1
|
Zhang J, Zhao Y, Yan L, Tan M, Jin Y, Yin Y, Han L, Ma X, Li Y, Yang T, Jiang T, Li H. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024; 27:110448. [PMID: 39091464 PMCID: PMC11293524 DOI: 10.1016/j.isci.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Despite advances in treatment, myocardial infarction remains the leading cause of heart failure and death worldwide, and the restoration of coronary blood flow can also cause heart damage. In this study, we found that corosolic acid (CA), also known as plant insulin, significantly protects the heart from ischemia-reperfusion (I/R) injury. In addition, CA can inhibit oxidative stress and improve mitochondrial structure and function in cardiomyocytes. Subsequently, our study demonstrated that CA improved the expression of the mitophagy-related proteins Prohibitin 2 (PHB2), PTEN-induced putative kinase protein-1 (PINK1), and Parkin. Meanwhile, through molecular docking, we found an excellent binding between CA and PHB2 protein. Finally, the knockdown of PHB2 eliminated the protective effect of CA on hypoxia-reoxygenation in cardiomyocytes. Taken together, our study reveals that CA increases mitophagy in cardiomyocytes via the PHB2/PINK1/Parkin signaling pathway, inhibits oxidative stress response, and maintains mitochondrial function, thereby improving cardiac function after I/R.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lianhua Han
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yimin Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P.R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
2
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Cai Y, Zhu J, Zhu L, Hong L, Zhang J, Kong L, Chen C, Luo J. Physalin H ameliorates LPS-induced acute lung injury via KEAP1/NRF2 axis. Int Immunopharmacol 2024; 131:111789. [PMID: 38484668 DOI: 10.1016/j.intimp.2024.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Physalin H (PH), a withanolide isolated from Physalisangulata L. has been reported to have anti-inflammatory effect. However, its impact on acute lung injury (ALI) remains unexplored. In this study, we observed that PH significantly alleviated inflammation in LPS-stimulated macrophages by suppressing the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and down-regulating the expression of the inflammation-related genes. RNA sequencing analysis revealed a significant up-regulation of the NRF2 pathway by PH. Further investigation elucidated that PH attenuated the ubiquitination of NRF2 by impeding the interaction between NRF2 and KEAP1, thereby facilitating NRF2 nuclear translocation and up-regulating the expression of target genes. Consequently, it regulated redox system and exerted anti-inflammatory effect. Consistently, PH also significantly alleviated pathological damage and inflammation in LPS-induced ALI mice model, which could be reversed by administration of an NRF2 inhibitor. Collectively, these results suggest that PH ameliorates ALI by activating the KEAP1/NRF2 pathway. These findings provide a foundation for further development of pH as a new anti-inflammatory agent for ALI therapy.
Collapse
Affiliation(s)
- Yuxing Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jiangmin Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Lihong Hong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jianfei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
5
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
7
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Yuan-Ce L, Yu-Yan P, Qi Z, Hong-Yang Z, Yan-Wen W, Yu-Mei S, Guang-Zhi Z, Jun-Lin Y. Physalis pubescens L. branch and leaf extracts inhibit lymphoma proliferation by inducing apoptosis and cell cycle arrest. Front Pharmacol 2023; 14:1192225. [PMID: 37554986 PMCID: PMC10404818 DOI: 10.3389/fphar.2023.1192225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zeng Guang-Zhi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yin Jun-Lin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
9
|
Huang G, Lu X, Zhou H, Li R, Huang Q, Xiong X, Luo Z, Li W. PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy. Microvasc Res 2022; 142:104371. [PMID: 35460665 DOI: 10.1016/j.mvr.2022.104371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Autophagy is critical for myocardial ischemia-reperfusion (I/R) injury. However, there is still considerable debate over its protective and deleterious effects. The purpose of this study was to determine the involvement of the proprotein convertase subtilisin/Kexin type 9 (PCSK9) and its inhibitor in myocardial ischemia-reperfusion injury autophagy (MRI). METHODS Nine groups of eighty rats were used: sham, I/R2 h, I/R4 h, I/R6 h, I/R8 h, I/R1 d, and I/R2 d. A 30-min coronary artery blockage was used to produce myocardial IR. The time required for reperfusion rose linearly with the time gradient, from 2 h to 2 days. Following the determination of the best reperfusion period, three groups were formed: sham, I/R, and I/R + P (PCSK9 inhibitor (evolocumab) 10 mg/kg diluted in 2 ml sterile injection water was administered subcutaneously 1 week and half an hour before to surgery. Each group's infarction area was determined by electrocardiography (ECG), cardiac function, and 2,3,5-triphenyltetrazolium chloride (TTC) /Evan Blue (EB) staining. To detect morphological alterations in myocardial cells in each group, hematoxylin and eosin (HE) staining was used. Meanwhile, western blotting, immunohistochemistry, and Masson trichrome staining were utilized to quantify myocardial fibrosis and PCSK9 and autophagy protein expression. RESULTS The results indicated that PCSK9 expression levels increased significantly in MRI, as indicated by increased levels of the autophagy regulatory protein light chain 3 (LC3) and Beclin-1, which activated autophagy in cardiomyocytes, exacerbated myocardial injury, and increased the size of myocardial infarcts. Meanwhile, PCSK9 regulates mitophagy via the Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3) pathway, which controls myocardial infarction MRI throughout. Additionally, the PCSK9 inhibitor significantly decreased autophagy, enhanced cardiac function, and reduced the extent of reperfusion injury, consequently reducing myocardial infarct size expansion. CONCLUSION PCSK9 is upregulated in the myocardial ischemia-reperfusion injury hearts and regulates mitophagy via the BNIP3 pathway, which in turn contributes to reperfusion injury after myocardial infarction. PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy.
Collapse
Affiliation(s)
- Guangwei Huang
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Xiyang Lu
- Guizhou Medical University, 550004 Guiyang, China
| | - Haiyan Zhou
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Runhong Li
- Guizhou Medical University, 550004 Guiyang, China
| | - Qing Huang
- Department of Cardiovascular Medicine, Anshun City People's Hospital, Anshun 561000, Guizhou, China
| | - Xinlin Xiong
- Guizhou Medical University, 550004 Guiyang, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wei Li
- Guizhou Medical University, 550004 Guiyang, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
10
|
|
11
|
Rahman MA, Park MN, Rahman MDH, Rashid MM, Islam R, Uddin MJ, Hannan MA, Kim B. p53 Modulation of Autophagy Signaling in Cancer Therapies: Perspectives Mechanism and Therapeutic Targets. Front Cell Dev Biol 2022; 10:761080. [PMID: 35155422 PMCID: PMC8827382 DOI: 10.3389/fcell.2022.761080] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - MD Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Mamunur Rashid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
12
|
Mi W, Wang C, Luo G, Li J, Zhang Y, Jiang M, Zhang C, Liu N, Jiang X, Yang G, Zhang L, Zhang G, Zhang Y, Fu Y. Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer. Cell Death Discov 2021; 7:375. [PMID: 34864826 PMCID: PMC8643355 DOI: 10.1038/s41420-021-00677-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, many studies have shown that autophagy plays a vital role in the resistance of tumor chemotherapy. However, the interaction between autophagy and cell death has not yet been clarified. In this study, a new specific ERK inhibitor CC90003 was found to suppress colorectal cancer growth by inducing cell death both in vitro and in vivo. Studies have confirmed that higher concentrations of ROS leads to autophagy or cell death. In this research, the role of CC90003-induced ROS was verified. But after inhibiting ROS by two kinds of ROS inhibitors NAC and SFN, the autophagy induced by CC90003 decreased, while cell death strengthened. In parallel, protective autophagy was also induced, while in a p53-dependent manner. After silencing p53 or using the p53 inhibitor PFTα, the autophagy induced by CC90003 was weakened and the rate of cell death increases. Therefore, we confirmed that CC90003 could induce autophagy by activating ROS/p53. Furthermore, in the xenograft mouse model, the effect was obtained remarkably in the combinational treatment group of CC90003 plus CQ, comparing with that of the single treatment groups. In a word, our results demonstrated that targeting ERK leads to cell death and p53/ROS-dependent protective autophagy simultaneously in colorectal cancer, which offers new potential targets for clinical therapy.
Collapse
Affiliation(s)
- Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- College of Biology, Hunan University, 410082, Changsha, China
- School of Biomedical Sciences, Hunan University, 410082, Changsha, China
| | - Chuyue Wang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Guang Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- College of Biology, Hunan University, 410082, Changsha, China
| | - Meimei Jiang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Chuchu Zhang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Nannan Liu
- College of Biology, Hunan University, 410082, Changsha, China
| | - Xinxiu Jiang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Ge Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yingjie Zhang
- College of Biology, Hunan University, 410082, Changsha, China.
- School of Biomedical Sciences, Hunan University, 410082, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450052, Zhengzhou, China.
| |
Collapse
|
13
|
Nkwe DO, Lotshwao B, Rantong G, Matshwele J, Kwape TE, Masisi K, Gaobotse G, Hefferon K, Makhzoum A. Anticancer Mechanisms of Bioactive Compounds from Solanaceae: An Update. Cancers (Basel) 2021; 13:4989. [PMID: 34638473 PMCID: PMC8507657 DOI: 10.3390/cancers13194989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.
Collapse
Affiliation(s)
- David O. Nkwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Bonolo Lotshwao
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - James Matshwele
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana;
- Department of Applied Sciences, Botho University, Gaborone, Botswana
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| |
Collapse
|
14
|
Zhang YY, Gu LJ, Zhu N, Wang L, Cai MC, Jia JS, Rong S, Yuan WJ. Calpain 6 inhibits autophagy in inflammatory environments: A preliminary study on myoblasts and a chronic kidney disease rat model. Int J Mol Med 2021; 48:194. [PMID: 34435644 PMCID: PMC8416137 DOI: 10.3892/ijmm.2021.5027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
A non-classical calpain, calpain 6 (CAPN6), can inhibit skeletal muscle differentiation and regeneration. In the present study, the role of CAPN6 in the regulation of the autophagy of myoblasts in vitro was investigated. The underlying molecular events and the CAPN6 level in atrophic skeletal muscle in a rat model of chronic kidney disease (CKD) were also investigated. In vitro, CAPN6 was overexpressed, or knocked down, in rat L6 myoblasts to assess autophagy and related gene expression and co-localization. Subsequently, myoblasts were treated with a mixture of cytokines, and relative gene expression and autophagy were assessed. A rat model of CKD for muscle atrophy was established, and blood chemical level and the expression of CAPN6 in muscle were assessed. The data revealed that the knockdown of CAPN6 in rat myoblasts resulted in increased microtubule-associated protein 1 light chain 3 (LC3) levels, while its overexpression decreased LC3 levels and impaired autophagy. Additionally, it was observed that the co-localization of mammalian target of rapamycin (mTOR) and lysosomal-associated membrane protein 1 (LAMP1), a lysosomal marker, proteins was increased. In addition, mTOR, Raptor and α-tubulin (a marker of microtubules) increased in the CAPN6 overexpression group. However, inflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (INF)-γ and lipopolysaccharides upregulated CAPN6 expression, inhibited L6 myoblast autophagy and stabilized mTOR activity. Furthermore, the animal model successfully mimicked human disease as regards an increase in body weight, and a reduction in muscle mass, cross-sectional area and blood biomarker concentrations; a slight increase in CAPN6 mRNA and protein levels in muscles was observed. Finally, the data of the present study suggested that CAPN6 reduced autophagy via the maintenance of mTOR signaling, which may play a role in CKD-related muscle atrophy. However, future studies are required to determine whether CAPN6 may be used as an intervention target for CKD-related skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yue Yue Zhang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Li Jie Gu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Nan Zhu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Wang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Min Chao Cai
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jie Shuang Jia
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Shu Rong
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Wei Jie Yuan
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
15
|
Zhou LL, Gao KY, Cheng LS, Wang YL, Cheng YK, Xu QT, Deng XY, Li JW, Mei FZ, Zhou ZQ. Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. PROTOPLASMA 2021; 258:891-904. [PMID: 33486619 DOI: 10.1007/s00709-021-01610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a pathway for the degradation of cytoplasmic components in eukaryotes. In wheat, the mechanism by which autophagy regulates programmed cell death (PCD) is unknown. Here, we demonstrated that short-term waterlogging-induced autophagy inhibited PCD in root cells of wheat. The waterlogging-tolerant wheat cultivar Huamai 8 and the waterlogging-sensitive wheat cultivar Huamai 9 were used as experimental materials, and their roots were waterlogged for 0-48 h. Waterlogging stress increased the number of autophagic structures, the expression levels of autophagy-related genes (TaATG), and the occurrence of PCD in root cells. PCD manifested as morphological changes in the cell nucleus, significant enhancement of DNA laddering bands, and increases in caspase-like protease activity and the expression levels of metacaspase genes. The autophagy promoter rapamycin (RAPA) reduced PCD levels, whereas the autophagy inhibitor 3-methyladenine (3-MA) enhanced them. The expression levels of TaATG genes and the number of autophagic structures were lower in cortex cells than in stele cells, but the levels of PCD were higher in cortex cells. The number of autophagic structures was greater in Huamai 8 than in Huamai 9, but the levels of PCD were lower. In summary, our results showed that short-term waterlogging induced autophagy which could inhibit PCD. Mechanisms of response to waterlogging stress differed between cortex and stele cells and between two wheat cultivars of contrasting waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Lang Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai-Yue Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Sha Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yue-Li Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi-Keng Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiu-Tao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
16
|
Xu J, Wang L, Zhang L, Zheng F, Wang F, Leng J, Wang K, Héroux P, Shen HM, Wu Y, Xia D. Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biol 2020; 38:101776. [PMID: 33161305 PMCID: PMC7649642 DOI: 10.1016/j.redox.2020.101776] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalate ester plasticizers are used to improve the plasticity and strength of plastics. One of the most widely used and studied, di-2-ethylhexyl phthalate (DEHP), has been labeled as an endocrine disruptor. The major and toxic metabolic derivative of DEHP, mono-2-ethylhexyl phthalate (MEHP), is capable of interfering with mitochondrial function, but its mechanism of action on mitophagy remains elusive. Here, we report that MEHP exacerbates cytotoxicity by amplifying the PINK1-Parkin-mediated mitophagy pathway. First, MEHP exacerbated mitochondrial damage induced by low-dose CCCP via increased reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (MMP), and enhanced fragmentation in mitochondria. Second, co-exposure to MEHP and CCCP (“MEHP-CCCP”) induced robust mitophagy. Mechanistically, MEHP-CCCP stabilized PINK1, increased the level of phosphorylated ubiquitin (pSer 65-Ub), and led to Parkin mitochondrial translocation and activation. Third, MEHP-CCCP synergistically caused more cell death, while inhibition of mitophagy, either through chemical or gene silencing, reduced cell death. Finally and importantly, co-treatment with N-acetyl cysteine (NAC) completely counteracted the effects of MEHP-CCCP, suggesting that mitochondrial ROS played a vital role in this process. Our results link mitophagy and MEHP cytotoxicity, providing an insight into the potential roles of endocrine disrupting chemicals (EDCs) in human diseases such as Parkinson's disease. Mono-2-ethylhexyl phthalate (MEHP) exacerbates mitochondrial damage induced by low-dose CCCP. Co-exposure to MEHP and CCCP (MEHP-CCCP) induces robust mitophagy in a PINK1-Parkin-dependent pathway. Mitophagy promotes MEHP-CCCP-induced cell death. ROS mediate MEHP-CCCP-induced mitophagy and cytotoxicity.
Collapse
Affiliation(s)
- Jian Xu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Liming Wang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Zheng
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Wang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Keyi Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Canada
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
17
|
Fu D, Wu D, Cheng W, Gao J, Zhang Z, Ge J, Zhou W, Xu Z. Costunolide Induces Autophagy and Apoptosis by Activating ROS/MAPK Signaling Pathways in Renal Cell Carcinoma. Front Oncol 2020; 10:582273. [PMID: 33194716 PMCID: PMC7649430 DOI: 10.3389/fonc.2020.582273] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Although costunolide (Cos), a natural sesquiterpene compound isolated from various medicinal plants, exhibits antiproliferative and pro-apoptotic effects in diverse types of cancers, the mechanism associated with the anticancer property of Cos has not been elucidated. The present investigation was carried out to study the anticarcinogenic influence of Cos on kidney cancer cells. Several human renal cancer cell lines were used and biological and molecular studies were conducted. It was found that Cos significantly suppressed renal carcinoma cell growth via stimulation of apoptosis and autophagy in a concentration-dependent manner. Further studies revealed that Cos increased Bax/Bcl-2 ratio, decreased mitochondrial transmembrane potential (MMP), and enhanced cytoplasmic levels of cytochrome c, and activation of caspase-9, caspase-3, and cleaved PARP, resulting in cell apoptosis. The autophagy induced by Cos resulted from the formation of GFP-LC3 puncta and upregulation of LC3B II and Beclin-1 proteins. Compared with Cos treatment, the autophagy inhibitor 3-MA or ROS scavenger NAC significantly inhibited apoptosis and autophagy. Moreover, NAC and JNK-specific inhibitor SP600125 attenuated the effect of Cos. Taken together, Cos exerted autophagic and apoptotic effects on renal cancer through the ROS/JNK-dependent signal route. These findings suggest that Cos could be a beneficial anticarcinogenic agent.
Collapse
Affiliation(s)
- Dian Fu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ding Wu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianping Gao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengyu Zhang
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenyu Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Banstola A, Duwa R, Emami F, Jeong JH, Yook S. Enhanced Caspase-Mediated Abrogation of Autophagy by Temozolomide-Loaded and Panitumumab-Conjugated Poly(lactic-co-glycolic acid) Nanoparticles in Epidermal Growth Factor Receptor Overexpressing Glioblastoma Cells. Mol Pharm 2020; 17:4386-4400. [DOI: 10.1021/acs.molpharmaceut.0c00856] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | - Ramesh Duwa
- College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | | | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| |
Collapse
|
19
|
Dai C, Shen L, Jin W, Lv B, Liu P, Wang X, Yin Y, Fu Y, Liang L, Ma Z, Zhang X, Wang Y, Xu D, Chen Z. Physapubescin B enhances the sensitivity of gastric cancer cells to trametinib by inhibiting the STAT3 signaling pathway. Toxicol Appl Pharmacol 2020; 408:115273. [PMID: 33035574 DOI: 10.1016/j.taap.2020.115273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Given the poor prognosis of unresectable advanced gastric cancer (GC), novel therapeutic strategies are needed. The mitogen-activated protein kinase (MAPK) signaling cascade, the most frequently activated pathway in GC, plays an important role in tumorigenesis and metastasis. The MAPK/extracellular signal-regulated kinase (ERK) pathway is an attractive therapeutic target for GC. In this study, trametinib, a mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor, reduced the p-ERK level and significantly increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in GC cells, resulting in reduced sensitivity to trametinib. Physapubescin B (PB), a steroidal compound extracted from the plant Physalis pubescens L., inhibited the proliferation and induced the apoptosis of GC cells by suppressing STAT3 phosphorylation. The combination of PB and trametinib suppressed the STAT3 phosphorylation induced by trametinib, and synergistically suppressed gastric tumor growth in vitro and in vivo. Together, these results indicate that inhibition of both MEK and STAT3 may be effective for patients with MAPK/ERK pathway-addicted GC.
Collapse
Affiliation(s)
- Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310006, China
| | - Bing Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Pei Liu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Liguo Liang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
| | - Zhongjun Ma
- School of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Xiaojian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiping Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China.
| | - Daogun Xu
- Department of Colorectal Surgery, Wenling Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Wenling, China.
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
20
|
Yao H, Fan M, He X. Autophagy suppresses resveratrol-induced apoptosis in renal cell carcinoma 786-O cells. Oncol Lett 2020; 19:3269-3277. [PMID: 32256822 PMCID: PMC7074540 DOI: 10.3892/ol.2020.11442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
As a polyphenolic compound, resveratrol (Res) is widely distributed in a variety of plants. Previous studies have demonstrated that Res can inhibit various different types of tumor growth. However, its role in renal cell carcinoma (RCC) remains largely unknown. The present study first demonstrated that Res inhibited cell viability and induced apoptosis in RCC 786-O cells. Further experiments revealed that Res damaged the mitochondria and activated caspase 3. In contrast, Z-VAD-FMK, a pan-caspase inhibitor, suppressed Res-induced apoptosis. Reactive oxygen species (ROS) were involved in the process of Res-induced apoptosis, and antioxidant N-acetyl cysteine could significantly attenuate this. Furthermore, Res activated c-Jun N-terminal kinase via ROS to induce autophagy, whereas inhibition of autophagy with chloroquine or Beclin 1 small interfering RNA aggravated Res-induced apoptosis, indicating that autophagy served as a pro-survival mechanism to protect 786-O cells from Res-induced apoptosis. Therefore, a combination of Res and autophagy inhibitors could enhance the inhibitory effect of Res on RCC.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
21
|
Santiago-O’Farrill JM, Weroha SJ, Hou X, Oberg AL, Heinzen EP, Maurer MJ, Pang L, Rask P, Amaravadi RK, Becker SE, Romero I, Rubió MJ, Matias-Guiu X, Santacana M, Llombart-Cussac A, Poveda A, Lu Z, Bast RC. Poly(adenosine diphosphate ribose) polymerase inhibitors induce autophagy-mediated drug resistance in ovarian cancer cells, xenografts, and patient-derived xenograft models. Cancer 2020; 126:894-907. [PMID: 31714594 PMCID: PMC6992526 DOI: 10.1002/cncr.32600] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors exhibit promising activity against ovarian cancers, but their efficacy can be limited by acquired drug resistance. This study explores the role of autophagy in regulating the sensitivity of ovarian cancer cells to PARP inhibitors. METHODS Induction of autophagy was detected by punctate LC3 fluorescence staining, LC3I to LC3II conversion on Western blot analysis, and electron microscopy. Enhanced growth inhibition and apoptosis were observed when PARP inhibitors were used with hydroxychloroquine, chloroquine (CQ), or LYS05 to block the hydrolysis of proteins and lipids in autophagosomes or with small interfering RNA against ATG5 or ATG7 to prevent the formation of autophagosomes. The preclinical efficacy of the combination of CQ and olaparib was evaluated with a patient-derived xenograft (PDX) and the OVCAR8 human ovarian cancer cell line. RESULTS Four PARP inhibitors (olaparib, niraparib, rucaparib, and talazoparib) induced autophagy in a panel of ovarian cancer cells. Inhibition of autophagy with CQ enhanced the sensitivity of ovarian cancer cells to PARP inhibitors. In vivo, olaparib and CQ produced additive growth inhibition in OVCAR8 xenografts and a PDX. Olaparib inhibited PARP activity, and this led to increased reactive oxygen species (ROS) and an accumulation of γ-H2AX. Inhibition of autophagy also increased ROS and γ-H2AX and enhanced the effect of olaparib on both entities. Treatment with olaparib increased phosphorylation of ATM and PTEN while decreasing the phosphorylation of AKT and mTOR and inducing autophagy. CONCLUSIONS PARP inhibitor-induced autophagy provides an adaptive mechanism of resistance to PARP inhibitors in cancer cells with wild-type BRCA, and a combination of PARP inhibitors with CQ or other autophagy inhibitors could improve outcomes for patients with ovarian cancer.
Collapse
Affiliation(s)
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ethan P. Heinzen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Matthew J. Maurer
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Lan Pang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip Rask
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ravi K. Amaravadi
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | - Sarah E. Becker
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio Romero
- Instituto Valenciano de Oncología, Valencia, Spain
- MedSIR, Barcelona, Spain
| | - M. Jesús Rubió
- Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain
- MedSIR, Barcelona, Spain
| | - X. Matias-Guiu
- Hospital U Arnau de Vilanova de Lleida, IRBLLEIDA, University of Lleida, CIBERONC
- MedSIR, Barcelona, Spain
| | - Maria Santacana
- Hospital U Arnau de Vilanova de Lleida, IRBLLEIDA, University of Lleida, CIBERONC
- MedSIR, Barcelona, Spain
| | | | - Andrés Poveda
- Instituto Valenciano de Oncología, Valencia, Spain
- MedSIR, Barcelona, Spain
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae. PLoS One 2020; 15:e0228407. [PMID: 32012188 PMCID: PMC6996803 DOI: 10.1371/journal.pone.0228407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023] Open
Abstract
Cell homeostasis requires the correct levels of reactive oxygen species (ROS) to be maintained as these regulate the proliferation and differentiation of cells, and control the immune response and inflammation. High levels of ROS can cause oxidative stress, leading to protein, lipid and DNA damage, or even cell death. Under physiological conditions, the rate of autophagy remains stable; however, it can be accelerated by a number of exogenous stimuli such as oxidative stress, starvation or hypoxia, leading to cell death. The present paper examines the effect of Conidiobolus coronatus infection on the immune response, oxidative stress processes and autophagy in the greater wax moth, Galleria mellonella. Fungal infection was found to result in the disorganization of the cytoskeleton of the larval immune cells and the enhancement of oxidative defense processes. Lipid peroxidation and autophagy were also induced in the hemocytes. Our findings show that G. mellonella is an ideal model for exploring immune mechanisms.
Collapse
Affiliation(s)
- Michalina Kazek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Anna Katarzyna Wrońska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| |
Collapse
|
23
|
Wang H, Cheng X, Zhang L, Xu S, Zhang Q, Lu R. A surface-layer protein from Lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways. Food Funct 2020; 10:4102-4112. [PMID: 31233063 DOI: 10.1039/c9fo00109c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A surface-layer protein (Slp) derived from Lactobacillus acidophilus NCFM has been reported to possess multiple biological properties, including anti-inflammatory, inhibition of apoptosis in pathogen-invaded HT-29 cells and oxidative stress relief. However, its anti-tumor ability and underlying molecular mechanism are unknown. Here, we report that Slp suppresses cell proliferation and induces autophagic cell death in HCT116 cells. Accumulation of Beclin-1 and microtubule-associated protein 1 light chain 3 from II (LC3-II), and the degradation of p62 were observed when cells were treated with various concentrations of Slp (25, 50, 100 μg mL-1) for 24 h. We also found that the mammalian targets of rapamycin (mTOR) and c-Jun N-terminal kinase (JNK) signaling pathways were crucial mediators regulating Slp-induced autophagic cell death. Additionally, treatment with Slp resulted in the obvious formation of reactive oxygen species (ROS). SP600125, a JNK inhibitor, and N-acetylcysteine (NAC), a ROS inhibitor, attenuated Slp-induced autophagic cell death in HCT116 cells. Furthermore, NAC was found to prevent Slp-induced p70 and JNK phosphorylation. Taken together, our results suggest a novel mechanism of action of Slp induced autophagy, acting simultaneously through the ROS-mediated mTOR and JNK signaling pathways in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Huifang Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Xian Cheng
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong, Wuxi, Jiangsu 214063, China
| | - Li Zhang
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong, Wuxi, Jiangsu 214063, China
| | - Shichen Xu
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong, Wuxi, Jiangsu 214063, China
| | - Qiuxiang Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Chen X, Huang P, Wang J, Tian R, Chen Y, Chen Y, Zhang L, Ma Z. Identification of H 2S/NO-donating artemisinin derivatives as potential antileukemic agents. RSC Adv 2019; 10:501-511. [PMID: 35492518 PMCID: PMC9047252 DOI: 10.1039/c9ra08239e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
Three H2S/NO-donating artemisinin derivatives were designed and synthesized. Their antiproliferative activities were evaluated against human acute myeloid leukemia (AML) cell lines of K562 and K562/ADR and human normal liver cells of LO2. Biological evaluation indicated that NO-donating compound 10c exhibited the most potent cytotoxicity against leukemia cells, similar to the bioactivity of clinical drug of homoharringtonine, but showed less toxicity than homoharringtonine against LO2 cells. Further mechanism studies revealed that 10c could enhance the levels of intracellular NO and ROS, induce apoptosis and S phase cell cycle arrest, and disturb the mitochondrial membrane potential in K562 and K562/ADR cells. Western blot results demonstrated that 10c noticeably promoted autophagy by up-regulating the levels of Beclin1 and L3-II expression, inhibited the AKT signaling, and stimulated the AMPK and JNK signaling in both leukemia cell lines. Overall, 10c exhibited the potential to be a promising candidate for the therapy of AML. Conjugate 10c exhibited potential antiproliferative activity against human acute myeloid leukemia cells.![]()
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Runmei Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Zhigui Ma
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| |
Collapse
|
25
|
Qu S, Yang K, Chen L, Liu M, Geng Q, He X, Li Y, Liu Y, Tian J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front Microbiol 2019; 10:2895. [PMID: 31921070 PMCID: PMC6930169 DOI: 10.3389/fmicb.2019.02895] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
The problem of food spoilage due to Aspergillus flavus (A. flavus) needs to be resolved. In this study, we found that the minimum inhibitory concentration of cinnamaldehyde (CA) that inhibited A. flavus was 0.065 mg/ml and that corn can be prevented from spoiling at a concentration of 0.13 mg/cm3. In addition to inhibiting spore germination, mycelial growth, and biomass production, CA can also reduce ergosterol synthesis and can cause cytomembrane damage. Our intention was to elucidate the antifungal mechanism of CA. Flow cytometry, fluorescence microscopy, and western blot were used to reveal that different concentrations of CA can cause a series of apoptotic events in A. flavus, including elevated Ca2+ and reactive oxygen species, decrease in mitochondrial membrane potential (Δψ m ), the release of cytochrome c, the activation of metacaspase, phosphatidylserine (PS) externalization, and DNA damage. Moreover, CA significantly increased the expression levels of apoptosis-related genes (Mst3, Stm1, AMID, Yca1, DAP3, and HtrA2). In summary, our results indicate that CA is a promising antifungal agent for use in food preservation.
Collapse
Affiliation(s)
- Su Qu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Lei Chen
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongxin Li
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
26
|
ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro. Toxicol Appl Pharmacol 2019; 379:114647. [PMID: 31283929 DOI: 10.1016/j.taap.2019.114647] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Juglone (JG) exhibits a broad-spectrum of cytotoxicity against some cancer cells. However, its molecular mechanisms have not been investigated well. Here, the present results showed that JG significantly inhibited tumor growth in vivo. CCK-8 assays, flow cytometric analysis, western blotting and immunohistochemistry revealed that JG effectively inhibited cell proliferation and induced apoptosis through extrinsic pathways. We also observed that JG treatment induced autophagy flux via activiting the AMPK-mTOR signaling pathway. In addition, we found that JG enhanced p53 activation by increasing down-regulation of ubiquitin-mediated degradation. Inhibition of p53 by siRNA attenuated JG-induced cell death and autophagy. Moreover, JG enhanced the generation of hydrogen peroxide (H2O2) and superoxide anion radical (O2• -). Further experiments proved that H2O2 was a major factor since the H2O2 scavenger catalase (CAT) reduced both autophagy and cell death to a greater extent than the O2• - scavenger SOD. Overall, our results illustrated that JG caused apoptosis and autophagy via activating the ROS-mediated p53 pathway in human liver cancer cells in vitro and in vivo, which provided basic scientific evidence that JG serves as a potential anti-cancer agent.
Collapse
|
27
|
Wei L, Wang C, Chen X, Yang B, Shi K, Benington LR, Lim LY, Shi S, Mo J. Dual-responsive, Methotrexate-loaded, Ascorbic acid-derived Micelles Exert Anti-tumor and Anti-metastatic Effects by Inhibiting NF-κB Signaling in an Orthotopic Mouse Model of Human Choriocarcinoma. Theranostics 2019; 9:4354-4374. [PMID: 31285766 PMCID: PMC6599650 DOI: 10.7150/thno.35125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Gestational trophoblastic neoplasia (GTN), the most aggressive form of which is choriocarcinoma, can result from over-proliferation of trophoblasts. Treating choriocarcinoma requires high doses of systemic chemotherapeutic agents, which result in nonspecific drug distribution and severe toxicity. To overcome these disadvantages and enhance chemotherapeutic efficacy, we synthesized redox- and pH-sensitive, self-assembling, ascorbic acid-derived (PEG-ss-aAPP) micelles to deliver the drug methotrexate (MTX). Methods: We developed and tested self-assembling PEG-ss-aAPP micelles, which release their drug cargo in response to an intracellular reducing environment and the acidity of the early lysosome or tumoral microenvironment. Uptake into JEG3 choriocarcinoma cancer cells was examined using confocal microscopy and transmission electron microscopy. We examined the ability of MTX-loaded PEG-ss-aAPP micelles to inhibit metastasis in an orthotopic mouse model of human choriocarcinoma. Results: Drug-loaded micelles had encapsulation efficiency above 95%. Particles were spherical based on transmission electron microscopy, with diameters of approximately 229.0 nm based on dynamic light scattering. The drug carrier responded sensitively to redox and pH changes, releasing its cargo in specific environments. PEG-ss-aAPP/MTX micelles efficiently escaped from lysosome/endosomes, and they were effective at producing reactive oxygen species, strongly inducing apoptosis and inhibiting invasion and migration. These effects correlated with the ability of PEG-ss-aAPP/MTX micelles to protect IκBα from degradation, which in turn inhibited translocation of NF-κB p65 to the nucleus. In an orthotopic mouse model of human choriocarcinoma, PEG-ss-aAPP/MTX micelles strongly inhibited primary tumor growth and significantly suppressed metastasis without obvious side effects. Conclusions: Our results highlight the potential of PEG-ss-aAPP micelles for targeted delivery of chemotherapeutic agents against choriocarcinoma.
Collapse
Affiliation(s)
- Lili Wei
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chenyuan Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510623, China
| | - Xianjue Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing Yang
- Department of Gynecology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Leah R. Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia
| | - Sanjun Shi
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
28
|
Jeong SY, Gu X, Jeong KW. Photoactivation of N-retinylidene-N-retinylethanolamine compromises autophagy in retinal pigmented epithelial cells. Food Chem Toxicol 2019; 131:110555. [PMID: 31173818 DOI: 10.1016/j.fct.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/05/2023]
Abstract
As a part of the aging process, N-retinylidene-N-retinylethanolamine (A2E) accumulates in the retina to activate autophagy in retinal pigmented epithelial cells. However, the effect of A2E photoactivation on autophagy, which is more clinically relevant, still remains unclear. Here, we investigated the effect of blue light (BL)-activated A2E on autophagy in human retinal pigmented epithelial cells, ARPE-19. A significant increase in LC3-II protein was observed when BL was irradiated on ARPE-19 cells containing A2E. The mammalian target of rapamycin (mTOR) pathway was examined to verify whether autophagy was activated, but no change in AKT, mTOR, and 4EBP phosphorylation was observed. Transcription factor EB (TFEB) target gene expression, which is another pathway involved in autophagy, was also not altered by A2E and BL. However, intracellular p62 protein levels were significantly increased, which represented the inhibition of autophagic flux. To investigate the mechanism of the suppressed autophagic flux, the lysosomal state was observed. After BL irradiation, lysosomal damage was induced in A2E-treated ARPE-19 cells, and this phenomenon was prevented by treatment with the antioxidant, N-acetylcysteine. Our results suggest that A2E photoactivation compromises autophagy in ARPE-19 cells and that reactive oxygen species (ROS) play an important role in this process.
Collapse
Affiliation(s)
- Seo Yeon Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - XiuHui Gu
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
29
|
Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, Fu Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 2019; 66:e12542. [PMID: 30516280 DOI: 10.1111/jpi.12542] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Optic atrophy 1 (OPA1)-related mitochondrial fusion and mitophagy are vital to sustain mitochondrial homeostasis under stress conditions. However, no study has confirmed whether OPA1-related mitochondrial fusion/mitophagy is activated by melatonin and, consequently, attenuates cardiomyocyte death and mitochondrial stress in the setting of cardiac ischemia-reperfusion (I/R) injury. Our results indicated that OPA1, mitochondrial fusion, and mitophagy were significantly repressed by I/R injury, accompanied by infarction area expansion, heart dysfunction, myocardial inflammation, and cardiomyocyte oxidative stress. However, melatonin treatment maintained myocardial function and cardiomyocyte viability, and these effects were highly dependent on OPA1-related mitochondrial fusion/mitophagy. At the molecular level, OPA1-related mitochondrial fusion/mitophagy, which was normalized by melatonin, substantially rectified the excessive mitochondrial fission, promoted mitochondria energy metabolism, sustained mitochondrial function, and blocked cardiomyocyte caspase-9-involved mitochondrial apoptosis. However, genetic approaches with a cardiac-specific knockout of OPA1 abolished the beneficial effects of melatonin on cardiomyocyte survival and mitochondrial homeostasis in vivo and in vitro. Furthermore, we demonstrated that melatonin affected OPA1 stabilization via the AMPK signaling pathway and that blockade of AMPK repressed OPA1 expression and compromised the cardioprotective action of melatonin. Overall, our results confirm that OPA1-related mitochondrial fusion/mitophagy is actually modulated by melatonin in the setting of cardiac I/R injury. Moreover, manipulation of the AMPK-OPA1-mitochondrial fusion/mitophagy axis via melatonin may be a novel therapeutic approach to reduce cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junnan Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Organ Transplant Institute of People's Liberation Army, The 309th Hospital of People's Liberation Army, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhenhong Fu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Chen Y, Xiong S, Zhao F, Lu X, Wu B, Yang B. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. J Biomed Mater Res A 2019; 107:1253-1263. [PMID: 30701665 DOI: 10.1002/jbm.a.36634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/30/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress could cause damage to lipids, proteins and DNA, which is induced by the imbalance between the production of reactive oxygen species (ROS) and the biological system ability to counteract or detoxify their harmful effects. The oxidative stress damage significantly contributes to a number of diseases. Magnesium (Mg) is endowed with a novel function of removing excess ROS by releasing H2 during the degradation. In this study, in order to explore the property of anti-oxidative damage of Mg metal, rat bone marrow mesenchymal stem cells (MSCs) oxidative damaged by ultraviolet (UV) radiation was employed to co-culture with Mg metal. The effect of Mg metal on the response of antioxidant enzymes and mitochondria in MSCs was studied. We found that Mg metal could reduce the cellular oxidative stress damage and elevate the activities of antioxidant enzymes to maintain redox homeostasis. In addition, Mg metal could reduce the risk of UV-induced cell apoptosis by increasing the ratio of Bcl-2/Bax, elevating the mitochondrial membrane potential and blocking the release of cytochrome c. This finding showed Mg metal might have the potential for treating diseases caused by oxidative stress damage. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1253-1263, 2019.
Collapse
Affiliation(s)
- Yangmei Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Fenghua Zhao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Boyao Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
31
|
Zhang L, Li S, Wang R, Chen C, Ma W, Cai H. RETRACTED: Cytokine augments the sorafenib-induced apoptosis in Huh7 liver cancer cellby inducing mitochondrial fragmentation and activating MAPK-JNKsignalling pathway. Biomed Pharmacother 2019; 110:213-223. [DOI: 10.1016/j.biopha.2018.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022] Open
|
32
|
Yu W, Xu M, Zhang T, Zhang Q, Zou C. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci 2019; 69:113-127. [PMID: 29961191 PMCID: PMC10717665 DOI: 10.1007/s12576-018-0627-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Cardiac ischemia-reperfusion (I/R) injury results mainly from mitochondrial dysfunction and cardiomyocyte death. Mitophagy sustains mitochondrial function and exerts a pro-survival effect on the reperfused heart tissue. Mammalian STE20-like kinase 1 (Mst1) regulates chronic cardiac metabolic damage and autophagic activity, but its role in acute cardiac I/R injury, especially its effect on mitophagy, is unknown. The aim of this study is to explore whether Mst1 is involved in reperfusion-mediated cardiomyocyte death via modulation of FUN14 domain containing 1 (FUNDC1)-related mitophagy. Our data indicated that Mst1 was markedly increased in reperfused hearts. However, genetic ablation of Mst1 in Mst1-knockout (Mst1-KO) mice significantly reduced the expansion of the cardiac infarction area, maintained myocardial function and abolished I/R-mediated cardiomyocyte death. At the molecular level, upregulation of Mst1 promoted ROS production, reduced mitochondrial membrane potential, facilitated the leakage of mitochondrial pro-apoptotic factors into the nucleus, and activated the caspase-9-related apoptotic pathway in reperfused cardiomyocytes. Mechanistically, Mst1 activation repressed FUNDC1 expression and consequently inhibited mitophagy. However, deletion of Mst1 was able to reverse FUNDC1 expression and thus re-activate protective mitophagy, effectively sustaining mitochondrial homeostasis and blocking mitochondrial apoptosis in reperfused cardiomyocytes. Finally, we demonstrated that Mst1 regulated FUNDC1 expression via the MAPK/ERK-CREB pathway. Inhibition of the MAPK/ERK-CREB pathway prevented FUNDC1 activation caused by Mst1 deletion. Altogether, our data confirm that Mst1 deficiency sends a pro-survival signal for the reperfused heart by reversing FUNDC1-related mitophagy and thus reducing cardiomyocyte mitochondrial apoptosis, which identifies Mst1 as a novel regulator for cardiac reperfusion injury via modulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Mei Xu
- Department of Geriatrics, Shandong University Qilu Hospital, 107 Wenhua Xi Road, Jinan, 250021, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
33
|
Yang HL, Lin RW, Karuppaiya P, Mathew DC, Way TD, Lin HC, Lee CC, Hseu YC. Induction of autophagic cell death in human ovarian carcinoma cells by Antrodia salmonea through increased reactive oxygen species generation. J Cell Physiol 2018; 234:10747-10760. [PMID: 30584666 DOI: 10.1002/jcp.27749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
We reported in our previously executed studies that the fermented culture broth of Antrodia salmonea (AS), a mushroom used in Taiwanese folk medicine induced reactive oxygen species (ROS)-mediated apoptosis in human ovarian carcinoma cells. In this study, we studied the anticancer efficacies of AS (0-240 μg/ml) by examining the key molecular events implicated in cell death associated with autophagy in SKOV-3 and A2780 human ovarian carcinoma cells and clarified the fundamental molecular mechanisms. Treatment of ovarian carcinoma cells with AS-induced autophagic cell death mediated by increased microtubule-associated protein LC3-II, GFP-LC3 puncta, and acidic vesicular organelle (AVO) formation. These events are linked with the activation of p62/SQSTM1, the inhibition of ATG4B, the expression of ATG7, and the dysregulation of Beclin-1/Bcl-2 (i.e., B-cell lymphoma 2). N-acetylcysteine inhibited AS-induced ROS generation, which in turn constricted AS-induced LC3 conversion, AVO formation, and ATG4B inhibition, indicating ROS-mediated autophagy cell death. In addition, the 3-methyladenine (3-MA) or chloroquine (CQ)-induced autophagy inhibition decreased AS-induced apoptosis. Additionally, apoptosis inhibition by Z-VAD-FMK, a pan-caspase inhibitor, substantially suppressed AS-induced autophagy. Furthermore, AS-inhibited HER-2/ neu and PI3K/AKT signaling pathways which were reversed by autophagy inhibitors 3-MA and CQ. Thus, A. salmonea is a potential chemopreventive agent that is capable of activating ROS-mediated autophagic cell death in ovarian carcinoma cells.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Palaniyandi Karuppaiya
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Chang Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Liu J, Xu Y, Wu Q, Ding Q, Fan W. Sirtuin‑1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci 2018; 212:213-224. [PMID: 30292830 DOI: 10.1016/j.lfs.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Stem cell transplantation is a promising tool to treat burn injuries. However, the inflammatory microenvironment in damaged skin limits the efficiency of stem cell-based therapy via poorly understood mechanisms. The aim of our study is to explore the contribution and mechanism of Sirtuin-1 (Sirt1) in TNFα-mediated inflammatory stress in hair follicle stem cells (HFSCs). METHODS Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded Sirt1 was transduced into HFSCs to overexpress Sirt1 in the presence of TNFα. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence staining and western blotting. RESULTS Sirt1 was downregulated in response to the TNFα treatment. Additionally, TNFα stress reduced the viability, mobility and proliferation of HFSCs, and these effects were reversed by the overexpression of Sirt1. At the molecular level, Sirt1 overexpression attenuated TNFα-mediated mitochondrial damage, as evidenced by increased mitochondrial energy metabolism, decreased mitochondrial ROS generation, stabilized mitochondrial potential and blockage of the mitochondrial apoptotic pathway. Furthermore, Sirt1 modulated mitochondrial homeostasis by activating the MAPK-ERK-Mfn2 axis; inhibition of this pathway abrogated the protective effects of Sirt1 on HFSC survival, migration and proliferation. SIGNIFICANCE Based on our results, the inflammatory stress-mediated HFSC injury may be associated with a decrease in Sirt1 expression and subsequent mitochondrial dysfunction. Accordingly, strategies designed to enhance Sirt1 expression would be an effective approach to enhance the survival of HFSCs in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Yuxuan Xu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qiaofang Wu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qi Ding
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Weixin Fan
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China.
| |
Collapse
|
35
|
Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 2018; 65:e12503. [PMID: 29770487 DOI: 10.1111/jpi.12503] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The molecular features of necroptosis in cardiac ischemia-reperfusion (IR) injury have been extensively explored. However, there have been no studies investigating the physiological regulatory mechanisms of melatonin acting on necroptosis in cardiac IR injury. This study was designed to determine the role of necroptosis in microvascular IR injury, and investigate the contribution of melatonin in repressing necroptosis and preventing IR-mediated endothelial system collapse. Our results demonstrated that Ripk3 was primarily activated by IR injury and consequently aggravated endothelial necroptosis, microvessel barrier dysfunction, capillary hyperpermeability, the inflammation response, microcirculatory vasospasms, and microvascular perfusion defects. However, administration of melatonin prevented Ripk3 activation and provided a pro-survival advantage for the endothelial system in the context of cardiac IR injury, similar to the results obtained via genetic ablation of Ripk3. Functional investigations clearly illustrated that activated Ripk3 upregulated PGAM5 expression, and the latter increased CypD phosphorylation, which obligated endothelial cells to undergo necroptosis via augmenting mPTP (mitochondrial permeability transition pore) opening. Interestingly, melatonin supplementation suppressed mPTP opening and interrupted endothelial necroptosis via blocking the Ripk3-PGAM5-CypD signal pathways. Taken together, our studies identified the Ripk3-PGAM5-CypD-mPTP axis as a new pathway responsible for reperfusion-mediated microvascular damage via initiating endothelial necroptosis. In contrast, melatonin treatment inhibited the Ripk3-PGAM5-CypD-mPTP cascade and thus reduced cellular necroptosis, conferring a protective advantage to the endothelial system in IR stress. These findings establish a new paradigm in microvascular IR injury and update the concept for cell death management handled by melatonin under the burden of reperfusion attack.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California
| | - Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J. BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 2018; 234:5056-5069. [PMID: 30256421 DOI: 10.1002/jcp.27308] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Jin Wang
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Medical School of Chinese PLA Hospital, Beijing, China
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - Sam Toanc
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming
| |
Collapse
|
37
|
Tavares WR, Seca AML. The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites. MEDICINES 2018; 5:medicines5030081. [PMID: 30065158 PMCID: PMC6165314 DOI: 10.3390/medicines5030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
Background: Plants and their derived natural compounds possess various biological and therapeutic properties, which turns them into an increasing topic of interest and research. Juniperus genus is diverse in species, with several traditional medicines reported, and rich in natural compounds with potential for development of new drugs. Methods: The research for this review were based in the Scopus and Web of Science databases using terms combining Juniperus, secondary metabolites names, and biological activities. This is not an exhaustive review of Juniperus compounds with biological activities, but rather a critical selection taking into account the following criteria: (i) studies involving the most recent methodologies for quantitative evaluation of biological activities; and (ii) the compounds with the highest number of studies published in the last four years. Results: From Juniperus species, several diterpenes, flavonoids, and one lignan were emphasized taking into account their level of activity against several targets. Antitumor activity is by far the most studied, being followed by antibacterial and antiviral activities. Deoxypodophyllotoxin and one dehydroabietic acid derivative appears to be the most promising lead compounds. Conclusions: This review demonstrates the Juniperus species value as a source of secondary metabolites with relevant pharmaceutical potential.
Collapse
Affiliation(s)
- Wilson R Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana M L Seca
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal.
| |
Collapse
|
38
|
Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 2018; 18:229-243. [PMID: 30056271 PMCID: PMC6079484 DOI: 10.1016/j.redox.2018.07.011] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Increased mitochondrial damage is related to the progression of a diet-induced nonalcoholic fatty liver disease. The aim of our study is to investigate the role of Sirtuin 3 (Sirt3) in treating nonalcoholic fatty liver disease with a focus on mitophagy and the ERK-CREB pathway. Our data indicated that Sirt3 was downregulated in liver tissue in response to chronic HFD treatment. Interestingly, re-introduction of Sirt3 protected hepatic function, attenuated liver fibrosis, alleviated the inflammatory response, and prevented hepatocyte apoptosis. Molecular investigations demonstrated that lipotoxicity was associated with an increase in mitochondrial apoptosis as evidenced by reduced mitochondrial potential, augmented ROS production, increased cyt-c leakage into the nucleus, and activated caspase-9 apoptotic signalling. Additionally, Sirt3 overexpression protected hepatocytes against mitochondrial apoptosis via promoting Bnip3-required mitophagy. Functional studies showed that Sirt3 reversed Bnip3 expression and mitophagy activity via the ERK-CREB signalling pathway. Blockade of the ERK-CREB axis repressed the promotive effects of Sirt3 on Bnip3 activation and mitophagy augmentation, finally negating the anti-apoptotic influences of Sirt3 on hepatocytes in the setting of high-fat-stress. Collectively, our data show that high-fat-mediated liver damage is associated with Sirt3 downregulation, which is followed by ERK-CREB pathway inactivation and Bnip3-mediated inhibition of mitophagy, causing hepatocytes to undergo mitochondria-dependent cell death. Based on this, strategies for enhancing Sirt3 activity and activating the ERK-CREB-Bnip3-mitophagy pathways could be used to treat nonalcoholic fatty liver disease. Sirt3 overexpression prevents diet-mediated fatty liver disease. Sirt3 blocks hepatocyte mitochondrial apoptosis in the setting of high-fat injury. Bnip3-mediated mitophagy protects mitochondria against high-fat-mediated damage. Sirt3 controls Bnip3-mediated mitophagy via the ERK-CREB signalling pathway.
Collapse
Affiliation(s)
- Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Dandan Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China
| | - Chengbin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China.
| | - Hang Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China.
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|
39
|
Luna-Dulcey L, Tomasin R, Naves MA, da Silva JA, Cominetti MR. Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells. Oncotarget 2018; 9:30787-30804. [PMID: 30112107 PMCID: PMC6089392 DOI: 10.18632/oncotarget.25704] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets, having limited treatment options and poor prognosis. [6]-gingerol is the most abundant and studied compound in ginger, presenting diverse biological properties such as antitumor activity against several types of cancer, including breast cancer. In this study, we show that the semi-synthetic analogue SSi6, generated after chemical modification of the [6]-gingerol molecule, using acetone-2,4-dinitrophenylhydrazone (2,4-DNPH) reagent, enhanced selective cytotoxic effects on MDA-MB-231 cells. Remarkably, unlike the original [6]-gingerol molecule, SSi6 enabled autophagy followed by caspase-independent apoptosis in tumor cells. We found a time-dependent association between SSi6-induced oxidative stress, autophagy and apoptosis. Initial SSi6-induced reactive oxygen species (ROS) accumulation (1h) led to autophagy activation (2-6h), which was followed by caspase-independent apoptosis (14h) in TNBC cells. Additionally, our data showed that SSi6 induction of ROS plays a key role in the promotion of autophagy and apoptosis. In order to investigate whether the observed cell death induction was dependent on preceding autophagy in MDA-MB-231 cells, we used siRNA to knock down LC3B prior to SSi6 treatment. Our data show that LC3B downregulation decreased the number of apoptotic cells after treatment with SSi6, indicating that autophagy is a key initial step on SSi6-induced caspase-independent apoptosis. Overall, the results of this study show that structural modifications of natural compounds can be an interesting strategy for developing antitumor drugs, with distinct mechanisms of actions, which could possibly be used against triple negative breast cancer cells that are resistant to canonical apoptosis-inducing drugs.
Collapse
Affiliation(s)
- Liany Luna-Dulcey
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Rebeka Tomasin
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Marina A Naves
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, CEP 49400-000, São José, Lagarto, SE, Brazil
| | - Marcia R Cominetti
- Laboratory of Biology of Aging, Department of Gerontology, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
40
|
Li M, Yang X, Wang S. PTEN enhances nasal epithelial cell resistance to TNFα‑induced inflammatory injury by limiting mitophagy via repression of the TLR4‑JNK‑Bnip3 pathway. Mol Med Rep 2018; 18:2973-2986. [PMID: 30015897 DOI: 10.3892/mmr.2018.9264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/23/2018] [Indexed: 11/05/2022] Open
Abstract
Nasal epithelial cell inflammatory injury is associated with chronic obstructive pulmonary disease development. However, the mechanism by which inflammation triggers nasal epithelial cell damage remains unclear. In the present study, tumor necrosis factor (TNF)α was used to induce an inflammatory injury and explore the underlying pathogenesis for nasal epithelial cell apoptosis in vitro, with a focus on mitochondrial homeostasis. Then, cellular apoptosis was detected via a terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay and western blotting. Mitochondrial function was evaluated via JC‑1 staining, mPTP opening measurement and western blotting. The results demonstrated that TNFα treatment induced nasal epithelial cell apoptosis, proliferation arrest and migration inhibition via downregulating phosphatase and tensin homolog (PTEN) levels. Increased PTEN expression was associated with reduce Toll‑like receptor (TLR)4‑c‑Jun kinase (JNK)‑Bcl2‑interacting protein 3 (Bnip3) pathway signaling, leading to reductions in mitophagy activity. Excessive mitophagy resulted in ATP deficiencies, mitochondrial dysfunction, caspase‑9 activation and cellular apoptosis. By contrast, PTEN overexpression in nasal epithelial cells alleviated the mitochondrial damage and cellular apoptosis via inhibiting the TLR4‑JNK‑Bnip3 pathway, favoring the survival of nasal epithelial cells under inflammatory injury. Therefore, this data uncovered a potential molecular basis for nasal epithelial cell apoptosis in response to inflammatory injury, and PTEN was identified as the endogenous defender of nasal epithelial cell survival via controlling lethal mitophagy by inhibiting the TLR4‑JNK‑Bnip3 pathway, suggesting that this pathway may be a potential target for clinically treating chronic nasal and sinus inflammatory injury.
Collapse
Affiliation(s)
- Meng Li
- Department of Chinese Medicine, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Xiang Yang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Shouchuan Wang
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
41
|
Li P, Bai Y, Zhao X, Tian T, Tang L, Ru J, An Y, Wang J. NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways. Cell Stress Chaperones 2018; 23:749-761. [PMID: 29470798 PMCID: PMC6045535 DOI: 10.1007/s12192-018-0886-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Parkin-related mitophagy is vital for endothelial cell viability and the development of atherosclerosis, although the upstream regulatory factor underlying Parkin-mediated mitophagy in endothelial apoptosis and atherosclerosis progression remains unknown. In the present study, we demonstrated that nuclear receptor subfamily 4 group A member 1 (NR4A1) is actually expressed in aortic endothelial cells (AECs) under oxidized low-density lipoprotein (ox-LDL) treatment in vitro or isolated from high-fat treated mice in vivo. Higher NR4A1 levels were associated with AEC apoptosis, mitochondrial dysfunction, and energy disorder. At the molecular level, ox-LDL stimulation increased NR4A1 expression, which evoked Parkin-mediated mitophagy. Excessive mitophagy overtly consumed mitochondrial mass, leading to an energy shortage and mitochondrial dysfunction. However, loss of NR4A1 protected AECs against ox-LDL induced apoptosis by inhibiting excessive mitophagy. Furthermore, we also identified that NR4A1 regulated Parkin activation via post-transcriptional modification by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Activated CaMKII via NR4A1 induced the phosphorylated activation of Parkin. In summary, our data support the role of NR4A1/CaMKII/Parkin/mitophagy in AEC apoptosis and atherosclerosis formation and provide new insights into treating atherosclerosis with respect to endothelial viability, mitophagy, and NR4A1.
Collapse
Affiliation(s)
- Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China.
| |
Collapse
|
42
|
p53-Autophagy-Metastasis Link. Cancers (Basel) 2018; 10:cancers10050148. [PMID: 29783720 PMCID: PMC5977121 DOI: 10.3390/cancers10050148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 as the “guardian of the genome” plays an essential role in numerous signaling pathways that control the cell cycle, cell death and in maintaining the integrity of the human genome. p53, depending on the intracellular localization, contributes to the regulation of various cell death pathways, including apoptosis, autophagy and necroptosis. Accumulated evidence suggests that this function of p53 is closely involved in the process of cancer development. Here, present knowledge concerning a p53-autophagy-metastasis link, as well as therapeutic approaches that influence this link, are discussed.
Collapse
|
43
|
Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 2018; 23:21. [PMID: 29760744 PMCID: PMC5941482 DOI: 10.1186/s11658-018-0085-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Post-infarction cardiac injury is closely associated with cardiac remodeling and heart dysfunction. Mammalian STE20-like kinase 1 (Mst1), a regulator of cellular apoptosis, is involved in cardiac remodeling in post-infarction heart, but the mechanisms remain poorly defined. We aimed to explore the role of Mst1 in regulating chronic post-infarction cardiac injury, with a focus on mitochondrial homoeostasis. Methods Wild-type (WT) and Mst1-knockout mice were as the cardiac myocardial infarction model. Cardiac fibrosis, myocardial inflammation response, heart dysfunction and cardiomyocyte death were measured in vivo using immunohistochemistry, immunofluorescence, western blot, qPCR and TUNEL assays. Cardiomyocytes were isolated from WT and Mst1-knockout mice, and a chronic hypoxia model was used to induce damage. Mitochondrial function was determined via JC1 staining, ROS measurement, cyt-c leakage detection and mitochondrial apoptotic pathways analysis. Mitochondrial fission was observed using immunofluorescence. A pathway activator and inhibitor were applied to establish the signaling pathways involved in regulating mitochondrial homeostasis. Results Our study demonstrated that Mst1 expression was significantly upregulated in the heart post-infarction. Activated Mst1 induced cardiac fibrosis, an excessive inflammatory response, and cardiomyocyte death, whereas the genetic ablation of Mst1 protected the myocardium against chronic post-infarction injury. Function assays showed that upregulation of Mst1 activity contributed to JNK pathway activation, which led to Drp1 migration from the cytoplasm onto the surface of the mitochondria, indicative of mitochondrial fission activation. Excessive mitochondrial fission caused mitochondrial fragmentation, resulting in mitochondrial potential collapse, ROS overproduction, mitochondrial pro-apoptotic leakage into the cytoplasm, and the initiation of caspase-9-mediated mitochondrial apoptosis. By contrast, Mst1 deletion helped to maintain mitochondrial structure and function, sending pro-survival signals to the cardiomyocytes. Conclusions Our results identify Mst1 as a malefactor in the development of post-infarction cardiac injury and that it acts through the JNK-Drp1-mitochondrial fission pathway.
Collapse
Affiliation(s)
- Xisong Wang
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk–Nox2–Drp1-mitochondrial fission pathways. Angiogenesis 2018; 21:599-615. [DOI: 10.1007/s10456-018-9611-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
|
45
|
Tang Q, Wu H, Lei J, Yi C, Xu W, Lan W, Yang F, Liu C. HIF1α deletion facilitates adipose stem cells to repair renal fibrosis in diabetic mice. In Vitro Cell Dev Biol Anim 2018; 54:272-286. [PMID: 29511913 DOI: 10.1007/s11626-018-0231-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Adipose stem cell (ASC) transplantation is a promising therapeutic strategy for diabetic renal fibrosis. Hypoxia-inducible factor 1α (HIF1α) is a negative regulatory factor of mitochondrial function. In the current study, we aimed to explore if HIF1α deletion protects against hyperglycemia-induced ASC damage and enhances the therapeutic efficiency of ASCs in diabetic renal fibrosis. Our data indicated that HIF1α was upregulated in ASCs in response to high glucose stimulation. Higher HIF1α expression was associated with ASC apoptosis and proliferation arrest. Loss of HIF1α activated mitophagy protecting ASCs against high glucose-induced apoptosis via preserving mitochondrial function. Transplanting HIF1α-deleted ASCs in db/db mice improved the abnormalities in glucose metabolic parameters, including the levels of glucose, insulin, C-peptide, HbA1c, and inflammatory markers. In addition, the engraftment of HIF1α-modified ASCs also reversed renal function, decreased renal hypertrophy, and ameliorated renal histological changes in db/db mice. Functional studies confirmed that HIF1α-modified ASCs reduced renal fibrosis. Collectively, our results demonstrate that ASCs may be a promising therapeutic treatment for ameliorating diabetes and the development of renal fibrosis and that the loss of HIF1α in ASCs may further increase the efficiency of stem cell-based therapy. These findings provide a new understanding about the protective effects of HIF1α silencing on ASCs and offer a new strategy for promoting the therapeutic efficacy of ASCs in diabetic renal fibrosis.
Collapse
Affiliation(s)
- Qun Tang
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Hua Wu
- Hunan Furong Judicial Authentication Center, The Second People's Hospital of Hunan Province, Changsha, 410007, China
| | - Jiushi Lei
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Chun Yi
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Wenfeng Xu
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Wenqu Lan
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Fang Yang
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China
| | - Chunyan Liu
- Department of Pathology, Medical school, Hunan University of Chinese Medicine, No.300, Xueshi Road, Hanpu kejiao Park, Yuelu District, Changsha, Hunan Province, 410208, China.
| |
Collapse
|
46
|
Gu J, Dai S, Liu Y, Liu H, Zhang Y, Ji X, Yu F, Zhou Y, Chen L, Tse WKF, Wong CKC, Chen B, Shi H. Activation of Ca 2+-sensing receptor as a protective pathway to reduce Cadmium-induced cytotoxicity in renal proximal tubular cells. Sci Rep 2018; 8:1092. [PMID: 29348484 PMCID: PMC5773512 DOI: 10.1038/s41598-018-19327-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Cadmium (Cd), as an extremely toxic metal could accumulate in kidney and induce renal injury. Previous studies have proved that Cd impact on renal cell proliferation, autophagy and apoptosis, but the detoxification drugs and the functional mechanism are still in study. In this study, we used mouse renal tubular epithelial cells (mRTECs) to clarify Cd-induced toxicity and signaling pathways. Moreover, we proposed to elucidate the prevent effect of activation of Ca2+ sensing receptor (CaSR) by Calcimimetic (R-467) on Cd-induced cytotoxicity and underlying mechanisms. Cd induced intracellular Ca2+ elevation through phospholipase C-inositol 1, 4, 5-trisphosphate (PLC) followed stimulating p38 mitogen-activated protein kinases (MAPK) activation and suppressing extracellular signal-regulated kinase (ERK) activation, which leaded to increase apoptotic cell death and inhibit cell proliferation. Cd induced p38 activation also contribute to autophagic flux inhibition that aggravated Cd induced apoptosis. R-467 reinstated Cd-induced elevation of intracellular Ca2+ and apoptosis, and it also increased cell proliferation and restored autophagic flux by switching p38 to ERK pathway. The identification of the activation of CaSR-mediated protective pathway in renal cells sheds light on a possible cellular protective mechanism against Cd-induced kidney injury.
Collapse
Affiliation(s)
- Jie Gu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shuya Dai
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yanmin Liu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Haitao Liu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yao Zhang
- Medical Section, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Xingqi Ji
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Feng Yu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yang Zhou
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Liang Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | | | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Binghai Chen
- Department of urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Haifeng Shi
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
47
|
Wu C, Zheng M, Gao S, Luan S, Cheng L, Wang L, Li J, Chen L, Li H. A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity. Oncotarget 2017; 8:113516-113530. [PMID: 29371926 PMCID: PMC5768343 DOI: 10.18632/oncotarget.23058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Kidney-type glutaminase (KGA), a mitochondrial enzyme converting glutamine to glutamate for energy supply, was over-expressed in many cancers and had been regarded as a promising therapeutic target in recent years. Structure-based virtual ligand screening predicted physapubescin K, a new withanolide from Physalis pubescens, to be potential KGA inhibitor. Enzyme activity inhibition assays and microscale thermophoresis experiments had demonstrated the efficiency and specificity of physapubescin K targeting KGA. Additionally, physapubescin K exhibited potent proliferation inhibitory effects on a panel of human cancer cell lines, such as SW1990 and HCC827-ER. It blocked glutamine metabolism in SW1990 with increasing intracellular level of glutamine and decreasing glutamate and its downstream metabolites. Physapubescin K also significantly inhibited the tumor growth in a SW1990 xenograft mouse model. Interestingly, physapubescin K could reverse the resistance of HCC827-ER cells to erlotinib and synergize with the hexokinase 2 inhibitor to markedly enhance the inhibition of SW1990 cell proliferation.
Collapse
Affiliation(s)
- Canrong Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Suyu Gao
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shanshan Luan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Li Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liqing Wang
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jiachen Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.,Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
48
|
Yu P, Zhang C, Gao CY, Ma T, Zhang H, Zhou MM, Yang YW, Yang L, Kong LY. Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death. Oncotarget 2017; 8:64032-64049. [PMID: 28969050 PMCID: PMC5609982 DOI: 10.18632/oncotarget.19299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
Physagulide P (PP), a new natural compound, was isolated from Physalis angulate L. in our laboratory. In this study, we demonstrated that PP potently suppressed cell proliferation by inducing G2/M phase arrest in MDA-MB-231 and MDA-MB-468 cells. Moreover, PP provoked apoptosis by decreasing the mitochondrial membrane potential and elevating the Bax/Bcl-2 protein expression ratio. The caspase inhibitor Z-VAD-FMK partly restore cell viability, suggesting that apoptosis plays as an important role in the anti-proliferative effect of PP. PP-treated cells also underwent autophagy, as evidenced by the formation of autophagosomes and the accumulation of LC3BII. Furthermore, the knockdown of LC3B reduced PP-induced cytotoxicity, indicating that autophagy played an anticancer effect. PP also induced the generation of reactive oxygen species (ROS) and resulted in c-Jun N-terminal kinases (JNK) activation. Accordingly, JNK siRNA significantly attenuated PP-triggered apoptosis and autophagy, and ROS scavengers almost completely reverse this apoptosis and autophagy. The ROS scavenger also blocked PP-induced G2/M phase arrest and the phosphorylation of JNK. Our results revealed that PP induced G2/M phase arrest, apoptosis and autophagy via the ROS/JNK signaling pathway in MDA-MB-231 and MDA-MB-468 cells. Therefore, PP is a promising candidate for the development of antitumor drugs for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Yun Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan-Wei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
49
|
Geng YD, Zhang C, Lei JL, Yu P, Xia YZ, Zhang H, Yang L, Kong LY. Walsuronoid B induces mitochondrial and lysosomal dysfunction leading to apoptotic rather than autophagic cell death via ROS/p53 signaling pathways in liver cancer. Biochem Pharmacol 2017; 142:71-86. [PMID: 28673807 DOI: 10.1016/j.bcp.2017.06.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Walsuronoid B is a limonoid compound extracted from Walsura robusta. Previous studies have shown that limonoid compounds possess anti-cancer potential, although the molecular mechanism of this activity remains elusive. In this study, we demonstrated for the first time that walsuronoid B inhibited cell proliferation in several human cancer lines. Liver cancer cells (HepG2 and Bel-7402) were chosen for their high sensitivity to walsuronoid B. Walsuronoid B induced cell death through G2/M phase arrest and apoptosis and induced the accumulation of autophagosomes through the suppression of mTOR signaling, which serves as a cell survival mechanism and prevents cell death. We further examined the molecular mechanisms and found that walsuronoid B-induced dysfunction of the mitochondria and lysosomes rather than the endoplasmic reticulum contributed to its cell death effect. Walsuronoid B enhanced the generation of hydrogen peroxide, nitric oxide and superoxide anion radical, resulting in elevated levels of reactive oxygen species (ROS). In addition, ROS induced by walsuronoid B upregulated p53 levels; conversely, p53 stimulated ROS. These results suggested that ROS and p53 reciprocally promoted each other's production and cooperated to induce liver cancer cell death. We found that the induction of ROS and p53 significantly triggered G2/M phase arrest and mitochondrial and lysosomal apoptosis. Finally, walsuronoid B suppressed tumor growth in vivo with few side effects. In summary, our findings demonstrated that walsuronoid B caused G2/M phase arrest and induced mitochondrial and lysosomal apoptosis through the ROS/p53 signaling pathway in human liver cancer cells in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Autophagy/drug effects
- Bridged-Ring Compounds/isolation & purification
- Bridged-Ring Compounds/pharmacology
- Bridged-Ring Compounds/therapeutic use
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Hep G2 Cells
- Humans
- Limonins/isolation & purification
- Limonins/pharmacology
- Limonins/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Lysosomes/metabolism
- Lysosomes/physiology
- Meliaceae/chemistry
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ya-di Geng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|