertensive rats (SHRs) received BGP-15 or placebo for 18 weeks. BGP-15 treatment preserved the normal mitochondrial ultrastructure and enhanced the mitochondrial fusion. Neonatal rat cardiomyocytes (NRCMs) were stressed by hydrogen-peroxide. BGP-15 treatment inhibited the mitochondrial fission processes, promoted mitochondrial fusion, maintained the integrity of the mitochondrial genome, and moreover enhanced the de novo biogenesis of the mitochondria. As a result of these effects, BGP-15 treatment also supports the maintenance of mitochondrial function through the preservation of the mitochondrial structure during hydrogen peroxide-induced oxidative stress as well as in an "in vivo" heart failure model. It offers the possibility, which pharmacological modulation of mitochondrial quality control under oxidative stress could be a novel therapeutic approach in heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Culture Techniques
- Citrate (si)-Synthase/metabolism
- DNA/metabolism
- DNA Damage
- DNA, Mitochondrial/genetics
- Dynamins/metabolism
- Electron Transport/drug effects
- Energy Metabolism/drug effects
- Genome, Mitochondrial
- Heart Failure/etiology
- Heart Failure/pathology
- Hypertension/complications
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mitochondrial Dynamics
- Mitochondrial Proteins/metabolism
- Myocardium/pathology
- Myocardium/ultrastructure
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Natriuretic Peptide, Brain/metabolism
- Organelle Biogenesis
- Oxidative Stress/drug effects
- Oximes/administration & dosage
- Oximes/chemistry
- Oximes/pharmacology
- Oxygen Consumption/drug effects
- Piperidines/administration & dosage
- Piperidines/chemistry
- Piperidines/pharmacology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Rats
Collapse
Affiliation(s)
- Orsolya Horvath
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Kitti Bruszt
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Balazs Radnai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|
18
|
Liao H, Qi Y, Ye Y, Yue P, Zhang D, Li Y. Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes. Front Cell Dev Biol 2021; 8:625089. [PMID: 33553165 PMCID: PMC7858659 DOI: 10.3389/fcell.2020.625089] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are one of the most important organelles in cardiomyocytes. Mitochondrial homeostasis is necessary for the maintenance of normal heart function. Mitochondria perform four major biological processes in cardiomyocytes: mitochondrial dynamics, metabolic regulation, Ca2+ handling, and redox generation. Additionally, the cardiovascular system is quite sensitive in responding to changes in mechanical stress from internal and external environments. Several mechanotransduction pathways are involved in regulating the physiological and pathophysiological status of cardiomyocytes. Typically, the extracellular matrix generates a stress-loading gradient, which can be sensed by sensors located in cellular membranes, including biophysical and biochemical sensors. In subsequent stages, stress stimulation would regulate the transcription of mitochondrial related genes through intracellular transduction pathways. Emerging evidence reveals that mechanotransduction pathways have greatly impacted the regulation of mitochondrial homeostasis. Excessive mechanical stress loading contributes to impairing mitochondrial function, leading to cardiac disorder. Therefore, the concept of restoring mitochondrial function by shutting down the excessive mechanotransduction pathways is a promising therapeutic strategy for cardiovascular diseases. Recently, viral and non-viral protocols have shown potentials in application of gene therapy. This review examines the biological process of mechanotransduction pathways in regulating mitochondrial function in response to mechanical stress during the development of cardiomyopathy and heart failure. We also summarize gene therapy delivery protocols to explore treatments based on mechanical stress-induced mitochondrial dysfunction, to provide new integrative insights into cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Chen L, Chen XY, Wang QL, Yang SJ, Zhou H, Ding LS, Qing LS, Luo P. Astragaloside IV Derivative (LS-102) Alleviated Myocardial Ischemia Reperfusion Injury by Inhibiting Drp1 Ser616 Phosphorylation-Mediated Mitochondrial Fission. Front Pharmacol 2020; 11:1083. [PMID: 33041784 PMCID: PMC7528720 DOI: 10.3389/fphar.2020.01083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that Astragaloside IV derivative (LS-102) exhibited potent protective function against ischemia reperfusion (I/R) injury, but little is known about the mechanisms. Mitochondrial fission regulated by dynamin-related protein1 (Drp1) is a newly recognized determinant of mitochondrial function. This study aimed to investigate the protection of LS-102 on mitochondrial structure and function by regulating the activity of Drp1 using models of H9c2 cardiomyocyte injury induced by hypoxia-reperfusion (H/R), and rat heart injury induced by I/R. The results showed that LS-102 significantly decreased apoptosis, levels of ROS, CK, LDH, and calcium, upregulating MMP, and the Bax/Bcl-2 ratio in cardiomyocytes during I/R injury. Furthermore, LS-102 prevented I/R-induced mitochondrial fission by decreasing Drp1's mitochondrial localization through decreasing the phosphorylation of Drp1 at Ser616 (Drp1Ser616) and increasing the phosphorylation of Drp1 at Ser637 (Drp1Ser637) in H9c2 cells. Importantly, we also robustly confirmed Drp1Ser616 as a novel GSK-3β phosphorylation site. GSK-3β-mediated phosphorylation at Drp1Ser616 may be associated with mitochondrial fission during I/R of cardiomyocytes. In conclusion, LS-102 exerts cardio protection against I/R-induced injury by inhibiting mitochondrial fission via blocking GSK-3β-mediated phosphorylation at Ser616 of Drp1.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Cardiac Encephalopathy, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Xiao-Yi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Qian-Long Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Si-Jin Yang
- Department of Cardiac Encephalopathy, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Hua Zhou
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Li-Sheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
20
|
Hydroxytyrosol as a Promising Ally in the Treatment of Fibromyalgia. Nutrients 2020; 12:nu12082386. [PMID: 32784915 PMCID: PMC7468876 DOI: 10.3390/nu12082386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and highly disabling syndrome, which is still underdiagnosed, with controversial treatment. Although its aetiology is unknown, a number of studies have pointed to the involvement of altered mitochondrial metabolism, increased oxidative stress and inflammation. The intake of extra virgin olive oil, and particularly of one of its phenolic compounds, hydroxytyrosol (HT), has proven to be protective in terms of redox homeostatic balance and the reduction of inflammation. In this context, using a proteomic approach with nanoscale liquid chromatography coupled to tandem mass spectrometry, the present study analysed: (i) Changes in the proteome of dermal fibroblasts from a patient with FM versus a healthy control, and (ii) the effect of the treatment with a nutritional relevant dose of HT. Our results unveiled that fibroblast from FM show a differential expression in proteins involved in the turnover of extracellular matrix and oxidative metabolism that could explain the inflammatory status of these patients. Moreover, a number of these proteins results normalized by the treatment with HT. In conclusion, our results support that an HT-enriched diet could be highly beneficial in the management of FM.
Collapse
|
21
|
Oh CM, Ryu D, Cho S, Jang Y. Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease. Korean Circ J 2020; 50:395-405. [PMID: 32216174 PMCID: PMC7098821 DOI: 10.4070/kcj.2019.0416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.
Collapse
Affiliation(s)
- Chang Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sungsoo Cho
- Division of Cardiovascular medicine, Department of Internal medicine, Dankook University College of Medicine, Dankook University Hospital, Cheonan, Korea
| | - Yangsoo Jang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Chang YH, Lin HY, Shen FC, Su YJ, Chuang JH, Lin TK, Liou CW, Lin CY, Weng SW, Wang PW. The Causal Role of Mitochondrial Dynamics in Regulating Innate Immunity in Diabetes. Front Endocrinol (Lausanne) 2020; 11:445. [PMID: 32849261 PMCID: PMC7403198 DOI: 10.3389/fendo.2020.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Plenty of evidence suggested that chronic low-grade inflammation triggered by innate immunity activation contributes to the pathogenesis of type 2 diabetes (T2D). Using the trans-mitochondrial cybrid cell model, we have demonstrated that mitochondria independently take part in the pathological process of insulin resistance (IR) and pro-inflammatory phenotype in cybrid cells harboring mitochondrial haplogroup B4, which are more likely to develop T2D. The mitochondrial network is more fragmented, and the expression of fusion-related proteins is low in Cybrid B4. We also discovered the causal role of mitochondrial dynamics (mtDYN) proteins in regulating IR in this cybrid model, and the bidirectional interaction between mtDYN and mitochondrial oxidative stress is considered etiologically important. In this study, we further investigated whether mtDYN bridges the gap between nutrient excess and chronic inflammation in T2D. Methods: Trans-mitochondrial cybrid cells derived from the 143B human osteosarcoma cell line were cultured in a medium containing glucose (25 mM) with or without saturated fatty acid (0.25 mM BSA-conjugated palmitate), and the expression of innate immunity/inflammasome molecules was compared between cybrid B4 (the major T2D-susceptible haplogroup among the Chinese population) and cybrid D4 (the major T2D-resistant haplogroup among the Chinese population). We investigated the causal relationship between mtDYN and nutrient excess-induced inflammation in cybrid B4 by genetic manipulation of mtDYN and by pharmacologically inhibiting mitochondrial fission using the Drp1 inhibitor, mdivi-1, and metformin. Results: Under nutrient excess with high fatty acid, cybrid B4 presented increased mitochondrial pro-fission profiles and enhanced chronic inflammation markers (RIG-I, MDA5, MAVS) and inflammasome (NLRP3, Caspase-1, IL-1β), whereas the levels in cybrid D4 were not or less significantly altered. In cybrid B4 under nutrient excess, overexpression of fusion proteins (Mfn1 or Mfn2) significantly repressed the expression of innate immunity/inflammasome-related molecules, while knockdown had a less significant effect. On the contrary, knockdown of fission proteins (Drp1 or Fis1) significantly repressed the expression of innate immunity/inflammasome-related molecules, while overexpression had a less significant effect. In addition, Drp1 inhibitor mdivi-1 and metformin inhibited mitochondrial fission and attenuated the pro-inflammation expression as well. Conclusion: Our results discovered the causal relationship between mtDYN and nutrient excess-induced chronic inflammation in a diabetes-susceptible cell model. Targeting mtDYN by direct interfering pro-fission can be a therapeutic intervention for chronic inflammation in T2D.
Collapse
Affiliation(s)
- Yen-Hsiang Chang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yi Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Pei-Wen Wang
| |
Collapse
|
23
|
Li H, Zhao F, Cao F, Teng M, Yang Y, Qiu L. Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:203-211. [PMID: 31078959 DOI: 10.1016/j.envpol.2019.04.122] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Pyraclostrobin is widely used to control crop diseases, and was reported to be highly toxic to aquatic organisms. The molecular target of pyraclostrobin to fungus is the mitochondrion, but its effect on mitochondria of aquatic organisms has rarely been investigated. In this study, zebrafish larvae at 4 days post fertilization (dpf) were exposed to a range of pyraclostrobin for 96 h to assess its acute toxicity and effects on mitochondria. Pyraclostrobin at 36 μg/L or higher concentrations caused significant influences on larval heart and brain including pericardial edema, brain damage malformations, histological and mitochondrial structural damage of the two organs. The results of RNA-Seq revealed that the transcripts of genes related to oxidative phosphorylation, cardiac muscle contraction, mitochondrion, nervous system development and glutamate receptor activity were significantly influenced by 36 μg/L pyraclostrobin. Further tests showed that pyraclostrobin at 18 and 36 μg/L reduced the concentrations of proteins related to cardiac muscle contraction, impaired cardiac function, inhibited glutamate receptors activities and suppressed locomotor behavior of zebrafish larvae. Negative changes in mitochondrial complex activities, as well as reduced ATP content were also observed in larvae treated with 18 and 36 μg/L pyraclostrobin. These results suggested that pyraclostrobin exposure caused cardiotoxicity and neurotoxicity in zebrafish larvae and mitochondrial dysfunction might be the underlying mechanism of pyraclostrobin toxicity.
Collapse
Affiliation(s)
- Hui Li
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Feng Zhao
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Fangjie Cao
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Buoncervello M, Maccari S, Ascione B, Gambardella L, Marconi M, Spada M, Macchia D, Stati T, Patrizio M, Malorni W, Matarrese P, Marano G, Gabriele L. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J Cell Physiol 2019; 234:20453-20468. [PMID: 30982981 PMCID: PMC6767566 DOI: 10.1002/jcp.28647] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro‐cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF‐α), interferon γ (IFN‐γ), interleukin 6 (IL‐6), IL‐8, and IL‐1β revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF‐α, IFN‐γ, IL‐6, and IL‐8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.
Collapse
Affiliation(s)
- Maria Buoncervello
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Maccari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- National Centre of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- National Centre of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Tonino Stati
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Patrizio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy.,Department of Biology, University of Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Naruse G, Kanamori H, Yoshida A, Minatoguchi S, Kawaguchi T, Iwasa M, Yamada Y, Mikami A, Kawasaki M, Nishigaki K, Minatoguchi S. The intestine responds to heart failure by enhanced mitochondrial fusion through glucagon-like peptide-1 signalling. Cardiovasc Res 2019; 115:1873-1885. [DOI: 10.1093/cvr/cvz002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
Aims
Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone secreted by the intestine. Its receptor (GLP-1R) is expressed in various organs, including the heart. However, the dynamics and function of the GLP-1 signal in heart failure remains unclear. We investigated the impact of the cardio-intestinal association on hypertensive heart failure using miglitol, an α-glucosidase inhibitor known to stimulate intestinal GLP-1 production.
Methods and results
Dahl salt-sensitive (DS) rats fed a high-salt diet were assigned to miglitol, exendin (9-39) (GLP-1R blocker) and untreated control groups and treated for 11 weeks. Control DS rats showed marked hypertension and cardiac dysfunction with left ventricular dilatation accompanied by elevated plasma GLP-1 levels and increased cardiac GLP-1R expression as compared with age-matched Dahl salt-resistant (DR) rats. Miglitol further increased plasma GLP-1 levels, suppressed adverse cardiac remodelling, and mitigated cardiac dysfunction. In cardiomyocytes from miglitol-treated DS hearts, mitochondrial size was significantly larger with denser cristae than in cardiomyocytes from control DS hearts. The change in mitochondrial morphology reflected enhanced mitochondrial fusion mediated by protein kinase A activation leading to phosphorylation of dynamin-related protein 1, expression of mitofusin-1 and OPA-1, and increased myocardial adenosine triphosphate (ATP) content. GLP-1R blockade with exendin (9-39) exacerbated cardiac dysfunction and led to fragmented mitochondria with disarrayed cristae in cardiomyocytes and reduction of myocardial ATP content. In cultured cardiomyocytes, GLP-1 increased expression of mitochondrial fusion-related proteins and ATP content. When GLP-1 and exendin (9-39) were administered together, their effects cancelled out.
Conclusions
Increased intestinal GLP-1 secretion is an adaptive response to heart failure that is enhanced by miglitol. This could be an effective strategy for treating heart failure through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Genki Naruse
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Tomonori Kawaguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Masamitsu Iwasa
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Yoshihisa Yamada
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Atsushi Mikami
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Kazuhiko Nishigaki
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| |
Collapse
|
26
|
del Carmen Baez M, Tarán M, Moya M, de la Paz Scribano Parada M. Oxidative Stress in Metabolic Syndrome: Experimental Model of Biomarkers. MODULATION OF OXIDATIVE STRESS IN HEART DISEASE 2019:313-338. [DOI: 10.1007/978-981-13-8946-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T, Khalili K. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. J Cell Physiol 2018; 234:8122-8133. [PMID: 30417391 DOI: 10.1002/jcp.27597] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria play an important role in maintaining cardiac homeostasis by supplying the major energy required for cardiac excitation-contraction coupling as well as controlling the key intracellular survival and death pathways. Healthy mitochondria generate ATP molecules through an aerobic process known as oxidative phosphorylation (OXPHOS). Mitochondrial injury during myocardial infarction (MI) impairs OXPHOS and results in the excessive production of reactive oxygen species (ROS), bioenergetic insufficiency, and contributes to the development of cardiovascular diseases. Therefore, mitochondrial biogenesis along with proper mitochondrial quality control machinery, which removes unhealthy mitochondria is pivotal for mitochondrial homeostasis and cardiac health. Upon damage to the mitochondrial network, mitochondrial quality control components are recruited to segregate the unhealthy mitochondria and target aberrant mitochondrial proteins for degradation and elimination. Impairment of mitochondrial quality control and accumulation of abnormal mitochondria have been reported in the pathogenesis of various cardiac disorders and heart failure. Here, we provide an overview of the recent studies describing various mechanistic pathways underlying mitochondrial homeostasis with the main focus on cardiac cells. In addition, this review demonstrates the potential effects of mitochondrial quality control dysregulation in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Farzaneh G Tahrir
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dianne Langford
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Zhang L, Wang Y. Tauroursodeoxycholic Acid Alleviates H 2O 2-Induced Oxidative Stress and Apoptosis via Suppressing Endoplasmic Reticulum Stress in Neonatal Rat Cardiomyocytes. Dose Response 2018; 16:1559325818782631. [PMID: 30038553 PMCID: PMC6052504 DOI: 10.1177/1559325818782631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: We aimed to test the mechanism of protective effects of tauroursodeoxycholic acid (TUDCA) on cardiovascular disease using cultured cardiomyocytes. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and cultured and then the cells were divided into 4 groups based on the treatments: control group (cells treated with culture medium), H2O2/thapsigargin (TG) group (cells treated with oxidative stress and endoplasmic reticulum [ER] stress inducer), TUDCA group, and H2O2/TG + TUDCA group. The treated NRCMs were then subjected to serial analyses including flow cytometry, enzyme-linked immunosorbent assay, and Western blotting. Results: Tauroursodeoxycholic acid significantly attenuated H2O2-induced reactive oxygen species generation and lactate dehydrogenase release and restored H2O2-induced reductions of glutathione and superoxide dismutase levels in NRCMs. Tauroursodeoxycholic acid also alleviated H2O2-induced cardiomyocytes apoptosis, as well as the Bax/Bcl2 ratio compared with that of H2O2 treated alone. In addition, TUDCA suppressed TG-induced ER stress as reflected by inversing cell viability and the expression levels of glucose-regulated protein 78 kDa and C/enhancer-binding protein homologous protein. Conclusion: Our data indicated that TUDCA-mediated inhibition on H2O2-induced oxidative stress and cardiomyocytes apoptosis was through suppressing ER stress, and TUDCA possesses the potential to be developed as therapeutic tool in clinical use for cardiovascular diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yanmin Wang
- Department of Circulatory Medicine, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
29
|
Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P. Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Transl Stroke Res 2018; 10:10.1007/s12975-018-0642-y. [PMID: 29926383 DOI: 10.1007/s12975-018-0642-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Abstract
Stroke is a debilitating condition which is also the second leading cause of death and disability worldwide. Despite the benefits and promises shown by numerous neuroprotective agents in animal stroke models, their clinical translation has not been a complete success. Hence, search for treatment options have directed researchers towards utilising stem cells. Mitochondria has a major involvement in the pathophysiology of stroke and a number of other conditions. Stem cells have shown the ability to transfer mitochondria to the damaged cells and to help revive cell energetics in the recipient cell. The present review discusses how stem cells could be employed to protect neurons and mitochondria in stroke and also the various mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Harpreet Kaur
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Jackson Saraf
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kanchan Vats
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kanta Pravalika
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Madhuri Wanve
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Akhilesh Kumar
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Xin Wang
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pallab Bhattacharya
- Department or Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
30
|
Li H, Yu S, Cao F, Wang C, Zheng M, Li X, Qiu L. Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:1-9. [PMID: 29304412 DOI: 10.1016/j.ecoenv.2017.12.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
As a newly developed, highly efficient strobilurin fungicide, pyraoxystrobin has been reported to be highly toxic to some aquatic organisms. However, the toxicity of pyraoxystrobin to different life stages of fish and the potential underlying mechanisms are still unknown. Hence, in the present study, the acute toxicity of pyraoxystrobin to different life stages of zebrafish (embryo, larva, and adult) was assessed. The developmental toxicity of pyraoxystrobin to zebrafish embryos and its effects on gene transcription in the embryo were also investigated. The results showed that the 96-h LC50 values of pyraoxystrobin to embryos [2h post-fertilization (hpf)], 12h post-hatching (hph) larvae (84 hpf), 72 hph larvae (144 hpf), and adult zebrafish were 4.099, 1.069, 3.236, and 5.970µg/L, respectively. This suggests that pyraoxystrobin has very high toxicity to different life stages of zebrafish, while the newly hatched larvae constitute the most sensitive period of zebrafish to pyraoxystrobin. Decreased heart rate, hatching inhibition, growth regression, and morphological deformities were observed in zebrafish embryos after acute exposure to different concentrations of pyraoxystrobin. The rate of malformation increased in a time- and concentration-dependent manner in embryos, and the most pronounced abnormality was pericardial edema and yolk sac edema. Pyraoxystrobin (2 and 4μg/L) significantly altered the mRNA levels of genes related to mitochondrial respiratory chain and ATP synthesis (NDI, uqcrc, and ATPo6), oxidative stress (Mn-Sod, Cat, and Gpx), apoptosis (p53, Bcl2, Bax, and Cas3), and immune system (TNFα, IFN, and IL-1b) in zebrafish embryos. This result indicates that the alteration of these genes is a potential mechanism underlying the toxic effects of pyraoxystrobin on zebrafish.
Collapse
Affiliation(s)
- Hui Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Song Yu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fangjie Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Mingqi Zheng
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Huang CY, Kuo WW, Ho TJ, Chiang SF, Pai PY, Lin JY, Lin DY, Kuo CH, Huang CY. Rab9-dependent autophagy is required for the IGF-IIR triggering mitophagy to eliminate damaged mitochondria. J Cell Physiol 2018; 233:7080-7091. [PMID: 29574782 DOI: 10.1002/jcp.26346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ding-Yu Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taichung
| |
Collapse
|
32
|
Abstract
Myocardial injury activates inflammatory mediators and provokes the integration of BCL-2/adenovirus E1B 19KD interacting protein 3 (BNIP3) into mitochondrial membranes. Translocation of BNIP3 to mitochondria inexorably causes mitochondrial fragmentation. Heart failure (HF) epitomizes the life-threatening phase of BNIP3-induced mitochondrial dysfunction and cardiomyocyte death. Available data suggest that inflammatory mediators play a key role in cardiac cell demise and have been implicated in the pathogenesis of HF syndrome. In the present study, we reviewed the changes in BNIP3 protein expression levels during inflammatory response and postulated its role in inflammation-mediated HF. We also identified inflammatory mediators' response such as stimulation of TNF-α and NO as potent inducer of BNIP3. Previous studies suggest that the pro-apoptotic protein has a common regulator with IL-1β and induces IL-6-stimulated cardiac hypertrophy. These findings corroborate our contention that interventions designed to functionally modulate BNIP3 activity during inflammatory-mediated HF may prove beneficial in preventing HF. Such a revelation will open new avenue for further research to unravel a novel therapeutic strategy in HF diseases. Moreover, understanding of the relationship between BNIP3 and inflammatory mediators in HF pathologies will not only contribute to the discovery of drugs that can inhibit inflammation-mediated heart diseases, but also enhance the current knowledge on the key role BNIP3 plays during inflammation.
Collapse
|
33
|
Lee H, Tak H, Park SJ, Jo YK, Cho DH, Lee EK. microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor. BMB Rep 2018; 50:214-219. [PMID: 28148392 PMCID: PMC5437966 DOI: 10.5483/bmbrep.2017.50.4.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - So Jung Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Yoon Kyung Jo
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Dong Hyung Cho
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17014, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
34
|
del Campo A, Bustos C, Mascayano C, Acuña-Castillo C, Troncoso R, Rojo LE. Metabolic Syndrome and Antipsychotics: The Role of Mitochondrial Fission/Fusion Imbalance. Front Endocrinol (Lausanne) 2018; 9:144. [PMID: 29740394 PMCID: PMC5924798 DOI: 10.3389/fendo.2018.00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Second-generation antipsychotics (SGAs) are known to increase cardiovascular risk through several physiological mechanisms, including insulin resistance, hepatic steatosis, hyperphagia, and accelerated weight gain. There are limited prophylactic interventions to prevent these side effects of SGAs, in part because the molecular mechanisms underlying SGAs toxicity are not yet completely elucidated. In this perspective article, we introduce an innovative approach to study the metabolic side effects of antipsychotics through the alterations of the mitochondrial dynamics, which leads to an imbalance in mitochondrial fusion/fission ratio and to an inefficient mitochondrial phenotype of muscle cells. We believe that this approach may offer a valuable path to explain SGAs-induced alterations in metabolic homeostasis.
Collapse
Affiliation(s)
- Andrea del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago, Chile
- Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Catalina Bustos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Mascayano
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Leonel E. Rojo,
| |
Collapse
|
35
|
Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2891-2903. [DOI: 10.1016/j.bbadis.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
36
|
Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A. Training and acute exercise modulates mitochondrial dynamics in football players' blood mononuclear cells. Eur J Appl Physiol 2017; 117:1977-1987. [PMID: 28748372 DOI: 10.1007/s00421-017-3684-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Regular physical activity induces oxidative stress but also causes adaptations in antioxidant defences including the nuclear factor κB (NF-κB) pathway, which activates target genes related to antioxidant defences such as uncoupling proteins (UCPs), and mitochondrial biogenesis mediated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The aim of the study was to determine the effect of long-term training and acute exercise on oxidant/antioxidant status and the expression of mitochondrial biogenesis genes in peripheral blood mononuclear cells (PBMCs). METHODS Twelve professional football players performed an 8-week exercise programme comprising a daily 2-h football training session. Blood samples were taken before and after the training season. RESULTS The results reported a significant increase in antioxidant protein levels and in mitochondrial proteins in resting conditions after the 8-week training period. PGC1α, UCP-2 and mitofusin 2 protein levels also increased after acute exercise compared to pre-exercise levels. After the training, the expression of PGC1α, cytochrome c oxidase subunit IV and mitochondrial NADH dehydrogenase subunit 5 messenger RNA (mRNA) significantly augmented after the acute physical activity compared to pre-exercise levels; while no changes occurred in these mRNA in basal conditions. NF-κB activation and ROS production reported a significant increase after acute exercise. CONCLUSIONS Training increases the levels of proteins related to mitochondrial biogenesis and improves the antioxidant capabilities of mitochondria in PBMCs among well-trained football players. Acute exercise may act as an inducer of mitochondrial biogenesis through NF-κB activation and PGC1α gene expression.
Collapse
Affiliation(s)
- Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Miquel Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Chile, 4070386, Concepción, Chile
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain. .,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain.
| |
Collapse
|
37
|
Aung LHH, Li R, Prabhakar BS, Li P. Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1l-mediated mitochondrial fission. J Cell Mol Med 2017. [PMID: 28643438 PMCID: PMC5706585 DOI: 10.1111/jcmm.13250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The long-term usage of doxorubicin (DOX) is largely limited due to the development of severe cardiomyopathy. Many studies indicate that DOX-induced cardiac injury is related to reactive oxygen species generation and ultimate activation of apoptosis. The role of novel mitochondrial fission protein 1 (Mtfp1) in DOX-induced cardiotoxicity remains elusive. Here, we report the pro-mitochondrial fission and pro-apoptotic roles of Mtfp1 in DOX-induced cardiotoxicity. DOX up-regulates the Mtfp1 expression in HL-1 cardiac myocytes. Knockdown of Mtfp1 prevents cardiac myocyte from undergoing mitochondrial fission, and subsequently reduces the DOX-induced apoptosis by preventing dynamin 1-like (Dnm1l) accumulation in mitochondria. In contrast, when Mtfp1 is overexpressed, a suboptimal dose of DOX can induce a significant percentage of cells to undergo mitochondrial fission and apoptosis. These data suggest that knocking down of Mtfp1 can minimize the cardiomyocytes loss in DOX-induced cardiotoxicity. Thus, the regulation of Mtfp1 expression could be a novel therapeutic approach in chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lynn H H Aung
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ruibei Li
- School of Professional Studies, Northwestern University, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1066-1077. [PMID: 27836629 PMCID: PMC5423868 DOI: 10.1016/j.bbadis.2016.11.010] [Citation(s) in RCA: 914] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Gurjit Kaur Bhatti
- UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
| |
Collapse
|
39
|
Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:13-46. [PMID: 28253984 DOI: 10.1016/bs.pmbts.2016.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.
Collapse
Affiliation(s)
- J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - G K Bhatti
- UGC Centre of Excellence in Nano Applications, Panjab University, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
40
|
Mitochondria in Structural and Functional Cardiac Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:277-306. [PMID: 28551793 DOI: 10.1007/978-3-319-55330-6_15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heart must function continuously as it is responsible for both supplying oxygen and nutrients throughout the entire body, as well as for the transport of waste products to excretory organs. When facing either a physiological or pathological increase in cardiac demand, the heart undergoes structural and functional remodeling as a means of adapting to increased workload. These adaptive responses can include changes in gene expression, protein composition, and structure of sub-cellular organelles involved in energy production and metabolism. Mitochondria are essential for cardiac function, as they supply the ATP necessary to support continuous cycles of contraction and relaxation. In addition, mitochondria carry out other important processes, including synthesis of essential cellular components, calcium buffering, and initiation of cell death signals. Not surprisingly, mitochondrial dysfunction has been linked to several cardiovascular disorders, including hypertension, cardiac hypertrophy, ischemia/reperfusion and heart failure. The present chapter will discuss how changes in mitochondrial cristae structure, fusion/fission dynamics, fatty acid oxidation, ATP production, and the generation of reactive oxygen species might impact cardiac structure and function, particularly in the context of pathological hypertrophy and fibrotic response. In addition, the mechanistic role of mitochondria in autophagy and programmed cell death of cardiomyocytes will be addressed. Here we will also review strategies to improve mitochondrial function and discuss their cardioprotective potential.
Collapse
|
41
|
Abstract
All multicellular organisms develop during evolution the highly regulated and interconnected pathways of cell death. This complex network contributes to the pathogenesis of various cardiovascular disorders including ischemia/reperfusion injury, myocardial infarction, heart failure, dysrhythmias and atherosclerosis. Chronic cardiac remodeling response and transition to overt HF have been associated with modestly increased apoptosis, although the actual burden of chronic cell loss attributable to apoptosis is not clear. Central mediators of cardiomyocyte survival and death are the mitochondrial organelles. Based on its morphological characteristics, cell death can be classified into three major types: apoptosis, necrosis and autophagy. Recently, a new pathway of regulated necrosis, necroptosis, has also been reported in the failing heart. The mitochondrial (intrinsic) and the death-receptor-mediated (extrinsic) converge at mitochondria inducing release of mitochondrial apoptogens to initiate the caspase cascade and eventually degradation of the doomed cardiomyocyte. Activation of death receptors can initiate not only extrinsic apoptotic pathway, but also necrosis. On the other hand, autophagy, which is characterized by the massive formation of lysosomal-derived vesicles, containing degenerating cytoplasmic contents, is primarily a survival response to nutrient deprivation, and a selective form of autophagy, mitophagy, is also a protective mechanism that allows to eliminate damaged mitochondria and thereby to attenuate mitochondria-mediated apoptosis and necrosis in the myocardium. Further insight into the molecular mechanisms underlying cell death will increase the efficiency and repertoire of therapeutic interventions available in cardiovascular disease.
Collapse
Affiliation(s)
- Gordon W Moe
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| | - José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue. 2nd. Floor, Suite 225, Highland Park, NJ, 08904, USA.
| |
Collapse
|
42
|
Przybylska-Gornowicz B, Lewczuk B, Ziółkowska N, Prusik M. Adrenergic control of pinealocyte chondriome – an in vitro study. Pol J Vet Sci 2016; 19:819-829. [DOI: 10.1515/pjvs-2016-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Norepinephrine released from sympathetic innervation plays the main role in the regulation of melatonin secretion in mammalian pinealocytes. The present study was conducted for the following reasons: 1) to establish whether the pinealocyte chondriome is controlled by norepinephrine, 2) to determine the effect of adrenergic stimulation on mitochondria, and 3) to characterize adrenoceptors involved in the regulation of the chondriome.
The static organ culture of the pineal gland was used. The explants were incubated for 5 consecutive days in control medium and between 20:00 and 08:00 in medium with the presence of 10 μM norepinephrine – adrenergic agonist; isoproterenol – beta-adrenoceptor agonist; cirazoline, methoxamine, M-6364 – alfa1 – adrenoceptors agonists or PMA – activator of PKC. The explants were then subjected to ultrastructural examination and morphometric analysis.
The incubation of explants in the presence of norepinephrine or isoproterenol caused a decrease in the relative volume and the numerical density of mitochondria and induced an increase in the percentage of free mitochondria in pinealocytes. Significant changes in these parameters were not observed after treatment with methoxamine, cirazoline, M-6463 and PMA.
The results obtained show that the chondriome of pig pinealocytes is controlled by norepinephrine acting via beta-adrenoceptors. Adrenergic stimulation, repeated for five consecutive days of organ culture, causes a decrease in the number of mitochondria and a shift in the distribution of mitochondria from the form of networks and filaments into the form of single particles. This indicates the intensive remodeling of the mitochondria network, which is closely linked to the metabolic status of the cell.
Collapse
|
43
|
Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8950384. [PMID: 27698953 PMCID: PMC5028859 DOI: 10.1155/2016/8950384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA) supplementation (1.14 g/day) on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs) from sportsmen. Subjects were assigned to an intervention (N = 9) or placebo groups (N = 7) in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1), and mitochondrial transcription factor A (Tfam) were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV) activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.
Collapse
|
44
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
45
|
Abstract
Heart failure (HF) is a multifactorial disease brought about by numerous, and oftentimes complex, etiological mechanisms. Although well studied, HF continues to affect millions of people worldwide and current treatments can only prevent further progression of HF. Mitochondria undoubtedly play an important role in the progression of HF, and numerous studies have highlighted mitochondrial components that contribute to HF. This review presents an overview of the role of mitochondrial biogenesis, mitochondrial oxidative stress, and mitochondrial permeability transition pore in HF, discusses ongoing studies that attempt to address the disease through mitochondrial targeting, and provides an insight on how these studies can affect future research on HF treatment.
Collapse
|
46
|
Torres G, Morales PE, García-Miguel M, Norambuena-Soto I, Cartes-Saavedra B, Vidal-Peña G, Moncada-Ruff D, Sanhueza-Olivares F, San Martín A, Chiong M. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol 2016; 104:52-61. [PMID: 26807480 PMCID: PMC4775317 DOI: 10.1016/j.bcp.2016.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.
Collapse
Affiliation(s)
- Gloria Torres
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Marina García-Miguel
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Benjamín Cartes-Saavedra
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Gonzalo Vidal-Peña
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Moncada-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martín
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Centro Estudios Moleculares de la Célula (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Yang L, Luo C, Chen C, Wang X, Shi W, Liu J. All-trans retinoic acid protects against doxorubicin-induced cardiotoxicity by activating the ERK2 signalling pathway. Br J Pharmacol 2015; 173:357-71. [PMID: 26507774 DOI: 10.1111/bph.13377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is a powerful antineoplastic agent for treating a wide range of cancers. However, doxorubicin cardiotoxicity of the heart has largely limited its clinical use. All-trans retinoic acid (ATRA) plays an important role in many cardiac biological processes, but its protective effects on doxorubicin-induced cardiotoxicity remain unknown. Here, we studied the effect of ATRA on doxorubicin cardiotoxicity and the underlying mechanisms. EXPERIMENTAL APPROACHES Cellular viability assays, Western blotting and mitochondrial respiration analyses were employed to evaluate the cellular response to ATRA in H9c2 cells and primary cardiomyocytes. Quantitative PCR and gene knockdown were performed to investigate the underlying molecular mechanisms of ATRA's effects on doxorubicin cardiotoxicity. KEY RESULTS ATRA significantly inhibited doxorubicin-induced apoptosis in H9c2 cells and primary cardiomyocytes. ATRA was more effective against doxorubicin cardiotoxicity than resveratrol and dexrazoxane. ATRA also suppressed reactive oxygen species generation and restored expression levels of mRNA and proteins in the phase II detoxifying enzyme system: nuclear factor-E2-related factor 2, manganese superoxide dismutase, haem oxygenase-1, and mitochondrial function (mitochondrial membrane integrity, mitochondrial DNA copy numbers and mitochondrial respiration capacity, biogenesis and dynamics). Both a ERK1/2 inhibitor (U0126) and ERK2 siRNA, but not ERK1 siRNA, abolished the protective effect of ATRA against doxorubicin-induced toxicity in H9c2 cells. Remarkably, ATRA did not compromise the anticancer efficacy of doxorubicin in gastric carcinoma cells. CONCLUSIONS AND IMPLICATIONS ATRA protected cardiomyocytes against doxorubicin-induced toxicity, by activating the ERK2 pathway, without compromising its anticancer efficacy. Therefore, ATRA is a promising candidate as a cardioprotective agent against doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Liang Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Luo
- School of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Cong Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xun Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wen Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
48
|
Banerjee P, Chander V, Bandyopadhyay A. Balancing functions of annexin A6 maintain equilibrium between hypertrophy and apoptosis in cardiomyocytes. Cell Death Dis 2015; 6:e1873. [PMID: 26335715 PMCID: PMC4650436 DOI: 10.1038/cddis.2015.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/11/2023]
Abstract
Pathological cardiac hypertrophy is a major risk factor associated with heart failure, a state concomitant with increased cell death. However, the mechanism governing progression of hypertrophy to apoptosis at the single-cell level remains elusive. Here, we demonstrate annexin A6 (Anxa6), a calcium (Ca(2+))-dependent phospholipid-binding protein critically regulates the transition of chronic hypertrophied cardiomyocytes to apoptosis. Treatment of the H9c2(2-1) cardiomyocytes with hypertrophic agonists upregulates and relocalizes Anxa6 with increased cytosolic punctate appearance. Live cell imaging revealed that chronic exposure to hypertrophic agonists such as phenylephrine (PE) compromises the mitochondrial membrane potential (ΔΨm) and morphological dynamics. Such chronic hypertrophic induction also activated the caspases 9 and 3 and induced cleavage of the poly-(ADP-ribose) polymerase 1 (Parp1), which are the typical downstream events in the mitochondrial pathways of apoptosis. An increased rate of apoptosis was evident in the hypertrophied cardiomyocytes after 48-72 h of treatment with the hypertrophic agonists. Anxa6 was progressively associated with the mitochondrial fraction under chronic hypertrophic stimulation, and Anxa6 knockdown severely abrogated mitochondrial network and dynamics. Ectopically expressed Anxa6 protected the mitochondrial morphology and dynamics under PE treatment, and also increased the cellular susceptibility to apoptosis. Biochemical analysis showed that Anxa6 interacts with Parp1 and its 89 kDa cleaved product in a Ca(2+)-dependent manner through the N-terminal residues (1-28). Furthermore, expression of Anxa6(S13E), a mutant dominant negative with respect to Parp1 binding, served as an enhancer of mitochondrial dynamics, even under chronic PE treatment. Chemical inhibition of Parp1 activity released the cellular vulnerability to apoptosis in Anxa6-expressing stable cell lines, thereby shifting the equilibrium away from cell death. Taken together, the present study depicts a dual regulatory function of Anxa6 that is crucial for balancing hypertrophy with apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- P Banerjee
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| | - V Chander
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| | - A Bandyopadhyay
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, West Bengal, India
| |
Collapse
|
49
|
Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-Miguel M, Mellado R. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol 2014; 2:72. [PMID: 25566542 PMCID: PMC4266092 DOI: 10.3389/fcell.2014.00072] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs) are essential processes of vascular development. VSMC have biosynthetic, proliferative, and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension, and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e., mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER). Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial–ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Benjamín Cartes-Saavedra
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Ignacio Norambuena-Soto
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - David Mondaca-Ruff
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Pablo E Morales
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Marina García-Miguel
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Rosemarie Mellado
- Faculty of Chemistry, Pontifical Catholic University of Chile Santiago, Chile
| |
Collapse
|
50
|
Dianat M, Sadeghi N, Badavi M, Panahi M, Taheri Moghadam M. Protective effects of co-administration of gallic Acid and cyclosporine on rat myocardial morphology against ischemia/reperfusion. Jundishapur J Nat Pharm Prod 2014; 9:e17186. [PMID: 25625048 PMCID: PMC4302406 DOI: 10.17795/jjnpp-17186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/21/2014] [Accepted: 02/08/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Irreversible myocardial ischemic injury begins 20 minutes after the onset of coronary occlusion. Then the infarcted cells show signs of necrosis and death. OBJECTIVES This study investigated the effects of co-administration of Gallic acid (antioxidant) with cyclosporine (mitochondrial permeability transition pore [mPTP] inhibitor) on myocardial morphology of rats during ischemia and reperfusion. MATERIALS AND METHODS Fifty-four male Wistar rats (250-300 g), were randomly divided into 9 groups: sham, control (Ca received saline, 1 mL/kg, Cb: perfused with cyclosporine CsA 0.2 µM), 3 groups pretreated with Gallic acid in saline (G1a:7.5, G2a:15, and G3a: 30 mg/kg/day, and gavage daily for 10 days, n = 6), and the other three groups were pretreated with Gallic acid then perfused using CsA, (G1b:7.5, G2b:15, and G3b: 30 mg/kg/day) at the first 13 minutes of reperfusion period. After 10 days pretreatment, the rat hearts were isolated and transferred to Langendorff apparatus and exposed to 30 minutes ischemia following 60 minutes reperfusion. Afterward, the hearts were preserved in 10% formalin for histological studies at the end of the experiment. Finally, hematoxylin and eosin and Masson's trichrome staining techniques were used for evaluating the changes in myocardial architecture, degradation of myofibers, and collagen integrity. The differences were analyzed using Pearson test. RESULTS Cell degenerative changes, pyknotic nuclei, contraction bands, edema, and loosening of collagen in between muscle fibers were observed during ischemia-reperfusion. Myocardial architecture and cellular morphology were recovered in co-administration groups, especially in (Gallic acid 15 mg/kg + CsA, P < 0.001). CONCLUSIONS The results suggest the important role of the antioxidant system potentiation in the prevention of myocardial damage.
Collapse
Affiliation(s)
- Mahin Dianat
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Najmeh Sadeghi
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mohammad Badavi
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Marziyeh Panahi
- Department of Histology and Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mahin Taheri Moghadam
- Department of Pathology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|