1
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
2
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
3
|
Cellular microdomains for nitric oxide signaling in endothelium and red blood cells. Nitric Oxide 2020; 96:44-53. [PMID: 31911123 DOI: 10.1016/j.niox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
There is accumulating evidence that biological membranes are not just homogenous lipid structures, but are highly organized in microdomains, i.e. compartmentalized areas of protein and lipid complexes, which facilitate necessary interactions for various signaling pathways. Each microdomain exhibits unique composition, membrane location and dynamics, which ultimately shape their functional characteristics. In the vasculature, microdomains are crucial for organizing and compartmentalizing vasodilatory signals that contribute to blood pressure homeostasis. In this review we aim to describe how membrane microdomains in both the endothelium and red blood cells allow context-specific regulation of the vasodilatory signal nitric oxide (NO) and its corresponding metabolic products, and how this results in tightly controlled systemic physiological responses. We will describe (1) structural characteristics of microdomains including lipid rafts and caveolae; (2) endothelial cell caveolae and how they participate in mechanosensing and NO-dependent mechanotransduction; (3) the myoendothelial junction of resistance arterial endothelial cells and how protein-protein interactions within it have profound systemic effects on blood pressure regulation, and (4) putative/proposed NO microdomains in RBCs and how they participate in control of systemic NO bioavailability. The sum of these discussions will provide a current view of NO regulation by cellular microdomains.
Collapse
|
4
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Lilly B, Dammeyer K, Marosis S, McCallinhart PE, Trask AJ, Lowe M, Sawant D. Endothelial cell-induced cytoglobin expression in vascular smooth muscle cells contributes to modulation of nitric oxide. Vascul Pharmacol 2018; 110:7-15. [PMID: 29969687 PMCID: PMC6135703 DOI: 10.1016/j.vph.2018.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Cytoglobin is a widely expressed heme protein that binds oxygen, carbon monoxide and nitric oxide. Recent examination of cytoglobin in the vasculature indicates that it contributes to nitric oxide availability, which is central to normal blood vessel function through regulation of smooth muscle cell tone and physiological response. Given the potential implications of cytoglobin in vascular function, we examined how cytoglobin might be uniquely regulated in vascular smooth muscle cells. Our data demonstrate that endothelial cells can increase the expression of cytoglobin in vascular smooth muscle cells, and the induction of cytoglobin is cell contact-dependent. We show that Notch signaling is necessary for endothelial cell-induced cytoglobin expression and Notch2 and Notch3 are sufficient to drive its expression in aortic smooth muscle cells. We further reveal that in cytoglobin-depleted smooth muscle cells there is increased cellular nitric oxide. These data demonstrate that, in addition to being the main producer of vascular nitric oxide, endothelial cells facilitate the ability of smooth muscle cells to metabolize nitric oxide through upregulation of cytoglobin. Our results reveal a novel mechanism by which Notch signaling contributes to vascular function through regulation of a gene that controls nitric oxide levels.
Collapse
Affiliation(s)
- Brenda Lilly
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA.
| | - Kristen Dammeyer
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA
| | - Sam Marosis
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA
| | - Megan Lowe
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Dwitiya Sawant
- Center for Cardiovascular Research, The Ohio State University, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Straub AC, Gladwin MT. Escorting α-globin to eNOS: α-globin-stabilizing protein paves the way. J Clin Invest 2018; 128:4755-4757. [PMID: 30295642 DOI: 10.1172/jci124302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the vascular wall, endothelial nitric oxide synthase (eNOS) produces NO to regulate peripheral vascular resistance, tissue perfusion, and blood pressure. In resistance arteries, eNOS couples with α-globin and, through chemical reactions, modulates NO diffusion needed for vascular smooth muscle relaxation. While α-globin protein alone is known to be unstable, the mechanisms that enable α-globin protein expression remain elusive. Here, Lechauve et al. report that arterial endothelium expresses α hemoglobin-stabilizing protein, which acts as a critical chaperone protein for α-globin expression and vascular function.
Collapse
Affiliation(s)
- Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute.,Department of Pharmacology and Chemical Biology, and
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Koçer G, Nasircilar Ülker S, Şentürk ÜK. The contribution of carbon monoxide to vascular tonus. Microcirculation 2018; 25:e12495. [PMID: 30040171 DOI: 10.1111/micc.12495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The aim of this descriptive study was to examine the contribution of CO in the maintenance of vascular tonus in different organs and different vessel segments; the underlying mechanism of CO-induced vasodilation was investigated. METHODS Sixty Wistar albino rats, aged 6-8 months, were used in this study. Response to CO by isolated arteries from the thoracic and abdominal aorta and mesenteric, renal, gastrocnemius, and gracilis muscles as well as heart, lung, and brain vascular beds was endogenously and exogenously studied using organ baths or myograph. In addition, HO-2 protein expression was assessed using Western blot analysis in isolated vessel segments. RESULTS Although CO was shown to contribute to the regulation of vascular tonus in all feed arteries except those of the gracilis vascular bed, no effect was observed in the resistance arteries, with the sole exception of the pial artery. No relationship between HO-2 protein level and CO contribution to endogenous vascular tonus was observed. CONCLUSIONS While the vasodilator effect of CO in vessels smaller than 600 μm in diameter was found to be mediated via potassium channels, in vessels larger than 600 μm in diameter, the effect was through both the potassium channels and the cGMP pathway.
Collapse
Affiliation(s)
- Günnur Koçer
- Department of Physiology, Medical Faculty, Near East University, Nicosia, Cyprus
| | | | - Ümit Kemal Şentürk
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Popescu BF, Frischer JM, Webb SM, Tham M, Adiele RC, Robinson CA, Fitz-Gibbon PD, Weigand SD, Metz I, Nehzati S, George GN, Pickering IJ, Brück W, Hametner S, Lassmann H, Parisi JE, Yong G, Lucchinetti CF. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol 2017; 134:45-64. [PMID: 28332093 PMCID: PMC5486634 DOI: 10.1007/s00401-017-1696-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distribution of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.
Collapse
Affiliation(s)
- Bogdan F Popescu
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada.
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada.
| | - Josa M Frischer
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mylyne Tham
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada
| | - Reginald C Adiele
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada
| | - Christopher A Robinson
- Department of Pathology and Laboratory Medicine, Saskatoon Health Region/College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrick D Fitz-Gibbon
- Department of Health Sciences Research, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Imke Metz
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Susan Nehzati
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Graham N George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
- Toxicology Center, University of Saskatchewan, Saskatoon, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
- Toxicology Center, University of Saskatchewan, Saskatoon, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guo Yong
- Department of Neurology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
11
|
Parikh J, Kapela A, Tsoukias NM. Can endothelial hemoglobin-α regulate nitric oxide vasodilatory signaling? Am J Physiol Heart Circ Physiol 2017; 312:H854-H866. [PMID: 28130333 DOI: 10.1152/ajpheart.00315.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. (Nature 491: 473-477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo.NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo.
Collapse
Affiliation(s)
- Jaimit Parikh
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and
| | - Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and .,School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
12
|
Amri F, Ghouili I, Tonon MC, Amri M, Masmoudi-Kouki O. Hemoglobin-Improved Protection in Cultured Cerebral Cortical Astroglial Cells: Inhibition of Oxidative Stress and Caspase Activation. Front Endocrinol (Lausanne) 2017; 8:67. [PMID: 28443065 PMCID: PMC5385367 DOI: 10.3389/fendo.2017.00067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays a major role in triggering astroglial cell death in diverse neuropathological conditions such as ischemia and neurodegenerative diseases. Numerous studies indicate that hemoglobin (Hb) is expressed in both resting and reactive glia cells, but nothing is known regarding a possible role of Hb on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of Hb on hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in cultured rat astrocytes. Our study demonstrates that administration of graded concentrations of Hb (10-12 to 10-6 M) to H2O2-treated astrocytes reduces cell death in a concentration-dependent manner. H2O2 treatment induces the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), a drop of the mitochondrial membrane potential, and a stimulation of caspase-3/7 activity. Exposure of H2O2-treated cells to Hb was accompanied by marked attenuations of ROS and NO surproductions, mitochondrial membrane potential reduction, and caspase-3/7 activity increase. The protective action of Hb was blocked by the protein kinase A (PKA) inhibitor H89, the protein kinase C (PKC) inhibitor chelerythrine, and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. Taken together, these data demonstrate for the first time that Hb is a glioprotective factor that protects astrocytes from apoptosis induced by oxidative stress and suggest that Hb may confer neuroprotection in neurodegenerative diseases. The anti-apoptotic activity of Hb on astrocytes is mediated through the PKA, PKC, and MAPK transduction pathways and can be accounted for by inhibition of oxidative stress-induced mitochondrial dysfunctions and caspase activation.
Collapse
Affiliation(s)
- Fatma Amri
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Ikram Ghouili
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Marie-Christine Tonon
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Mohamed Amri
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University of Tunis El Manar, Faculty of Sciences of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
- *Correspondence: Olfa Masmoudi-Kouki,
| |
Collapse
|
13
|
Abstract
Globins are globular proteins for either transport or storage of oxygen which are critical for cellular metabolism. Four globins have been identified in rodent and human brains. Among them, neuroglobin, cytoglobin and hemoglobin chains are constitutively expressed in normal brain, while myoglobin is only expressed in some neurological disorders. Studies on the molecular structure, expression and functional features of these brain globins indicated that they may play crucial roles in maintenance of neural cell survival and activity, including neurons and astrocytes. Their regulation in neurological disorders may help thoroughly understand initiation and progression of ischemia, Alzheimer's disease and glioma, etc. Elucidation of the brain globin functions might remarkably improve medical strategies that sustain neurological homeostasis and treat neurological diseases. Here the expression pattern and functions of brain globins and their involvement in neurological disorders are reviewed.
Collapse
Affiliation(s)
- Luo-Kun Xie
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
14
|
Brown N, Alkhayer K, Clements R, Singhal N, Gregory R, Azzam S, Li S, Freeman E, McDonough J. Neuronal Hemoglobin Expression and Its Relevance to Multiple Sclerosis Neuropathology. J Mol Neurosci 2016; 59:1-17. [PMID: 26809286 DOI: 10.1007/s12031-015-0711-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is characterized by demyelination and progressive neurological disability. Previous studies have reported defects to mitochondria in MS including decreased expression of nuclear encoded electron transport chain subunit genes and inhibition of respiratory complexes. We previously reported increased levels of the hemoglobin β subunit (Hbb) in mitochondrial fractions isolated from postmortem MS cortex compared to controls. In the present study, we performed immunohistochemistry to determine the distribution of Hbb in postmortem MS cortex and identified proteins which interact with Hbb by liquid chromatography tandem mass spectrometry (LC-MS/MS). We found that Hbb was enriched in pyramidal neurons in internal layers of the cortex and interacts with subunits of ATP synthase, histones, and a histone lysine demethylase. We also found that Hbb is present in the nucleus and that expression of Hbb in SH-SY5Y neuroblastoma cells increased trimethylation of histone H3 on lysine 4 (H3K4me3), a histone mark that regulates cellular metabolism. These data suggest that Hbb may be a part of a mechanism linking neuronal energetics with epigenetic changes to histones in the nucleus and may provide neuroprotection in MS by supporting neuronal metabolism.
Collapse
Affiliation(s)
- Nolan Brown
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Kholoud Alkhayer
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Robert Clements
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Naveen Singhal
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Roger Gregory
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Sausan Azzam
- Proteomics Core, Case Western Reserve University, Cleveland, OH, USA
| | - Shuo Li
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.,Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Ernest Freeman
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jennifer McDonough
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
15
|
Electron self-exchange in hemoglobins revealed by deutero-hemin substitution. J Inorg Biochem 2015; 150:139-47. [DOI: 10.1016/j.jinorgbio.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
|
16
|
Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radic Biol Med 2014; 73:136-42. [PMID: 24832680 PMCID: PMC4135531 DOI: 10.1016/j.freeradbiomed.2014.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Hemoglobin has been studied and well characterized in red blood cells for over 100 years. However, new work has indicated that the hemoglobin α subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for the control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and, ultimately, vascular tone and blood pressure. This review discusses the current knowledge of hemoglobin׳s properties as a gas exchange molecule in the bloodstream and extrapolates the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries.
Collapse
Affiliation(s)
- Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler Johnson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jody Beers
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
17
|
Rees MD, Maiocchi SL, Kettle AJ, Thomas SR. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate. Free Radic Biol Med 2014; 72:91-103. [PMID: 24704973 DOI: 10.1016/j.freeradbiomed.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.
Collapse
Affiliation(s)
- Martin D Rees
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rural Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sophie L Maiocchi
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, 8140 Christchurch, New Zealand
| | - Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Tong J, Zweier JR, Huskey RL, Ismail RS, Hemann C, Zweier JL, Liu X. Effect of temperature, pH and heme ligands on the reduction of Cygb(Fe(3+)) by ascorbate. Arch Biochem Biophys 2014; 554:1-5. [PMID: 24780244 DOI: 10.1016/j.abb.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
Cytoglobin (Cygb) plays a role in regulating vasodilation in response to changes in local oxygen concentration by altering the rate of nitric oxide (NO) metabolism. Because the reduction of Cygb(Fe(3+)) by a reductant is the control step for Cygb-mediated NO metabolism, we examined the effects of temperature, pH, and heme ligands on the Cygb(Fe(3+)) reduction by ascorbate (Asc) under anaerobic conditions. The standard enthalpy of Cygb(Fe(3+)) reduction by Asc was determined to be 42.4 ± 3.1 kJ/mol. The rate of Cygb(Fe(3+)) reduction increased ~6% per °C when temperature varied from 35°C to 40°C. The yield and the rate of Cygb(Fe(3+)) reduction significantly increases with pH (2-3 times per pH unit), paralleling the formation of the Asc ion (A(2-)) and the increased stability of reduced state of heme iron at high pH values. Heme ligand cyanide (CN(-)) decreased the yield and the rate of Cygb(Fe(3+)) reduction, but ligands CO and NO allowed the process of Cygb(Fe(3+)) reduction to continue to completion. Critical information is provided for modeling and prediction of the process of Cygb-mediated NO metabolism in vessels in a range of temperature and pH values.
Collapse
Affiliation(s)
- Jianjing Tong
- Emergency Department, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China; Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph R Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachael L Huskey
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Raed S Ismail
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Craig Hemann
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|