1
|
Yao H, Wu R, Du D, Ai F, Yang F, Li Y, Qi S. Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Redox Rep 2025; 30:2440204. [PMID: 39702961 DOI: 10.1080/13510002.2024.2440204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke. METHODS Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice. RESULTS The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2. DISCUSSION This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ruiqing Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dan Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fengwei Ai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Suhua Qi
- School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Mei T, Zhang P, Hu Y, Xiao L, Hou J, Nagasaki Y. Engineering hirudin encapsulation in pH-responsive antioxidant nanoparticles for therapeutic efficacy in ischemic stroke model mice. Biomaterials 2025; 314:122860. [PMID: 39366183 DOI: 10.1016/j.biomaterials.2024.122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
This study introduces a novel pH-sensitive, hirudin-loaded antioxidant nanoparticle (HD@iNanoAOX) aimed at addressing the challenges of hirudin's short half-life and hemorrhagic transformation. HD@iNanoAOX was engineered to safeguard and prolong hirudin's bioactivity by encapsulating it within antioxidative nanoparticles, facilitating its gradual release in acidic environments. The efficacy of this approach was validated through both ex vivo and in vivo experiments. Ex vivo thrombolytic assays demonstrated that HD@iNanoAOX maintained effective clot lysis activity under acidic conditions. In vivo assessments revealed that HD@iNanoAOX significantly prolonged hirudin's half-life and reduced cerebral infarct volume in a mouse model of middle cerebral artery occlusion (MCAO). Furthermore, HD@iNanoAOX treatment mitigated cerebral oxidative stress, suppressed hemorrhagic transformation, and prevented blood-brain barrier (BBB) disruption. These findings suggest that the combined thrombolytic and antioxidative properties of HD@iNanoAOX offer a promising therapeutic approach for ischemic stroke. Nonetheless, further research is warranted to optimize the formulation and assess its safety and efficacy in clinical settings.
Collapse
Affiliation(s)
- Ting Mei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peiwen Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Yifan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Liman Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Junling Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Master's School in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Center for Research in Radiation and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Bunkyo-ku, 113-8656, Japan; High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
3
|
Jiang L, Liu C, Wang J, Shan J, Zhang J, Ma Q, Sun Y. Novel ruthenium(II) complex-based two-photon luminescent probe for visualizing biothiols in ferroptosis-mediated hepatic ischemia-reperfusion injury. Talanta 2025; 283:127176. [PMID: 39515056 DOI: 10.1016/j.talanta.2024.127176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Ferroptosis exhibits a critical role in the occurrence and progression of hepatic ischemia-reperfusion injury (HIRI), which is closely linked to the down regulation of biothiols. Visualization of biothiols in ferroptosis is of great significance for elucidating the pathological mechanism of HIRI as well as developing new clinical treatment strategies. However, reliable tools for monitoring biothiols and demonstrating their dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, this work developed an innovative Ru(II) complex-based two-photon luminescent probe, named Ru-PDBS, for accurate tracking the biothiols fluxes in ferroptosis-mediated HIRI. The newly developed probe possessed high sensitivity, good selectivity and favorable biocompatibility, which makes it to be used for imaging and dynamic monitoring of biothiols in living cells during ferroptosis-mediated HIRI. Furthermore, visualization of biothiols in mouse livers during ferroptosis-mediated HIRI and drug treatment was achieved for the first time. All these results suggested that Ru-PDBS can serve as a reliable tool for elucidating the pathogenesis of ferroptosis-mediated HIRI, as well as for developing of new therapies.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, No.4 Renmin Road, Qingdao, 266033, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Invest 2025; 135:e184134. [PMID: 39744953 DOI: 10.1172/jci184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure. Despite considerable study, the precise mechanism by which ischemia and reperfusion (I/R) trigger cell death is still not fully understood. In this Review, we summarize the changes that occur during I/R injury, with emphasis on those that might initiate cell death, such as calcium overload and oxidative stress. We review cell-death pathways and pathway crosstalk and discuss cardioprotective approaches in order to provide insight into mechanisms that could be targeted with therapeutic interventions. Finally, we review cardioprotective clinical trials, with a focus on possible reasons why they were not successful. Cardioprotection has largely focused on inhibiting a single cell-death pathway or one death-trigger mechanism (calcium or ROS). In treatment of other diseases, such as cancer, the benefit of targeting multiple pathways with a "drug cocktail" approach has been demonstrated. Given the crosstalk between cell-death pathways, targeting multiple cardiac death mechanisms should be considered.
Collapse
|
5
|
Sato N, Kusano T, Nagata K, Okamoto K. A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain. Brain Res 2025:149444. [PMID: 39755194 DOI: 10.1016/j.brainres.2025.149444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear. In addition, febuxostat is a non-purine xanthine oxidoreductase inhibitor with a different inhibitory mechanism from allopurinol. The impact of febuxostat on brain injury has not been well investigated. Therefore, this study aimed to examine brain ATP and its catabolite levels in the presence or absence of allopurinol and febuxostat under hypoxic conditions by inactivating brain metabolism using focal microwave irradiation. The hypoxic treatment caused a decrease in the adenylate energy charge and ATP levels and an increase in its catabolic products in mouse brains. The febuxostat group showed higher energy charge and ATP levels and lower ATP catabolites than the control group. Notably, despite the comparable suppression of uric acid production in both inhibitor groups, allopurinol treatment was less effective than febuxostat. These results suggest that febuxostat effectively prevents hypoxia-induced ATP degradation in the brain and that its effect is more potent than allopurinol. This study will contribute to developing therapies for improving hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Xu YW, Yao CH, Gao XM, Wang L, Zhang MX, Yang XD, Li J, Dai WL, Yang MQ, Cai M. BAK ameliorated cerebral infarction/ischemia-reperfusion injury by activating AMPK/Nrf2 to inhibit TXNIP/NLRP3/caspase-1 axis. Neurosci Lett 2025; 844:138037. [PMID: 39515657 DOI: 10.1016/j.neulet.2024.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of Psoralea corylifolia Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear. METHODS Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells in vitro. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence. RESULTS Our study indicated that BAK protected ischemia-reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK' the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of Psoralea corylifolia Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.
Collapse
Affiliation(s)
- Yue-Wei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Ming Gao
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Meng-Xiang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Xiao-Dan Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Jing Li
- Shuguang Hospital Anhui Branch Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei, Anhui 230061, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Man-Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| |
Collapse
|
7
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
8
|
Gong C, Fu X, Ma Q, He M, Zhu X, Liu L, Zhou D, Yan S. Gastrodin: Modulating the xCT/GPX4 and ACSL4/LPCAT3 pathways to inhibit ferroptosis after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156331. [PMID: 39731833 DOI: 10.1016/j.phymed.2024.156331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process. However, its impact on stroke-induced ferroptosis remains unclear. OBJECTIVE This research endeavors to probe Gastrodin's influence on post-ischemic ferroptosis, deciphering its mechanisms and assessing its therapeutic promise. METHODS We developed rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) and created oxygen-glucose deprivation/reoxygenation (OGD/R)-damaged PC12 cell models. Gastrodin was administered to assess ferroptosis using Prussian blue staining and fluorescence probes. To investigate the effects of gastrodin on the xCT/GPX4 and ACSL4/LPCAT3 pathways, we employed molecular docking, immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we used transmission electron microscopy and JC-1 fluorescence probes to examine mitochondrial integrity and function. RESULTS Our study demonstrated that gastrodin significantly reduced iron accumulation and lipid peroxidation in the brains of MCAO/R rats and OGD/R-injured PC12 cells. It suppressed reactive oxygen species (ROS) and ameliorated mitochondrial membrane potential. It potentiates the xCT/GPX4 axis while repressing the ACSL4/LPCAT3 pathway, leading to improved mitochondrial architecture and function, notably characterized by decreased mitochondrial membrane potential, reduced ROS levels, and increased formation of mitochondrial cristae. By modulating the xCT/GPX4 and ACSL4/LPCAT3 pathways, gastrodin mitigated ferroptosis in ischemic stroke, thereby preserving mitochondrial structural and functional integrity. This study provides novel mechanistic insights into gastrodin's therapeutic potential for treating ischemic stroke, highlighting the importance of traditional Chinese medicine in modern medical therapy.
Collapse
Affiliation(s)
- Cuilan Gong
- The First Hospital of Traditional Chinese Medicine in Changde, The Changde Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, 415000 China; School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Xinying Fu
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qiang Ma
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Menghao He
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Xinhua Zhu
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Lijuan Liu
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| | - Desheng Zhou
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| | - Siyang Yan
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| |
Collapse
|
9
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
10
|
Gu Y, Wu Z, Xie H, Qian Z, Li Z, Tang Y, Wang Q, Fang T, Tao H, Chen K, Zhu P, Ding Y, Xu Y, Peng Y, Ye H, Guo X, Tao Y, Gu Y. Acetyl-11-keto-β-boswellia acid attenuates Ti particle-induced osteoblastic oxidative stress and osteolysis through the Foxo3 signaling pathway. Int Immunopharmacol 2024; 143:113547. [PMID: 39510032 DOI: 10.1016/j.intimp.2024.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Oxidative stress injury in osteoblasts is one of the leading causes of periprosthetic osteolysis (PPOL). Acetyl-11-keto-β-boswellia acid (AKBA) has been used as an antioxidant in the treatment of various diseases, but its antioxidant mechanism in osteolysis has yet to be elucidated. In this study, a mouse cranial osteolysis model was constructed, and MC3T3-E1 cells and bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro. Western blotting and immunofluorescence staining revealed that titanium (Ti) particles aggravated osteoblast oxidative stress injury and apoptosis. Ti particles and hydrogen peroxide reduced the osteogenic ability of BMSCs. At a certain concentration, AKBA alleviated the oxidative stress injury of MC3T3-E1 cells induced by Ti particles and enhanced the osteogenic ability of BMSCs, and the expression of Forkhead box O3 (Foxo3) increased with increasing AKBA concentration. To verify the antioxidant mechanism of AKBA, we designed and synthesized Foxo3-targeting siRNAs. We found that after Foxo3 expression was inhibited, the protective effect of AKBA on osteoblasts decreased significantly. Moreover, AKBA treatment suppressed bone mass loss in the skull mediated by Ti particles in mice. Therefore, we suggest that AKBA alleviates the oxidative stress injury in osteoblasts induced by Ti particles, at least in part, by regulating the expression of Foxo3. In this study, the mechanism and biosafety of AKBA in treating PPOL were demonstrated to some extent.
Collapse
Affiliation(s)
- Yingchu Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Zerui Wu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Heng Xie
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Zhengtao Qian
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Zhijie Li
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Yihan Tang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Qiufei Wang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Tao Fang
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Yi Ding
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China
| | - Yuqin Peng
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China
| | - Hongwei Ye
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China.
| | - Xiaobin Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China.
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215000, China.
| | - Ye Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215506, China; Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China.
| |
Collapse
|
11
|
Pan X, Zhu R, Peng J, Liu H, Pan W, Jin Y, Pei J, Zhang L. Molecular mechanisms and potential targets of lycopene for alleviating renal ischemia-reperfusion injury revealed by network pharmacology and animal experiments. Int Immunopharmacol 2024; 143:113421. [PMID: 39442187 DOI: 10.1016/j.intimp.2024.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Renal IRI is one of the leading causes of AKI. How to effectively mitigate renal IRI is important for the recovery of renal function. The regulatory mechanism of lycopene, a natural antioxidant, in renal IRI is currently unknown. Therefore, we utilized network pharmacology and animal experiments to explore the possible mechanisms and potential targets of lycopene for alleviating renal IRI. METHODS We obtained lycopene-regulated genes and renal IRI-related genes from the CTD database and GeneCards database, respectively. Subsequently, the two were intersected and the intersecting genes we defined as lycopene-regulated genes in renal IRI. Next, we explored their potential biological functions and mechanisms through enrichment analysis. Meanwhile, we constructed a rat renal IRI model and validated the protective effects of lycopene and related mechanisms. To further explore the Hub genes regulated by lycopene, we constructed a PPI protein interactions network and characterized the Hub genes using Cytoscape software. We also verified the expression of Hub genes using animal experiments and molecular docking techniques. Finally, we constructed TF-Hub gene and miRNA-Hub gene regulatory networks. RESULTS We obtained a total of 255 lycopene-regulated genes and 327 renal IRI-related genes. The enrichment analysis revealed that they were closely related to the regulation of oxidative stress as well as the regulation of inflammatory factors. At the same time, the MAPK signaling pathway was significantly enriched. Next, we found in animal experiments that lycopene significantly alleviated the level of oxidative stress and inflammation during renal IRI, and had a protective effect on kidney damage. Also, we found that this protective effect may be achieved by inhibiting the MAPK signaling pathway. Next, we identified a total of five Hub genes using Cytoscape software: TNF, AKT1, MAPK3, IL6 and CASP3. Both animal experiments and molecular docking techniques demonstrated that lycopene can effectively regulate the expression of Hub genes. Finally, our constructed TF-Hub gene and miRNA-Hub gene regulatory network provide a theoretical basis for further regulation of Hub genes in follow-up. CONCLUSIONS This study suggests that lycopene is a promising option in mitigating renal IRI. Lycopene may exert protective effects by inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xingyu Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Rong Zhu
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jinpu Peng
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongli Liu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Wenqing Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Yuhan Jin
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Jun Pei
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Li Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China.
| |
Collapse
|
12
|
Ali A, de Almeida IM, Magalhães EP, Guedes JM, Cajazeiras FFM, Marinho MM, Marinho ES, de Menezes RRPPB, Sampaio TL, Santos HSD, da Silva Júnior GB, Martins AMC. Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Biol Chem 2024:hsz-2024-0068. [PMID: 39705087 DOI: 10.1515/hsz-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, in silico studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.
Collapse
Affiliation(s)
- Arif Ali
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Igor Moreira de Almeida
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Jesyka Macedo Guedes
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Marcia Machado Marinho
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Alice Maria Costa Martins
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
13
|
Dos Santos GG, Zangirolami AC, Ferreira Vicente ML, Bagnato VS, Blanco KC. Photodynamic therapy as a potential approach for preventing fungal spread associated with the use of endotracheal tubes. Photochem Photobiol 2024. [PMID: 39710601 DOI: 10.1111/php.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Fungal infections related to biofilm formation on medical devices, such as endotracheal tubes (ETTs), pose significant health risks, especially during intubation procedures where fungi like Candida spp. can migrate into the lower respiratory tract. This study explores the use of Photodynamic Therapy (PDT) to prevent fungal cell migration from ETT surfaces to lungs, focusing on the role of curcumin as a photosensitizer. ETTs were coated with varying concentrations of curcumin, and biofilm formation was measured after applying PDT with a 50 J/cm2 irradiation dose. The study found that ETTs functionalized with a one-third concentration of CUR reduced biofilm formation by 1.78 Log, significantly lowering microbial load and potentially decreasing hospital-acquired infections. Confocal fluorescence microscopy confirmed that PDT damaged the biofilm's extracellular matrix and caused detachment of dead fungal cells. Moreover, the fluorescence analysis reveals the photodegradation behavior of the photosensitizer within the tube, providing critical insights into its stability and durability, which are essential for evaluating the long-term applicability of these tubes in clinical settings. These results suggest PDT as a promising strategy to reduce fungal infections in high-risk patients, offering potential for future clinical application in preventing device-associated infections.
Collapse
Affiliation(s)
| | | | | | | | - Kate Cristina Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
14
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2024; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
15
|
Zhang R, Fang Q, Yao L, Yu X, Liu X, Zhan M, Liu D, Yan Q, Du J, Chen L. Taxifolin attenuates hepatic ischemia-reperfusion injury by enhancing PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 985:177100. [PMID: 39542410 DOI: 10.1016/j.ejphar.2024.177100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury stands as a recurring clinical challenge in liver transplantation, leading to mitochondrial dysfunction and cellular imbalance. Mitochondria, crucial for hepatocyte metabolism, are significantly damaged during hepatic I/R and the extent of mitochondrial damage correlates with hepatocyte injury. PINK1/Parkin-mediated mitophagy, is a specialized form of cellular autophagy, that maintains mitochondrial quality by identifying and removing damaged mitochondria, thereby restoring cellular homeostasis. Taxifolin (TAX), a natural flavonoid, possesses antioxidant, anti-inflammatory and anticancer properties. This study aimed at investigating the effects of TAX on hepatic I/R and the underlying mechanisms. METHODS C57BL/6 mice were pretreated with TAX or vehicle control, followed by 60 min of 70% hepatic ischemia. After 6 h of reperfusion, the mice were euthanized. In vitro, TAX-pretreated primary hepatocytes were subjected to oxygen glucose deprivation/reperfusion (OGD/R). RESULTS Hepatic I/R caused mitochondrial damage and apoptosis in hepatocytes, but TAX pretreatment mitigated these effects by normalizing mitochondrial membrane potential and inhibiting reducing apoptotic protein expression. TAX exerted its protective effects by enhancing mitophagy via the PINK1/Parkin pathway. Moreover, silencing the PINK1 gene in primary hepatocytes reversed the beneficial effects of TAX. CONCLUSION The results of the study demonstrate that promoting mitophagy through the PINK1/Parkin pathway restores mitochondrial function and protects the liver from I/R, suggesting that it may have therapeutic potential for the treatment of hepatic I/R.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Xiaolan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xingyun Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Sasse R, Carpenter N, Simpkins CO. Selective nitric oxide redistribution by phospholipid nanoparticles: A novel strategy to mitigate massive nitric oxide release and prevent reperfusion injury in septic shock. Free Radic Biol Med 2024; 227:276-281. [PMID: 39645204 DOI: 10.1016/j.freeradbiomed.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide plays a critical role in regulating vascular tone, but excessive nitric oxide release during septic shock results in hypotension due to excessive vasodilation and the formation of toxic free radicals. VBI-S is a phospholipid nanoparticle based fluid composed of lipid bilayers formed primarily by phosphatidylcholine and micelles of soybean oil encapsulated by a monolayer of phosphatidylcholine. These nanoparticles offer a novel solution by absorbing and redistributing nitric oxide and nitrite, potentially mitigating the harmful effects of excessive nitric oxide in sepsis. This paper proposes a mechanism in which VBI-S not only redistributes nitric oxide but also reduces ischemia-reperfusion injury by limiting the production and availability of reactive species. VBI-S captures nitric oxide and nitrite in areas of high concentration and redistributes them in low-nitric oxide environments, primarily within oxygen-deprived tissues. Nitrite then contributes to nitric oxide regeneration in hypoxic microvasculature via various reduction pathways, thereby improving tissue perfusion and minimizing oxidative stress. Preliminary studies suggest that nitrite may also decrease reactive species production, primarily superoxide, through the inhibition of mitochondrial complex I. Additionally, the lipid composition of VBI-S is rich in poly and monounsaturated fatty acids which allows VBI-S to act as a substrate for peroxidation via peroxynitrite. Therefore, VBI-S acts as a decoy target thereby protecting cellular membranes from oxidative damage caused by reactive species. These findings position VBI-S as a promising therapeutic agent, offering both nitric oxide regulation and protection against hypotension and toxic free radicals in septic shock patients. Further research is necessary to fully elucidate the molecular pathways and optimize its clinical application.
Collapse
Affiliation(s)
- Ryan Sasse
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Nathan Carpenter
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Cuthbert O Simpkins
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
17
|
Takeda T, Taniguchi H, Honzawa H, Abe T, Takeuchi I, Inoue A, Hifumi T, Sakamoto T, Kuroda Y. Associations of long-term hyperoxemia, survival, and neurological outcomes in extracorporeal cardiopulmonary resuscitation patients undergoing targeted temperature management: A retrospective observational analysis of the SAVE-J Ⅱ study. Resusc Plus 2024; 20:100831. [PMID: 39639944 PMCID: PMC11617781 DOI: 10.1016/j.resplu.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Background Extracorporeal cardiopulmonary resuscitation (ECPR) can improve survival rates and neurological outcomes of patients with out-of-hospital cardiac arrest (OHCA). High levels of partial pressure of arterial oxygen (PaO2) negatively affect survival and neurological outcomes in patients with OHCA. However, research on associations of hyperoxemia with survival and neurological outcomes after ECPR remains limited, especially considering targeted temperature management (TTM) administration to patients. Additionally, few reports have examined the impact of hyperoxemia beyond 24 h. In this study, we aimed to examine the effect of prolonged hyperoxemia on survival and neurological outcomes after ECPR for OHCA in patients undergoing TTM. Methods We performed a secondary observational analysis of data from the SAVE-J Ⅱ study, a retrospective, multicenter registry study of ECPR of patients with OHCA. Data on arterial PaO2 after ECPR for intensive care unit days 2-4 were collected and averaged. Patients were divided into two groups: hyperoxic (PaO2 ≥ 300 mmHg) and non-hyperoxic (PaO2 < 300 mmHg). Each variable was compared between the groups. Additionally, survival and mortality rates at discharge were compared, and factors associated with survival (primary outcome) and neurological outcomes (secondary outcome) at discharge were examined. Results The multivariate analysis for survival at discharge showed that age, initial ventricular fibrillation/ventricular tachycardia (VF/VT) waveform, P = 0.0004), and hyperoxemia were significant factors. For neurological outcomes at discharge, significant factors included age, initial VF/VT waveform, hemoglobin level at presentation, and hyperoxemia. Conclusions Prolonged hyperoxemia was significantly associated with worse survival and neurological outcomes after ECPR for OHCA in patients who underwent TTM.
Collapse
Affiliation(s)
- Tomoaki Takeda
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hayato Taniguchi
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hiroshi Honzawa
- Emergency Care Department, Yokohama City University Hospital, Yokohama, Japan
| | - Takeru Abe
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama, Japan
- Emergency Care Department, Yokohama City University Hospital, Yokohama, Japan
| | - Ichiro Takeuchi
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama, Japan
- Emergency Care Department, Yokohama City University Hospital, Yokohama, Japan
| | - Akihiko Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Tetsuya Sakamoto
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster and Critical Care Medicine, Kagawa University Hospital, Kagawa, Japan
| | - the SAVE-J Ⅱ study group
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama, Japan
- Emergency Care Department, Yokohama City University Hospital, Yokohama, Japan
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Japan
- Department of Emergency and Critical Care Medicine, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Department of Emergency, Disaster and Critical Care Medicine, Kagawa University Hospital, Kagawa, Japan
| |
Collapse
|
18
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
19
|
Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. J Nanobiotechnology 2024; 22:731. [PMID: 39578855 PMCID: PMC11585243 DOI: 10.1186/s12951-024-03023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Oxidative stress (OS) and neuroinflammation are critical pathological processes in secondary brain injury (SBI) after intracerebral hemorrhage(ICH), and their intimate interactions initiate and aggravate brain damage. Thus, targeting oxidative stress and neuroinflammation could be a promising therapeutic strategy for ICH treatment. Here, we report a high-performance platform using polydopamine (PDA)-coated diselenide bridged mesoporous silica nanoparticle (PDA-DSeMSN) as a smart ROS scavenger and ROS-responsive drug delivery system. Caffeic acid phenethyl ester (CAPE) was blocked in the pore of DSeMSN by covering the pore with PDA as a gatekeeper. PDA-DSeMSN @CAPE maintained high stability and underwent reactive oxygen species (ROS)-responsive degradation and drug release. The intelligent nanomaterial effectively eliminated ROS, promoted M1 to M2 microglial conversion and suppressed neuroinflammation in vitro and in vivo. Importantly, intravenous administration of PDA-DSeMSN@CAPE specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model with high biological safety. Taking together, the synergistic effect of ROS-responsive drug delivery ability and ROS scavenging ability of PDA-DSeMSN makes it a powerful drug delivery platform and provided new considerations into the therapeutic action to improve ICH-induce brain injury.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxuan Liu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ranran Tu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Binbin Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
21
|
Shao L, Wang C, Xu G, Tu Z, Yu X, Weng C, Liu J, Jian Z. Utilizing reactive oxygen species-scavenging nanoparticles for targeting oxidative stress in the treatment of ischemic stroke: A review. Open Med (Wars) 2024; 19:20241041. [PMID: 39588390 PMCID: PMC11587925 DOI: 10.1515/med-2024-1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024] Open
Abstract
Ischemic stroke, which accounts for the majority of stroke cases, triggers a complex series of pathophysiological events, prominently characterized by acute oxidative stress due to excessive production of reactive oxygen species (ROS). Oxidative stress plays a crucial role in driving cell death and inflammation in ischemic stroke, making it a significant target for therapeutic intervention. Nanomedicine presents an innovative approach to directly mitigate oxidative damage. This review consolidates existing knowledge on the role of oxidative stress in ischemic stroke and assesses the potential of various ROS-scavenging nanoparticles (NPs) as therapeutic agents. We explore the properties and mechanisms of metal, metal-oxide, and carbon-based NPs, emphasizing their catalytic activity and biocompatibility in scavenging free radicals and facilitating the delivery of therapeutic agents across the blood-brain barrier. Additionally, we address the challenges such as cytotoxicity, immunogenicity, and biodistribution that need to be overcome to translate these nanotechnologies from bench to bedside. The future of NP-based therapies for ischemic stroke holds promise, with the potential to enhance outcomes through targeted modulation of oxidative stress.
Collapse
Affiliation(s)
- Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Can Wang
- Department of Neurosurgery, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People’s Hospital, Xiantao, 433000, Hubei, China
| | - Zewei Tu
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06510, CT, United States of America
| | - Xinyuan Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, NC, United States of America
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
22
|
Burma JS, Oni IK, Lapointe AP, Rattana S, Schneider KJ, Debert CT, Smirl JD, Dunn JF. Quantifying neurovascular coupling through a concurrent assessment of arterial, capillary, and neuronal activation in humans: A multimodal EEG-fNIRS-TCD investigation. Neuroimage 2024; 302:120910. [PMID: 39486493 DOI: 10.1016/j.neuroimage.2024.120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND This study explored a novel multimodal neuroimaging approach to assess neurovascular coupling (NVC) in humans using electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and transcranial Doppler ultrasound (TCD). METHODS Fifteen participants (nine females; age 19-32) completed concurrent EEG-fNIRS-TCD imaging during motor (finger tapping) and visual ("Where's Waldo?") tasks, with synchronized monitoring of blood pressure, capnography, and heart rate. fNIRS assessed microvascular oxygenation within the frontal, motor, parietal, and occipital cortices, while the middle and posterior cerebral arteries (MCA/PCA) were insonated using TCD. A 16-channel EEG set-up was placed according to the 10-20 system. Wilcoxon signed-rank tests were used to compare physiological responses between the active and resting phases of the tasks, while cross-correlations with zero legs compared cerebral and systemic hemodynamic responses across both tasks. RESULTS Time-frequency analysis demonstrated a reduction in alpha and low beta band power in electrodes C3/C4 during finger tapping (p<0.045) and all electrodes during the Waldo task (all p<0.001). During Waldo, cross-correlation analysis demonstrated the change in oxygenated hemoglobin and cerebral blood velocity had a moderate-to-strong negative correlation with systemic physiological influences, highlighting the measured change resulted from neuronal input. Deoxygenated hemoglobin displayed the greatest negative cross-correlation with the MCA/PCA within the motor cortices and visual during the motor and visual tasks, respectively (range:0.54, -0.82). CONCLUSIONS This investigation demonstrated the feasibility of the proposed EEG-fNIRS-TCD response to comprehensively assess the NVC response within human, specifically quantifying the real-time temporal synchrony between neuronal activation (EEG), microvascular oxygenation changes (fNIRS), and conduit artery velocity alterations (TCD).
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.
| | - Ibukunoluwa K Oni
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Selina Rattana
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Chantel T Debert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Jia Z, Yue W, Zhang X, Xue B, He J. Erianin alleviates cerebral ischemia-reperfusion injury by inhibiting microglial cell polarization and inflammation via the PI3K/AKT and NF-κB pathways. Int Immunopharmacol 2024; 141:112915. [PMID: 39146784 DOI: 10.1016/j.intimp.2024.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a leading cause of disability and mortality worldwide, with limited therapeutic options available. Erianin, a natural compound derived from traditional Chinese medicine, has been reported to possess anti-inflammatory and neuroprotective properties. This study aimed to investigate the therapeutic potential of Erianin in CI/RI and elucidate its underlying mechanisms. Network pharmacology analysis predicted that Erianin could target the PI3K/AKT pathway, which are closely associated with CI/RI. In vivo experiments using a rat model of CI/RI demonstrated that Erianin treatment significantly alleviated neurological deficits, reduced infarct volume, and attenuated neuronal damage. Mechanistically, Erianin inhibited microglial cell polarization towards the pro-inflammatory M1 phenotype, as evidenced by the modulation of specific markers. Furthermore, Erianin suppressed the expression of pro-inflammatory cytokines and mediators, such as TNF-α, IL-6, and COX-2, while enhancing the production of anti-inflammatory factors, including Arg1, CD206, IL-4 and IL-10. In vitro studies using oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated microglial cells corroborated the anti-inflammatory and anti-apoptotic effects of Erianin. Notably, Erianin inhibited the NF-κB signaling pathway by inhibiting p65 phosphorylation and preventing the nuclear translocation of the p65 subunit. Collectively, these findings suggest that Erianin represents a promising therapeutic candidate for CI/RI by targeting microglial cell polarization and inflammation.
Collapse
Affiliation(s)
- Zengqiang Jia
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Wenfeng Yue
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Xiuyun Zhang
- Department of Health Management, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Bingxia Xue
- Department of Otolaryngology, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Jinchao He
- Department of Neurosurgery, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China.
| |
Collapse
|
24
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
25
|
Hu X, Han M, Liu J, Li F, Cui Y. Ameliorative Effect of Natural Sesquiterpene Alcohol Cedrol Against Cerebral Ischemia Infarction-In Vitro and In Vivo Studies. Appl Biochem Biotechnol 2024; 196:8026-8042. [PMID: 38668841 DOI: 10.1007/s12010-024-04965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
Cedrol is a major bioactive compound present in the Cedrus atlantica with numerous biological properties. In this study, we elucidated the neuroprotective properties of cedrol against ischemic infarction in animal and in vitro studies. A cerebral ischemic/reperfusion model was induced in adult Wistar rats, and oxygen-glucose deprivation/reperfusion was induced in SH-SY5Y neuronal cells and treated with different concentrations of cedrol. The percentage of water content, cerebral infarct, and neurological deficit score was assessed in experimental rats. The acetylcholinesterase activity and inflammatory cytokines were quantified to analyze the anti-inflammatory potency of cedrol. Oxidative stress marker malondialdehyde and antioxidants were quantified to evaluate the antioxidant potency of cedrol in an ischemic condition. The neuroprotective potency of cedrol was confirmed by histopathological analysis of the brain tissue of cedrol-treated I/R-induced rats. In in vitro studies, the MTT and LDH assays were performed in cedrol-treated OGD/R SH-SY5Y cells to analyze the cytoprotective effect of cedrol. The anti-inflammatory property of cedrol was confirmed by quantifying the pro-inflammatory cytokine levels in OGD/R-induced cedrol-treated SH-SY5Y cells. The results obtained prove that cedrol significantly prevents brain edema, neurological deficits, acetylcholinesterase activity, and oxidative damage in ischemic-induced rats. It inhibited neuroinflammation in ischemic-induced rats and also in in vitro models. The neuroprotective effect of cedrol during an ischemic condition was authentically established with histological analysis in an animal model and cell survival assays in an in vitro model. Overall, our results confirm that cedrol is a potent alternative drug to treat cerebral ischemia in the future.
Collapse
Affiliation(s)
- Xiaohong Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanchao Cui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Tao X, Pan X, Zhao G, Rui Y. Study on changes in serum irisin level in free-flap transplantation and the correlation of serum irisin level with flap blood flow. Heliyon 2024; 10:e37846. [PMID: 39640649 PMCID: PMC11619996 DOI: 10.1016/j.heliyon.2024.e37846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background and aims The beneficial effect of myokine irisin on ischemia-reperfusion of skin flaps has been rarely reported in clinical studies. This study was designed to determine whether irisin plays a protective role in flap transplantation and identify the factors affecting serum irisin levels. Materials and methods We analyzed the changes in serum irisin levels and flap blood flow before and after surgery in 40 patients who underwent skin-flap transplantation. Factors affecting serum irisin levels were analyzed by metabolic parameter measurements. Results Preoperative serum irisin levels were positively correlated with blood flow in the skin flap 7 days post-surgery. The increase in serum irisin levels in the first 3 days after surgery positively correlated with flap blood flow. A longer duration of high-intensity exercise, higher skeletal muscle content, lower body mass index, and waist-to-hip ratio were associated with higher irisin levels. Fasting blood glucose and glycosylated hemoglobin levels showed significant negative correlations with serum irisin levels. Several other indicators, including sex, were not associated with serum irisin levels. Conclusions Serum irisin levels benefit blood flow recovery during flap transplantation. Better outcomes may be achieved by adjusting the timing and intensity of the exercise and controlling the patient's body size.
Collapse
Affiliation(s)
- Xianyao Tao
- Wuxi Ninth People’ s Hospital Affiliated to Soochow University, Department of Hand Surgery, Wuxi, Jiangsu, 214062, China
| | - Xiaoyun Pan
- Wuxi Ninth People’ s Hospital Affiliated to Soochow University, Department of Hand Surgery, Wuxi, Jiangsu, 214062, China
| | - Gang Zhao
- Wuxi Ninth People’ s Hospital Affiliated to Soochow University, Department of Hand Surgery, Wuxi, Jiangsu, 214062, China
| | - Yongjun Rui
- Wuxi Ninth People’ s Hospital Affiliated to Soochow University, Department of Hand Surgery, Wuxi, Jiangsu, 214062, China
| |
Collapse
|
27
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
28
|
Niaz M, Iftikhar K, Shahid M, Faizi S, Usman Simjee S. Quinic acid contributes to neurogenesis: Targeting Notch pathway a key player in hippocampus. Brain Res 2024; 1846:149291. [PMID: 39442647 DOI: 10.1016/j.brainres.2024.149291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Coordinated proliferation and differentiation of neural stem cells (NSCs) results in continuous neurogenesis. The present study provides novel insights into the Notch intracellular signaling in neuronal cell proliferation, maintenance, migration, and differentiation regulated by naturally based Quinic acid (QA) in primary hippocampal cell culture. Further, this study might help in the discovery and development of lead molecules that can overcome the challenges in the treatment of neurodegenerative diseases. The growth supporting effect of QA was studied using Alamar Blue assay. The migratory potential of QA was evaluated using scratch assay. The in vitro H2O2-induced oxidative stress model was used to upregulate neuronal survival after QA treatment. The RT-qPCR and immunocytochemical analysis were performed for selected markers of Notch signaling to determine the proliferation, differentiation, and maintenance of NSCs at gene and molecular levels. The Mash1 and Ngn2 are the upstream proneural genes of the Notch pathway which were included to evaluate the differentiation of NSCs into mature neurons after treatment with QA. Furthermore, regarding the role of QA in maintaining the pool of NPCs, we used Notch1 and Hes1 markers for proliferation analysis. Also, secondary neuronal markers i.e. Pax6, PCNA, and Mcm2 were included in this study and their gene expression analysis was analyzed following treatment with QA. Based on the study's results, we suggest that naturally based QA can promote the growth and differentiation of neonatal NSCs residing in hippocampal regions into neuronal lineage. Therefore, we propose that the neurogenic potential of QA can be employed to prevent and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Maryam Niaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Iftikhar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maha Shahid
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shabana Usman Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
Wang S, Li X, Wang T, Sun Z, Feng E, Jin Y. Overexpression of USP35 enhances the protective effect of hUC-MSCs and their extracellular vesicles in oxygen-glucose deprivation/reperfusion-induced SH-SY5Y cells via stabilizing FUNDC1. Commun Biol 2024; 7:1330. [PMID: 39406943 PMCID: PMC11480199 DOI: 10.1038/s42003-024-07024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemia-reperfusion (IR) injury is associated with neurological disorders such as stroke. The therapeutic potential of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their secreted extracellular vesicles (EVs) in alleviating IR injury across various cell types including neuronal cells has been documented. However, the underlying mechanisms through which hUC-MSCs and hUC-MSC-EVs protect neuronal cells from IR-triggered damage are not well understood. In this study, we co-cultured SH-SY5Y neuroblastoma cells with hUC-MSCs or hUC-MSC-EVs and subjected them to oxygen-glucose deprivation/reperfusion (OGD/R) treatment. Our findings indicate that both hUC-MSCs and hUC-MSC-EVs significantly improved viability, reduced apoptosis, promoted autophagy of OGD/R-induced SH-SY5Y cells, and decreased mitochondrial reactive oxygen species levels within them. Furthermore, the neuroprotective effect of hUC-MSCs and hUC-MSC-EVs in OGD/R-induced SH-SY5Y cells was enhanced by overexpressing USP35, a deubiquitinase. Mechanistically, USP35 interacted with and stabilized FUNDC1, a positive regulator of mitochondrial metabolism. Knockdown of FUNDC1 in USP35-overexpressing hUC-MSCs and their secreted EVs eliminated the augmented neuroprotective function induced by excess USP35. In conclusion, these findings underscore the crucial role of USP35 in enhancing the neuroprotective function of hUC-MSCs and their secreted EVs, achieved through the stabilization of FUNDC1 in OGD/R-induced SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xigong Li
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Tianjiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, People's Republic of China
| | - Zeyu Sun
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Erwei Feng
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yongming Jin
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
30
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
31
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Zhang Q, Li S, Chen H, Yin J, Chen Y, Liu L, He W, Min Z, Gong Y, Xu J, Song K, Lv W, Xin H. Reduction of Oxidative Stress and Excitotoxicity by Mesenchymal Stem Cell Biomimetic Co-Delivery System for Cerebral Ischemia-Reperfusion Injury Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401045. [PMID: 38948959 DOI: 10.1002/smll.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Indexed: 07/02/2024]
Abstract
A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.
Collapse
Affiliation(s)
- Qi Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Shengnan Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiaqing Yin
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Yuqin Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Linfeng Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Weichong He
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Zhiyi Min
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Yue Gong
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Jiangna Xu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Kefan Song
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Wei Lv
- Department of Pharmacy, the Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, 214400, China
| | - Hongliang Xin
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
33
|
Pissas G, Tziastoudi M, Divani M, Poulianiti C, Konsta MAP, Lykotsetas E, Liakopoulos V, Stefanidis I, Eleftheriadis T. Malate dehydrogenase-2 inhibition shields renal tubular epithelial cells from anoxia-reoxygenation injury by reducing reactive oxygen species. J Biochem Mol Toxicol 2024; 38:e23854. [PMID: 39287333 DOI: 10.1002/jbt.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury. In experiments involving primary human renal proximal tubular epithelial cells (RPTECs) exposed to anoxia-reoxygenation, we explored the hypothesis that mitochondrial malate dehydrogenase-2 (MDH-2) inhibition redirects malate metabolism from the mitochondria to the cytoplasm, towards the malate-pyruvate cycle and reversed malate-aspartate shuttle. Colorimetry, fluorometry, and western blotting showed that MDH2 inhibition accelerates the malate-pyruvate cycle enhancing cytoplasmic NADPH, thereby regenerating the potent antioxidant reduced glutathione. It also reversed the malate-aspartate shuttle and potentially diminished mitochondrial reactive oxygen species (ROS) production by transferring electrons, in the form of NADH, from the mitochondria to the cytoplasm. The excessive ROS production induced by anoxia-reoxygenation led to DNA damage and protein modification, triggering DNA damage and unfolded protein response, ultimately resulting in apoptosis and senescence. Additionally, ROS induced lipid peroxidation, which may contribute to the process of ferroptosis. Inhibiting MDH-2 proved effective in mitigating ROS overproduction during anoxia-reoxygenation, thereby rescuing RPTECs from death or senescence. Thus, targeting MDH-2 holds promise as a pharmaceutical strategy against I-R injury.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
34
|
Chen K, Xu B, Long L, Wen H, Zhao Q, Tu X, Wang J, Xu J, Wang H. Inhibition of Phosphodiesterase 4 Suppresses Neuronal Ferroptosis After Cerebral Ischemia/Reperfusion. Mol Neurobiol 2024:10.1007/s12035-024-04495-9. [PMID: 39287745 DOI: 10.1007/s12035-024-04495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
We have previously shown that inhibition of phosphodiesterase 4 (PDE4) protects against cerebral ischemia/reperfusion injury. However, it remains unclear whether and how PDE4 affects ferroptosis under cerebral ischemia/reperfusion conditions. In this study, we found that overexpression of PDE4B in HT-22 cells exacerbated the detrimental effects of oxygen-glucose deprivation/reoxygenation (OGD/R), including a decrease in cell viability and glutathione (GSH) levels and an increase in Fe2+ content. PDE4B knockdown mitigated the effects of OGD/R, as evidenced by decreased oxidative stress, lactate dehydrogenase (LDH) release, Fe2+ content, and nuclear receptor coactivator 4 (NCOA4) expression. PDE4B knockdown also enhanced the levels of GSH, ferroportin (FPN), and ferritin heavy chain 1 (FTH1). Consistently, inhibition of PDE4 by roflumilast (Roflu) produced similar effects as PDE4B knockdown. Roflu also ameliorated the morphology and membrane potential of the mitochondria. Glutathione peroxidase 4 (GPX4) knockdown blocked the effects of Roflu on cell viability and lipid peroxidation. Moreover, we found that nuclear factor erythroid 2-related factor 2 (Nrf-2) knockdown decreased GPX4 expression. In addition, Nrf-2 knockdown led to enhanced lipid peroxidation, LDH release, and iron levels, while the GSH and FPN levels decreased. More crucially, PDE4 inhibition decreased infarct volume, alleviated oxidative stress, and restored the expression levels of ferroptosis-associated proteins in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Interestingly, the GPX4 inhibitor RSL3 blocked the neuroprotective effects of Roflu in rats subjected to MCAO/R. Thus, PDE4 inhibition significantly inhibits neuronal ferroptosis by activating the Nrf-2/GPX4 pathway. These data indicate the existence of a novel mechanism underlying the neuroprotective effects of PDE4 inhibition.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xingxing Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiakang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Whalen C, Verma A, Kurashima K, Carter J, Nazzal H, Jain A. Novel Models for Assessing and Pathophysiology of Hepatic Ischemia-Reperfusion Injury Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1507. [PMID: 39336548 PMCID: PMC11434406 DOI: 10.3390/medicina60091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major cause of postoperative hepatic dysfunction and liver failure involving cellular damage to previously ischemic tissues to which blood flow is restored. The reestablishment of blood flow is essential for salvaging ischemic tissues. The reperfusion itself, however, can paradoxically lead to further cellular damage, which involves a multi-factorial process resulting in extensive tissue damage, which can threaten the function and viability of the liver and other organ systems. The following review outlines multiple models for in-lab analysis of the various hepatic IRI mechanisms, including murine, porcine, cell lines, and machine perfusion models.
Collapse
Affiliation(s)
- Connor Whalen
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Arun Verma
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kento Kurashima
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jasmine Carter
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Hala Nazzal
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ajay Jain
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
36
|
Boonnoy P, Janlad M, Bagheri B, Dias C, Karttunen M, Wong-Ekkabut J. Cholesterol inhibits oxygen permeation through biological membranes: mechanism against double-bond peroxidation. RSC Adv 2024; 14:29113-29121. [PMID: 39282058 PMCID: PMC11393814 DOI: 10.1039/d4ra04846f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
The presence of oxygen molecules (O2) in biological membranes promotes lipid peroxidation of phospholipids with unsaturated acyl chains. On the other hand, cholesterol is considered to be an antioxidant molecule as it has a significant barrier effect on the permeation of O2 across membranes. However, a comprehensive explanation of how cholesterol affects the distribution and diffusion of O2 within lipid bilayers is yet to be established. In this study, we investigated the interaction of oxygen molecules with polyunsaturated lipid bilayers using molecular dynamics (MD) simulations. The degree of lipid unsaturation and the concentration of cholesterol were varied to study the permeation of O2. The free energy profile of O2 diffusing from the water phase to the lipid bilayer was calculated using biased umbrella MD simulations. The results show that O2 passively translocates into the membrane without changing the physical properties of the bilayer. Interestingly, in the unsaturated lipid bilayers the presence of cholesterol led to a significantly decreased permeation of O2 and an increase in the lipid chain order. Our results indicate that the hydroxyl groups of cholesterol strongly interact with the O2 molecules effectively inhibiting interactions between the oxygens and the double bonds in unsaturated lipid tails. In addition, a linear relationship between permeation and the ratio of membrane thickness and area per lipid was found. These insights can help our understanding of how the degree of unsaturation in a lipid tail and cholesterol affect lipid peroxidation at the molecular level.
Collapse
Affiliation(s)
- Phansiri Boonnoy
- Department of Physics, Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
| | - Minchakarn Janlad
- Department of Physics, Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
| | - Behnaz Bagheri
- Department of Applied Physics and Science Education, Technical University of Eindhoven PO Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems PO Box 513 5600 MB Eindhoven The Netherlands
| | - Cristiano Dias
- Department of Physics, New Jersey Institute of Technology Newark New Jersey 07102-1982 USA
| | - Mikko Karttunen
- Department of Chemistry, Western University 1151 Richmond Street London Ontario N6A 5B7 Canada
- Department of Physics and Astronomy, Western University 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University 50 Ngamwongwan Rd, Chatuchak Bangkok 10900 Thailand
| |
Collapse
|
37
|
Yang Y, Sun Z, Sun X, Zhang J, Tong T, Zhang X, Yao K. Protective effect of salvianolic acid B against myocardial ischemia/reperfusion injury: preclinical systematic evaluation and meta-analysis. Front Pharmacol 2024; 15:1452545. [PMID: 39323645 PMCID: PMC11422085 DOI: 10.3389/fphar.2024.1452545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Background Salvianolic acid B is the most abundant water-soluble component in the traditional Chinese medicine Danshen and can reduce myocardial ischemia-reperfusion (MI/R) injury through multiple targets and pathways. However, the role of SalB in protecting the myocardium from ischemia/reperfusion injury remains unclear. Purpose To perform a preclinical systematic review and meta-analysis to assess the efficacy of Sal B in an animal model of myocardial infarction/reperfusion (MI/R) and to summarize the potential mechanisms of Sal B against MI/R. Methods Studies published from inception to March 2024 were systematically searched in PubMed, Web of Science, Embase, China National Knowledge Infrastructure Wanfang, and VIP databases. The methodological quality was determined using the SYRCLE RoB tool. The R software was used to analyze the data. The potential mechanisms are categorized and summarized. Results 32 studies containing 732 animals were included. The results of the meta-analysis showed that Sal B reduced myocardial infarct size (p < 0.01), and the cardiological indices of CK-MB (p < 0.01), CK (p < 0.01), LDH (p < 0.01), and cTnI (p < 0.01) compared to the control group. In addition, Sal B increased cardiac function indices, such as LVFS (p < 0.01), -dp/dt max (p < 0.01), +dp/dt max (p < 0.01), and cardiac output (p < 0.01). The protective effects of Sal B on the myocardium after I/R may be mediated by attenuating oxidative stress and inflammation, promoting neovascularization, regulating vascular function, and attenuating cardiac myocyte apoptosis. Publication bias was observed in all the included studies. Further studies are required to elucidate the extent of the cardioprotective effects of SalB and the safety of its use. Conclusion To the best of our knowledge, this is the first meta-analysis of Sal B in the treatment of MI/R injury, and Sal B demonstrated a positive effect on MI/R injury through the modulation of key pathological indicators and multiple signaling pathways. Further studies are needed to elucidate the extent to which SalB exerts its cardioprotective effects and the safety of its use. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Yuhan Yang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Sun
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoning Sun
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Zhang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Tong
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Academic Management Service, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Spinelli S, Guida L, Passalacqua M, Magnone M, Caushi B, Zocchi E, Sturla L. The ABA/LANCL1-2 Hormone/Receptors System Controls ROS Production in Cardiomyocytes through ERRα. Biomedicines 2024; 12:2071. [PMID: 39335584 PMCID: PMC11428665 DOI: 10.3390/biomedicines12092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Rat H9c2 cardiomyocytes overexpressing the abscisic acid (ABA) hormone receptors LANCL1 and LANCL2 have an increased mitochondrial proton gradient, respiration, and vitality after hypoxia/reoxygenation. Our aim was to investigate the role of the ABA/LANCL1-2 system in ROS turnover in H9c2 cells. H9c2 cells were retrovirally infected to induce the overexpression or silencing of LANCL1 and LANCL2, without or with the concomitant silencing of the transcription factor ERRα. Enzymes involved in radical production or scavenging were studied by qRT-PCR and Western blot. The mitochondrial proton gradient and ROS were measured with specific fluorescent probes. ROS-generating enzymes decreased, ROS-scavenging enzymes increased, and mitochondrial ROS were reduced in LANCL1/2-overexpressing vs. control cells infected with the empty vector, while the opposite occurred in LANCL1/2-silenced cells. The knockdown of ERRα abrogated all beneficial effects on ROS turnover in LANCL1/2 overexpressing cells. Taken together, these results indicate that the ABA/LANCL1-2 system controls ROS turnover in H9c2 via ERRα. The ABA/LANCL system emerges as a promising target to improve cardiomyocyte mitochondrial function and resilience to oxidative stress.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Lucrezia Guida
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Mirko Magnone
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Bujar Caushi
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Elena Zocchi
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| |
Collapse
|
39
|
Wei S, Xiao J, Ju F, Hu Z. Aloperine protects the testis against testicular ischemia/reperfusion injury in rats. Andrology 2024. [PMID: 39253755 DOI: 10.1111/andr.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Testicular torsion/detorsion can cause testis loss and infertility. Aloperine is a major active alkaloid extracted from Sophora alopecuroides Linn. It has been shown to have organ-protective effects. However, the effects of aloperine on the testis and its underlying mechanisms remain unclear. OBJECTIVES This study investigated the effect of aloperine on testicular torsion/detorsion injury in rats. MATERIALS AND METHODS Male Sprague-Dawley rats were randomized to the sham-operated (sham), testicular I/R (TI/R), or aloperine preconditioning (ALOPre) or postconditioning (ALOPost) groups. All rats except for the sham-operated rats were subjected to 3 h of right spermatic cord torsion (720°, clockwise), followed by 3 h of detorsion. Aloperine (10 mg/kg) was intravenously administered before testicular torsion (ALOPre) or at the onset of testicular detorsion (ALOPost). The therapeutic efficacy of aloperine was evaluated by histological analysis, oxidative stress evaluation, inflammatory response examination, apoptosis analysis, protein analysis, and immunohistological assessment. RESULTS Compared with TI/R, aloperine protected both the ipsilateral and contralateral testes against unilateral testicular I/R, as evidenced by a reduced testicular weight to body weight (TW/BW) ratio (ALOPre: p = 0.0037; ALOPost: p = 0.0021) and volume (ALOPre: p = 0.0020; ALOPost: p = 0.0009), less structural damage with better Johnsen (ALOPre: p = 0.0013; ALOPost: p = 0.0021), and Cosentino scores (ALOPre: p < 0.0001; ALOPost: p < 0.0001), increased mean seminiferous tubule diameter and mean seminiferous tubule epithelial height, decreased testicular apoptosis, and less oxidative stress and inflammatory response. In addition, aloperine significantly stimulated the phosphorylation of signal transducer and activator of transcription (STAT)-3 in the ipsilateral testes following detorsion. Administration of Ag490 suppressed STAT-3 phosphorylation, thereby abrogating the protective effects exerted by aloperine on the ipsilateral testis. DISCUSSION AND CONCLUSION Aloperine has a strong testicular protective effect on the ipsilateral and contralateral testes after testicular torsion/detorsion. This aloperine-induced ipsilateral testicular protection is mediated via the STAT-3 signaling pathway.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Zhao Y, Yao Z, Lu L, Xu S, Sun J, Zhu Y, Wu Y, Yu Z. Carbon monoxide-releasing molecule-3 exerts neuroprotection effects after cardiac arrest in mice: A randomized controlled study. Resusc Plus 2024; 19:100703. [PMID: 39040821 PMCID: PMC11260602 DOI: 10.1016/j.resplu.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Post-cardiac arrest brain injury (PCABI) is the leading cause of death in survivors of cardiac arrest (CA). Carbon monoxide-releasing molecule (CORM-3) is a water-soluble exogenous carbon monoxide that has been shown to have neuroprotection benefits in several neurological disease models. However, the effects of CORM-3 on PCABI is still unclear. Methods A mice model combined asystole with hemorrhage was used. Mice were anesthetized and randomized into 4 groups (n = 12/group) and underwent either 9.5 min CA followed by cardiopulmonary resuscitation (CPR) or sham surgery. CORM-3 (30 mg/kg) or vehicle (normal saline) were administered at 1 h after return of spontaneous circulation or sham surgery. Survival, neurologic deficits, alterations in the permeability of the brain-blood barrier and cerebral blood flow, changes of oxidative stress level, level of neuroinflammation and neuronal degeneration, and the activation of Nrf2/HO-1 signaling pathway were measured. Results In CORM-3 treated mice that underwent CA/CPR, significantly improved survival (75.00% vs. 58.33%, P = 0.0146 (24 h) and 66.67% vs. 16.67%, P < 0.0001 (72 h)) and neurological function were observed at 24 h and 72 h after ROSC (P < 0.05 for each). Additionally, increased cerebral blood flow, expression of tight junctions, and reduced reactive oxygen species generation at 24 h after ROSC were observed (P < 0.05 for each). CORM-3 treated mice had less neuron death and alleviated neuroinflammation at 72 h after ROSC (P < 0.05 for each). Notably, the Nrf2/HO-1 signaling pathway was significantly activated in mice subjected to CA/CPR with CORM-3 treatment. Conclusions CORM-3 could improve survival and exert neuroprotection after CA/CPR in mice. CORM-3 may be a novel and promising pharmacological therapy for PCABI.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
42
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
43
|
Ishikawa M, Uchiyama A, Kosaka K, Nishio M, Ogino S, Yokoyama Y, Torii R, Akai R, Iwawaki T, Torii S, Motegi SI. Exposure to volatile ferroptosis inhibitor, TEMPO, reduced cutaneous ischemia-reperfusion injury progression to pressure ulcer formation in a mouse model. J Dermatol Sci 2024; 115:130-140. [PMID: 39098373 DOI: 10.1016/j.jdermsci.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Ischemia- reperfusion (I/R) injury-induced oxidative stress is a key factor in the pathogenesis of pressure ulcer formation. Ferroptosis is an iron-dependent programmed cell death that connects oxidative stress and inflammation in various diseases. Recent studies revealed the protective effect of inhibition of ferroptosis in I/R injury. However, the role of ferroptosis in cutaneous I/R injury remains elusive. OBJECTIVE To assess the role of ferroptosis in the progression of cutaneous I/R injury. METHODS Cutaneous I/R injury experiments and histopathological studies were performed in wild-type mice with or without exposure to volatile ferroptosis inhibitor, TEMPO (2,2,6,6-Tetramethylpiperidine-1-oxyl). The suppressive effects of TEMPO on ferroptosis inducing cell death and oxidative stress were examined in vitro. RESULTS Inhibition of ferroptosis with TEMPO significantly reduced ulcer formation after cutaneous I/R injury. Fluctuated ferroptosis markers, such as GPX4, ACSL4, and 4-HNE expression in the I/R skin site, were reversed by TEMPO treatment. Inhibition of ferroptosis reduced apoptosis, CD3+ infiltrating lymphocytes, and improved vascularity in the I/R skin site. Inhibition of ferroptosis also suppressed the enhancement of Nrf2 activation. In vitro, ferroptosis and the activation of ferroptosis-related gene expression by RSL3 stimulation were markedly ameliorated by TEMPO treatment in mouse fibroblasts. Inhibiting ferroptosis also suppressed the elevation of the mRNA levels of NOX2 and HO-1 caused by ferroptosis. CONCLUSION Cutaneous I/R injury-induced ferroptosis likely promotes cell death, vascular loss, infiltration of inflammatory cells, and oxidative stress. The inhibition of ferroptosis with TEMPO might have potential clinical application as novel therapeutic agent for cutaneous I/R injury.
Collapse
Affiliation(s)
- Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mayu Nishio
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Seiji Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan; Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
44
|
Yepes-Calderón M, van der Veen Y, Martín Del Campo S F, Kremer D, Sotomayor CG, Knobbe TJ, Vos MJ, Corpeleijn E, de Borst MH, Bakker SJL. Vitamin C deficiency after kidney transplantation: a cohort and cross-sectional study of the TransplantLines biobank. Eur J Nutr 2024; 63:2357-2366. [PMID: 38811416 PMCID: PMC11377669 DOI: 10.1007/s00394-024-03426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Vitamin C deficiency is associated with excess mortality in kidney transplant recipients (KTR). We aim to evaluate plasma vitamin C status at different post-transplantation moments and assess the main characteristics associated with vitamin C deficiency in KTR. METHODS Plasma vitamin C was assessed in 598 KTR at 3-, 6-, 12-, 24-, and 60-months post-transplantation, 374 late KTR with a functioning graft ≥ 1 year, and 395 potential donors. Vitamin C deficiency was defined as plasma vitamin C ≤ 28 µmol/L. Diet was assessed by a 177-item food frequency questionnaire. Data on vitamin C-containing supplements use were extracted from patient records and verified with the patients. RESULTS Vitamin C deficiency ranged from 46% (6-months post-transplantation) to 30% (≥ 1 year post-transplantation). At all time points, KTR had lower plasma vitamin C than potential donors (30-41 µmol/L vs 58 µmol/L). In cross-sectional analyses of the 953 KTR at their first visit ≥ 12 months after transplantation (55 ± 14 years, 62% male, eGFR 55 ± 19 mL/min/1.73 m2), the characteristics with the strongest association with vitamin C deficiency were diabetes and smoking (OR 2.67 [95% CI 1.84-3.87] and OR 1.84 [95% CI 1.16-2.91], respectively). Dietary vitamin C intake and vitamin C supplementation were associated with lower odds (OR per 100 mg/day 0.38, 95% CI 0.24-0.61 and OR 0.21, 95% CI 0.09-0.44, respectively). CONCLUSION Vitamin C deficiency is frequent among KTR regardless of the time after transplantation, especially among those with diabetes and active smokers. The prevalence of vitamin C deficiency was lower among KTR with higher vitamin C intake, both dietary and supplemented. Further research is warranted to assess whether correcting this modifiable risk factor could improve survival in KTR.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands.
| | - Yvonne van der Veen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Fernando Martín Del Campo S
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Camilo G Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
- Clinical Hospital University of Chile, Independencia, Santiago, Chile
- Institute of Biomedical Sciences, University of Chile, Independencia, Santiago, Chile
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| |
Collapse
|
45
|
George J, Lu Y, Tsuchishima M, Tsutsumi M. Cellular and molecular mechanisms of hepatic ischemia-reperfusion injury: The role of oxidative stress and therapeutic approaches. Redox Biol 2024; 75:103258. [PMID: 38970988 PMCID: PMC11279328 DOI: 10.1016/j.redox.2024.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Ischemia-reperfusion (IR) or reoxygenation injury is the paradoxical exacerbation of cellular impairment following restoration of blood flow after a period of ischemia during surgical procedures or other conditions. Acute interruption of blood supply to the liver and subsequent reperfusion can result in hepatocyte injury, apoptosis, and necrosis. Since the liver requires a continuous supply of oxygen for many biochemical reactions, any obstruction of blood flow can rapidly lead to hepatic hypoxia, which could quickly progress to absolute anoxia. Reoxygenation results in the increased generation of reactive oxygen species and oxidative stress, which lead to the enhanced production of proinflammatory cytokines, chemokines, and other signaling molecules. Consequent acute inflammatory cascades lead to significant impairment of hepatocytes and nonparenchymal cells. Furthermore, the expression of several vascular growth factors results in the heterogeneous closure of numerous hepatic sinusoids, which leads to reduced oxygen supply in certain areas of the liver even after reperfusion. Therefore, it is vital to identify appropriate therapeutic modalities to mitigate hepatic IR injury and subsequent tissue damage. This review covers all the major aspects of cellular and molecular mechanisms underlying the pathogenesis of hepatic ischemia-reperfusion injury, with special emphasis on oxidative stress, associated inflammation and complications, and prospective therapeutic approaches.
Collapse
Affiliation(s)
- Joseph George
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan.
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
46
|
Radler JB, McBride AR, Saha K, Nighot P, Holmes GM. Regional Heterogeneity in Intestinal Epithelial Barrier Permeability and Mesenteric Perfusion After Thoracic Spinal Cord Injury. Dig Dis Sci 2024; 69:3236-3248. [PMID: 39001959 DOI: 10.1007/s10620-024-08537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) disrupts intestinal barrier function, thereby increasing antigen permeation and leading to poor outcomes. Despite the intestinal tract's anatomic and physiologic heterogeneity, studies following SCI have not comprehensively addressed intestinal pathophysiology with regional specificity. AIMS AND METHODS We used an experimental model of high thoracic SCI to investigate (1) regional mucosal oxidative stress using dihydroethidium labeling; (2) regional paracellular permeability to small- and large-molecular probes via Ussing chamber; (3) regional intestinal tight junction (TJ) protein expression; and (4) hindgut perfusion via the caudal mesenteric artery. RESULTS Dihydroethidium staining was significantly elevated within duodenal mucosa at 3-day post-SCI. Molar flux of [14C]-urea was significantly elevated in duodenum and proximal colon at 3-day post-SCI, while molar flux of [3H]-inulin was significantly elevated only in duodenum at 3-day post-SCI. Barrier permeability was mirrored by a significant increase in the expression of pore-forming TJ protein claudin-2 in duodenum and proximal colon at 3-day post-SCI. Claudin-2 expression remained significantly elevated in proximal colon at 3-week post-SCI. Expression of the barrier-forming TJ protein occludin was significantly reduced in duodenum at 3-day post-SCI. Caudal mesenteric artery flow was unchanged by SCI at 3 days or 3 weeks despite significant reductions in mean arterial pressure. CONCLUSION These data show that T3-SCI provokes elevated mucosal oxidative stress, altered expression of TJ proteins, and elevated intestinal barrier permeability in the proximal intestine. In contrast, mucosal oxidative stress and intestinal barrier permeability were unchanged in the hindgut after SCI. This regional heterogeneity may result from differential sensitivity to reduced mesenteric perfusion, though further studies are required to establish a causal link. Understanding regional differences in intestinal pathophysiology is essential for developing effective treatments and standards of care for individuals with SCI.
Collapse
Affiliation(s)
- Jackson B Radler
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA.
| |
Collapse
|
47
|
Bahr AC, Naasani LIS, de Gregório E, Wink MR, da Rosa Araujo AS, Turck P, Dal Lago P. Photobiomodulation improves cell survival and death parameters in cardiomyocytes exposed to hypoxia/reoxygenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112991. [PMID: 39033547 DOI: 10.1016/j.jphotobiol.2024.112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 μM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizama de Gregório
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Patrick Turck
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Williams LE, Frishman WH. FDY-5301: An Innovative Approach to The Treatment of Revascularization Coronary Injury. Cardiol Rev 2024; 32:429-432. [PMID: 36883828 DOI: 10.1097/crd.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
After experiencing an acute ST-segment elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) is a preferred method of restoring blood flow to the heart. While this reperfusion has long-term benefits, it can result in reperfusion injury in the short term, which involves the formation of reactive oxygen species (ROS) and neutrophil recruitment. FDY-5301 is a sodium iodide-based drug that acts as a catalyst in the conversion of hydrogen peroxide to water and oxygen. FDY-5301 is designed to be administered as an intravenous bolus following a STEMI, before reperfusion with PCI, to reduce the damage associated with reperfusion injury. Clinical trials have shown FDY-5301 administration to be safe, feasible, and fast-acting in its ability to increase plasma iodide concentration, and the results are favorable in demonstrating potential efficacy. FDY-5301 shows potential in its use to reduce the effects of reperfusion injury, and ongoing Phase 3 trials will allow for continued evaluation of its performance.
Collapse
Affiliation(s)
- Lauren E Williams
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, New York
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, New York
| |
Collapse
|
49
|
Ma X, Wang L, Li W, Huang Y, Zhu Y, Li J. SP1 MEDIATES OGD/R-INDUCED CARDIOMYOCYTE INJURY VIA ENHANCING THE TRANSCRIPTION OF USP46. Shock 2024; 62:327-335. [PMID: 38813924 DOI: 10.1097/shk.0000000000002401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: One of the mechanisms responsible for the high mortality rate of acute myocardial infarction is myocardial ischemia-reperfusion injury (MI-RI). The present study focused on the role and regulatory mechanisms of specificity protein 1 (SP1) and ubiquitin-specific protease 46 (USP46) in oxygen-glucose deprivation/reperfusion (OGD/R)-induced cardiomyocyte injury. Methods: OGD/R was used to treat cardiomyocytes AC16 to mimic ischemia-reperfusion in vitro . Cell viability, proliferation, and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. Enzyme-linked immunosorbent assays analyzed the concentrations of TNF-α and IL-1β. Several protein levels were analyzed by western blotting. The levels of iron (Fe 2+ ), reactive oxygen species, malondialdehyde, and the activities of superoxide dismutase were analyzed by commercial kits. Chromatin immunoprecipitation and dual-luciferase report assays assessed the relationship between USP46 and SP1. Results: USP46 and SP1 were upregulated in serum from MI patients and they had a positive correlation. OGD/R stimulation suppressed cardiomyocyte viability and proliferation, as well as induced cardiomyocyte inflammation, oxidative stress (OxS) injury, apoptosis, and ferroptosis, but these effects were impaired by USP46 or SP1 knockdown. SP1 could enhance the transcription of USP46, and USP46 overexpression reversed SP1 silencing-mediated effects on OGD/R-induced cardiomyocytes. SP1 mediated the AMPK signaling via USP46 . Conclusion: SP1 mediated OGD/R-induced cardiomyocyte inflammation, OxS injury, apoptosis, and ferroptosis by inactivating the AMPK signaling via enhancing the transcription of USP46.
Collapse
Affiliation(s)
- Xuming Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
50
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|