1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Huang X, Yang X, Zhang M, Li T, Zhu K, Dong Y, Lei X, Yu Z, Lv C, Huang J. SELENOI Functions as a Key Modulator of Ferroptosis Pathway in Colitis and Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404073. [PMID: 38757622 PMCID: PMC11267378 DOI: 10.1002/advs.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Xu Yang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Mingxin Zhang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Yulan Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xingen Lei
- Department of Animal ScienceCornell UniversityIthacaNY14853USA
| | - Zhengquan Yu
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| |
Collapse
|
3
|
Zhang M, Wang Y, Di J, Zhang X, Liu Y, Zhang Y, Li B, Qi S, Cao X, Liu L, Liu S, Xu F. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front Endocrinol (Lausanne) 2024; 15:1414289. [PMID: 38904043 PMCID: PMC11187234 DOI: 10.3389/fendo.2024.1414289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yuanyuan Wang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xuanlin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yixin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Bowen Li
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Shouzeng Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Guo Z, Huang J, Huo X, Huang C, Yu X, Sun Y, Li Y, He T, Guo H, Yang J, Xue L. Targeting LTA4H facilitates the reshaping of the immune microenvironment mediated by CCL5 and sensitizes ovarian cancer to Cisplatin. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1226-1241. [PMID: 38300441 DOI: 10.1007/s11427-023-2444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.
Collapse
Affiliation(s)
- Zhengyang Guo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaotong Yu
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Sun
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yanfang Li
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jianling Yang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
5
|
Bu H, Zhang S, Li P, Liu Z, Liu Y, Li Z, Liu X, Wang Z, Feng L, Chen L, Qu L. Secreted phospholipase PLA2G2E contributes to regulation of T cell immune response against influenza virus infection. J Virol 2024; 98:e0019824. [PMID: 38591879 PMCID: PMC11092358 DOI: 10.1128/jvi.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024] Open
Abstract
The involvement of secreted phospholipase A2s in respiratory diseases, such as asthma and respiratory viral infections, is well-established. However, the specific role of secreted phospholipase A2 group IIE (PLA2G2E) during influenza virus infection remains unexplored. Here, we investigated the role of PLA2G2E during H1N1 influenza virus infection using a targeted mouse model lacking Pla2g2e gene (Pla2g2e-/-). Our findings demonstrated that Pla2g2e-/- mice had significantly lower survival rates and higher viral loads in lungs compared to wild-type mice following influenza virus infection. While Pla2g2e-/- mice displayed comparable innate and humoral immune responses to influenza virus challenge, the animals showed impaired influenza-specific cellular immunity and reduced T cell-mediated cytotoxicity. This indicates that PLA2G2E is involved in regulating specific T cell responses during influenza virus infection. Furthermore, transgenic mice expressing the human PLA2G2E gene exhibited resistance to influenza virus infection along with enhanced influenza-specific cellular immunity and T cell-mediated cytotoxicity. Pla2g2e deficiency resulted in perturbation of lipid mediators in the lung and T cells, potentially contributing to its impact on the anti-influenza immune response. Taken together, these findings suggest that targeting PLA2G2E could hold potential as a therapeutic strategy for managing influenza virus infections.IMPORTANCEThe influenza virus is a highly transmissible respiratory pathogen that continues to pose a significant public health concern. It effectively evades humoral immune protection conferred by vaccines and natural infection due to its continuous viral evolution through the genetic processes of antigenic drift and shift. Recognition of conserved non-mutable viral epitopes by T cells may provide broad immunity against influenza virus. In this study, we have demonstrated that phospholipase A2 group IIE (PLA2G2E) plays a crucial role in protecting against influenza virus infection through the regulation of T cell responses, while not affecting innate and humoral immune responses. Targeting PLA2G2E could therefore represent a potential therapeutic strategy for managing influenza virus infection.
Collapse
MESH Headings
- Animals
- Mice
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Influenza A Virus, H1N1 Subtype/immunology
- Lung/virology
- Lung/immunology
- Lung/pathology
- Humans
- Group II Phospholipases A2/genetics
- Group II Phospholipases A2/immunology
- T-Lymphocytes/immunology
- Mice, Knockout
- Immunity, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Viral Load
- Disease Models, Animal
- Immunity, Humoral
- Immunity, Innate
- Influenza, Human/immunology
- Influenza, Human/virology
- Female
Collapse
Affiliation(s)
- Hemeng Bu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinglong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Chen L, Tian X, Zhang L, Wang W, Hu P, Ma Z, Li Y, Li S, Shen Z, Fan X, Ye L, Ke W, Wu Y, Shui G, Xiao M, He GJ, Yang Y, Fang W, Bai F, Liao G, Chen M, Lin X, Li C, Wang L. Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis. Nat Microbiol 2024; 9:346-358. [PMID: 38225460 DOI: 10.1038/s41564-023-01561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024]
Abstract
Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yeqi Li
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Shibin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Leixin Ye
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Guang-Jun He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Guojian Liao
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, Li Q, Liu S, Wang X, Zhang Z, Wang Q, Xu Y, Wu Y, Wan Q, Zhao X, Xuan Q, Wang D, Lin X, Xu J, Liu J, Proud CG, Wang X, Yang R, Fu L, Niu S, Kong J, Gao L, Bo T, Zhao J. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab 2023; 5:1706-1725. [PMID: 37735236 PMCID: PMC10590755 DOI: 10.1038/s42255-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Honglin Guo
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunyun Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Dawei Wang
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Rui Yang
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Fu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shaona Niu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
8
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Pan J, Chui L, Liu T, Zheng Q, Liu X, Liu L, Zhao Y, Zhang L, Song M, Han J, Huang J, Tang C, Tao C, Zhao J, Wang Y. Fecal Microbiota Was Reshaped in UCP1 Knock-In Pigs via the Adipose-Liver-Gut Axis and Contributed to Less Fat Deposition. Microbiol Spectr 2023; 11:e0354022. [PMID: 36688695 PMCID: PMC9927592 DOI: 10.1128/spectrum.03540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
The relationship between the host gut microbiota and obesity has been well documented in humans and mice; however, few studies reported the association between the gut microbiota and fat deposition in pigs. In a previous study, we generated uncoupling protein 1 (UCP1) knock-in pigs (UCP1 pigs), which exhibited a lower fat deposition phenotype. Whether the gut microbiota was reshaped in these pigs and whether the reshaped gut microbiota contributes to the lower fat content remain unknown. Here, we revealed that the fecal microbiota composition and metabolites were significantly altered under both chow diet (CD) and high-fat/high-cholesterol (HFHC) diet conditions in UCP1 pigs compared to those in wild-type (WT) pigs. The abundance of Oscillospira and Coprococcus and the level of metabolite hyodeoxycholic acid (HDCA) from feces were observed to be significantly increased in UCP1 pigs. An association analysis revealed that Oscillospira and Coprococcus were significantly negatively related to backfat thickness. In addition, after fecal microbiota transplantation (FMT), the mice that were orally gavaged with feces from UCP1 pigs exhibited less fat deposition under both CD and high-fat diet (HFD) conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Consistently, HDCA-treated mice also exhibited reduced fat content. Mechanistically, we found that UCP1 expression in white adipose tissue alters the gut microbiota via the adipose-liver-gut axis in pigs. Our study provides new data concerning the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolites in the regulation of fat deposition in pigs. IMPORTANCE This article investigated the effect of the ectopic expression of UCP1 on the regulation of fecal microbiota composition and metabolites and which alters the fat deposition phenotype. Bacteria, including Oscillospira and Coprococcus, and the metabolite HDCA were found to be significantly increased in feces of UCP1 pigs and had a negative relationship with backfat thickness. Mice with fecal microbiota transplantation phenocopied the UCP1 pigs under both CD and HFD conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Our study provides new data regarding the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolic production in the regulation of fat deposition in pigs.
Collapse
Affiliation(s)
- Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Linya Chui
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Tianxia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuexue Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lulu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Min Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jiaojiao Huang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Embracing lipidomics at single-cell resolution: Promises and pitfalls. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Huang L, Qian W, Xu Y, Guo Z, Yin Y, Guo F, Zhu W, Li Y. Mesenteric Adipose Tissue Contributes to Intestinal Fibrosis in Crohn's Disease Through the ATX-LPA Axis. J Crohns Colitis 2022; 16:1124-1139. [PMID: 35104318 DOI: 10.1093/ecco-jcc/jjac017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrostenosis is an important cause of surgical intervention in patients with Crohn's disease [CD]. Hypertrophic mesenteric adipose tissue [MAT] is associated with the disease process of CD. The purpose of this study was to investigate the contribution of MAT to intestinal fibrosis. METHODS MAT from surgical specimens of fibrostenotic CD patients and controls was collected for measurement of the levels of autotaxin [ATX] and lysophosphatidic acid [LPA]. ATX was inhibited in vivo in DNBS [dinitrobenzene sulfonic acid]-induced colitis mice, which were evaluated for colonic inflammation and fibrosis. 3T3-L1 cells and primary colonic fibroblasts were used in vitro to investigate the interaction between MAT and intestinal fibrosis, as well as the molecular mechanism underlying this interaction. RESULTS MAT adjacent to the fibrostenotic intestine in CD patients showed an activated ATX-LPA axis. An in vivo study indicated that inhibition of ATX was associated with the improvement of morphology and function of diseased MAT, which was combined with ameliorated intestinal inflammation and fibrosis in DNBS-instilled mice. In vitro studies showed that hypoxia stimulated adipocyte ATX expression and that LPA stabilized adipocyte HIF-1α protein, forming an ATX-LPA-HIF-1α amplification loop and aggravating adipocyte dysfunction. LPA secreted by adipocytes bound to LPA1 on the surface of fibroblasts, promoted their proliferation and differentiation, and increased the expression of fibrosis-related factors. CONCLUSIONS The ATX-LPA axis regulated intestinal fibrosis by influencing the proliferation and differentiation of intestinal fibroblasts. Inhibiting this axis may be a therapeutic target for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Liangyu Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yi Yin
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Feilong Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Kuramochi M, Zhu S, Takanashi C, Yang Y, Arai T, Shinkai Y, Doi M, Mio K, Tsuda S, Sasaki YC. A mutation to a fish ice-binding protein synthesized in transgenic Caenorhabditis elegans modulate its cold tolerance. Biochem Biophys Res Commun 2022; 628:98-103. [PMID: 36084557 DOI: 10.1016/j.bbrc.2022.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
A cryoprotectant known as ice-binding protein (IBP) is thought to facilitate the cold survival of plants, insects, and fungi. Here, we prepared a genetically modified Caenorhabditis elegans strain to synthesize fish-derived IBPs in its body wall muscles and examined whether the antifreeze activity modification of this IBP by point mutation affects the cold tolerance of this worm. We chose a 65-residue IBP identified from notched-fin eelpout, for which the replacement of the 20th alanine residue (A20) modifies its antifreeze activity. These mutant proteins are denoted A20L, A20G, A20T, A20V, and A20I along with the wild-type (WT) protein. We evaluated the survival rate (%) of the transgenic C. elegans that synthesized each IBP mutant following 24 h of preservation at -5, +2, and +5 °C. Significantly, a dramatic improvement in the survival rate was detected for the worms synthesizing the activity-enhanced mutants (A20T and A20I), especially at +2 °C. In contrast, the rate was not improved by the expression of the defective mutants (A20L, A20G, WT and A20V). The survival rate (%) probably correlates with the antifreeze activity of the IBP. These data suggest that IBP protects the cell membrane by employing its ice-binding mechanism, which ultimately improves the cold tolerance of an IBP-containing animal.
Collapse
|
13
|
Deng Z, Yang Y, Luo J, Zhang B, Liu J, Shui G, Jiao R, Wei C. An Integrated Transcriptomics and Lipidomics Analysis Reveals That Ergosterol Is Required for Host Defense Against Bacterial Infection in Drosophila. Front Immunol 2022; 13:933137. [PMID: 35874695 PMCID: PMC9301368 DOI: 10.3389/fimmu.2022.933137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animals adjust their lipid metabolism states in response to pathogens infection. However, the underlying molecular mechanisms for how lipid metabolism responds to infection remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism profiles during infection by an integrated transcriptomics and lipidomics analysis. Ergosterol is identified to be required for proper host defense to pathogens. Notably, ergosterol level is increased in the hemolymph upon bacterial infection. We show that the increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together, our results suggest a critical role of lipid metabolism adaption in the process of host defense against invading pathogens.
Collapse
Affiliation(s)
- Zihao Deng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanyang Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiazhen Luo
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Biling Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| | - Chuanxian Wei
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| |
Collapse
|
14
|
Karnati S, Guntas G, Rajendran R, Shityakov S, Höring M, Liebisch G, Kosanovic D, Ergün S, Nagai M, Förster CY. Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients' Serum. Front Cardiovasc Med 2022; 9:797154. [PMID: 35514439 PMCID: PMC9062978 DOI: 10.3389/fcvm.2022.797154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future.
Collapse
Affiliation(s)
- Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
- *Correspondence: Srikanth Karnati
| | - Gulcan Guntas
- Department of Biochemistry, Medical Faculty, Atilim University, Ankara, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint-Petersburg, Russia
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Süleyman Ergün
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Michiaki Nagai
- Hiroshima City Asa Hospital, Department of Cardiology, Hiroshima, Japan
| | - Carola Y. Förster
- University of Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg, Germany
- Carola Y. Förster
| |
Collapse
|
15
|
Montanhaur ADRS, Lima EDO, Delafiori J, Esteves CZ, Prado CCR, Allegretti SM, Ueta MT, Levy CE, Catharino RR. Metabolic alterations in Strongyloidiasis stool samples unveil potential biomarkers of infection. Acta Trop 2022; 227:106279. [PMID: 34968451 DOI: 10.1016/j.actatropica.2021.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Strongyloidiasis, a parasitosis caused by Strongyloides stercoralis in humans, is a very prevalent infection in tropical or subtropical areas. Gaps on public health strategies corroborates to the high global incidence of strongyloidiasis especially due to challenges involved on its diagnosis. Based on the lack of a gold-standard diagnostic tool, we aimed to present a metabolomic study for the assessment of stool metabolic alterations. Stool samples were collected from 25 patients segregated into positive for strongyloidiasis (n = 10) and negative control (n = 15) and prepared for direct injection high-resolution mass spectrometry analysis. Using metabolomics workflow, 18 metabolites were annotated increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S. stercoralis infection.
Collapse
|
16
|
Larigot L, Mansuy D, Borowski I, Coumoul X, Dairou J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules 2022; 12:biom12030342. [PMID: 35327534 PMCID: PMC8945457 DOI: 10.3390/biom12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Caenorhabditis elegans is an important model used for many aspects of biological research. Its genome contains 76 genes coding for cytochromes P450 (P450s), and few data about the biochemical properties of those P450s have been published so far. However, an increasing number of articles have appeared on their involvement in the metabolism of xenobiotics and endobiotics such as fatty acid derivatives and steroids. Moreover, the implication of some P450s in various biological functions of C. elegans, such as survival, dauer formation, life span, fat content, or lipid metabolism, without mention of the precise reaction catalyzed by those P450s, has been reported in several articles. This review presents the state of our knowledge about C. elegans P450s.
Collapse
Affiliation(s)
- Lucie Larigot
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Daniel Mansuy
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Ilona Borowski
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Xavier Coumoul
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| | - Julien Dairou
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| |
Collapse
|
17
|
Wang W, Li T, Li Z, Wang H, Liu X. Differential lipidomics of HK-2 cells and exosomes under high glucose stimulation. Int J Med Sci 2022; 19:393-401. [PMID: 35165524 PMCID: PMC8795806 DOI: 10.7150/ijms.67326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Abnormal cellular lipid metabolism has a very important role in the occurrence and progression of diabetic kidney disease (DKD). However, the lipid composition and differential expression by high glucose stimulation of renal tubular cells and their exosomes, which is a vital part of the development of DKD, are largely unknown. In this study, based on targeted lipid analysis by isotope labeling and tandem mass spectrometry, a total of 421 and 218 lipid species were quantified in HK-2 cells and exosomes, respectively. More importantly, results showed that GM3 d18:1/22:0, GM3 d18:1/16:0, GM3 d18:0/16:0, GM3 d18:1/22:1 were significantly increased, while LPE18:1, LPE, CL66:4 (16:1), BMP36:3, CL70:7 (16:1), CL74:8 (16:1) were significantly decreased in high glucose-stimulated HK-2 cells. Also, PG36:1, FFA22:5, PC38:3, SM d18:1/16:1, CE-16:1, CE-18:3, CE-20:5, and CE-22:6 were significantly increased, while GM3 d18:1/24:1, GM3 were significantly decreased in exosomes secreted by high glucose-stimulated HK-2 cells. Furthermore, TAG, PC, CL were decreased significantly in the exosomes comparing with the HK-2 cells, and LPA18:2, LPI22:5, PG32:2, FFA16:1, GM3 d18:1/18:1, GM3 d18:1/20:1, GM3 d18:0/20:0, PC40:6p, TAG52:1(18:1), TAG52:0(18:0), CE-20:5, CE-20:4, CE-22:6 were only found in exosomes. In addition, the expression of PI4P in HK-2 cells decreased under a high glucose state. These data may be useful to provide new targets for exploring the mechanisms of DKD.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Tingting Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Zhijie Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Hongmiao Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Xiaodan Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| |
Collapse
|
18
|
Sun X, Zhang T, Zhao P, Tao G, Liu R, Chang M, Wang X. 2D2D HILIC‐ELSD/UPLC‐Q‐TOF‐MS Method for Acquiring Phospholipid Profiles and the Application in
Caenorhabditis elegans. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaotian Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- European Research Institute for the Biology of Aging University Medical Center Groningen University of Groningen Groningen 9713 AV The Netherlands
| | - Pinzhen Zhao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Guanjun Tao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ruijie Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ming Chang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
19
|
Feng C, Pan L, Tang S, He L, Wang X, Tao Y, Xie Y, Lai Z, Tang Z, Wang Q, Li T. Integrative Transcriptomic, Lipidomic, and Metabolomic Analysis Reveals Potential Biomarkers of Basal and Luminal Muscle Invasive Bladder Cancer Subtypes. Front Genet 2021; 12:695662. [PMID: 34484294 PMCID: PMC8415304 DOI: 10.3389/fgene.2021.695662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle invasive bladder cancer (MIBC) is a heterogeneous disease with a high recurrence rate and poor clinical outcomes. Molecular subtype provides a new framework for the study of MIBC heterogeneity. Clinically, MIBC can be classified as basal and luminal subtypes; they display different clinical and pathological characteristics, but the molecular mechanism is still unclear. Lipidomic and metabolomic molecules have recently been considered to play an important role in the genesis and development of tumors, especially as potential biomarkers. Their different expression profiles in basal and luminal subtypes provide clues for the molecular mechanism of basal and luminal subtypes and the discovery of new biomarkers. Herein, we stratified MIBC patients into basal and luminal subtypes using a MIBC classifier based on transcriptome expression profiles. We qualitatively and quantitatively analyzed the lipids and metabolites of basal and luminal MIBC subtypes and identified their differential lipid and metabolite profiles. Our results suggest that free fatty acids (FFAs) and sulfatides (SLs), which are closely associated with immune and stromal cell types, can contribute to the diagnosis of basal and luminal subtypes of MIBC. Moreover, we showed that glycerophosphocholine (GCP)/imidazoles and nucleosides/imidazoles ratios can accurately distinguish the basal and luminal tumors. Overall, by integrating transcriptomic, lipidomic, and metabolomic data, our study reveals specific biomarkers to differentially diagnose basal and luminal MIBC subtypes and may provide a basis for precision therapy of MIBC.
Collapse
Affiliation(s)
- Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Lixin Pan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Shaomei Tang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liangyu He
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zhong Tang
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Tianyu Li
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|
20
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
21
|
Li P, Wang Z, Lam SM, Shui G. Rebaudioside A Enhances Resistance to Oxidative Stress and Extends Lifespan and Healthspan in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:262. [PMID: 33567712 PMCID: PMC7915623 DOI: 10.3390/antiox10020262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Non-nutritive sweeteners are widely used in food and medicines to reduce energy content without compromising flavor. Herein, we report that Rebaudioside A (Reb A), a natural, non-nutritive sweetener, can extend both the lifespan and healthspan of C. elegans. The beneficial effects of Reb A were principally mediated via reducing the level of cellular reactive oxygen species (ROS) in response to oxidative stress and attenuating neutral lipid accumulation with aging. Transcriptomics analysis presented maximum differential expression of genes along the target of rapamycin (TOR) signaling pathway, which was further confirmed by quantitative real-time PCR (qPCR); while lipidomics uncovered concomitant reductions in the levels of phosphatidic acids (PAs), phosphatidylinositols (PIs) and lysophosphatidylcholines (LPCs) in worms treated with Reb A. Our results suggest that Reb A attenuates aging by acting as effective cellular antioxidants and also in lowering the ectopic accumulation of neutral lipids.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Wang X, Lam SM, Cao M, Wang T, Wang Z, Yu M, Li B, Zhang H, Ping F, Song G, Feng K, Zhang Q, Xu J, Zhou L, Deng M, Zhai X, Xiao X, Shui G. Localized increases in CEPT1 and ATGL elevate plasmalogen phosphatidylcholines in HDLs contributing to atheroprotective lipid profiles in hyperglycemic GCK-MODY. Redox Biol 2021; 40:101855. [PMID: 33450726 PMCID: PMC7810764 DOI: 10.1016/j.redox.2021.101855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/03/2023] Open
Abstract
Glucokinase-maturity onset diabetes of the young (GCK-MODY) represents a rare genetic disorder due to mutation in the glucokinase (GCK) gene. The low incidence of vascular complications in GCK-MODY makes it a natural paradigm for interrogating molecular mechanisms promoting vascular health under prolonged hyperglycemia. Clinical rate of misdiagnosis has remained high, and a reliable serum lipid biomarker that precedes genetic screening can facilitate correct diagnosis and treatment. Herein, we comprehensively quantitated 565 serum lipids from 25 classes in 105 subjects (42 nondiabetic controls, 30 GC K-MODY patients, 33 drug-naïve, and newly-onset T2D patients). At false-discovery rate (FDR) < 0.05, several phosphatidylcholines (PCs) and plasmalogen PCs were specifically increased in GCK-MODY, while triacylglycerols (TAGs) and diacylglycerols (DAGs) were reduced. Correlation matrices between lipids uncovered coregulation between plasmalogen PCs (PCps) and glycerolipid precursors was distinctly enhanced in GCK-MODY compared to T2D. Strengthened positive correlations between serum PCps and circulating HDLs was specifically observed in hyperglycemic subjects (i.e. T2D and GCK-MODY) compared to normglycemic controls, suggesting that HDL-PCps may elicit distinct physiological effects under hyperglycemia. Amongst GCK-MODY patients, individuals harboring variants of GCK mutations with elevated PCps also exhibited higher HDLs. Isolated HDLs displayed localized increases (p < 0.05) in very-long-chain PUFA-PCs and PCps in GCK-MODY. Protein analyses revealed elevated levels of HDL-resident ATGL (P = 0.003) and CEPT1 (P < 0.0001), which mediate critical steps of PCps production along the TAG-DAG-PC axis, in GCK-MODY relative to T2D. A panel of four lipids differentiated GCK-MODY from T2D with AUC of 0.950 (95% CI 0.903–9.997). This study provides the first evidence that enhanced recruitment of CEPT1 and ATGL onto HDLs essentially underlie the atheroprotective profiles associated with GCK-MODY. Resultant increases in the production of HDL-PCps and PUFA-PCs provides an active, circulating form of protection towards the vasculature of GCK-MODY, thereby lowering the incidence of vascular complications despite chronic exposure to hyperglycemia since birth.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, People's Republic of China
| | - Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhixin Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Miao Yu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, People's Republic of China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Fan Ping
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guangyao Song
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Kai Feng
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qian Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Jianping Xu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Liyuan Zhou
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Mingqun Deng
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xiao Zhai
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
23
|
High-coverage lipidomics for functional lipid and pathway analyses. Anal Chim Acta 2020; 1147:199-210. [PMID: 33485579 DOI: 10.1016/j.aca.2020.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Rapid advances in front-end separation approaches and analytical technologies have accelerated the development of lipidomics, particularly in terms of increasing analytical coverage to encompass an expanding repertoire of lipids within a single analytical approach. Developments in lipid pathway analysis, however, have somewhat lingered behind, primarily due to (1) the lack of coherent alignment between lipid identifiers in common databases versus that generated from experiments, owing to the differing structural resolution of lipids at molecular level that is specific to the analytical approaches adopted by various laboratories; (2) the immense complexity of lipid metabolic relationships that may entail head group changes, fatty acyls modifications of various forms (e.g. elongation, desaturation, oxidation), as well as active remodeling that demands a multidimensional, panoramic view to take into account all possibilities in lipid pathway analyses. Herein, we discuss current efforts undertaken to address these challenges, as well as alternative form of "pathway analyses" that may be particularly useful for uncovering functional lipid interactions under different biological contexts. Consolidating lipid pathway analyses will be indispensable in facilitating the transition of lipidomics from its prior role of phenotype validation to a hypothesis-generating tool that uncovers novel molecular targets to drive downstream mechanistic pursuits under biomedical settings.
Collapse
|
24
|
Lam SM, Zhou T, Li J, Zhang S, Chua GH, Li B, Shui G. A robust, integrated platform for comprehensive analyses of acyl-coenzyme As and acyl-carnitines revealed chain length-dependent disparity in fatty acyl metabolic fates across Drosophila development. Sci Bull (Beijing) 2020; 65:1840-1848. [PMID: 36659124 DOI: 10.1016/j.scib.2020.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
Acyl-coenzyme A thioesters (acyl-CoAs) denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways. The great diversity in polarity between short- and long-chain acyl-CoAs makes it technically challenging to cover an inclusive range of acyl-CoAs within a single method. Levels of acyl-carnitines, which function to convey fatty acyls into mitochondria matrix for β-oxidation, indicate the efficiency of mitochondrial import and utilization of corresponding acyl-CoAs. Herein, we report a robust, integrated platform to allow simultaneous quantitation of endogenous acyl-CoAs and acyl-carnitines. Using this method, we monitored changes in intermediary lipid profiles across Drosophila development under control (ND) and high-fat diet (HFD). We observed specific accumulations of medium-chain (C8-C12) and long-chain (≥C16) acyl-carnitines distinct to L3 larval and pupal stages, respectively. These observations suggested development-specific, chain length-dependent disparity in metabolic fates of acyl-CoAs across Drosophila development, which was validated by deploying the same platform to monitor isotope incorporation introduced from labelled 12:0 and 16:0 fatty acids into extra- and intra-mitochondrial acyl-CoA pools. We found that pupal mitochondria preferentially import and oxidise C12:0-CoAs (accumulated as C12:0-carnitines in L3 stage) over C16:0-CoAs. Preferential oxidation of medium-chain acyl-CoAs limits mitochondrial utilization of long-chain acyl-CoAs (C16-C18), leading to pupal-specific accumulation of long-chain acyl-carnitines mediated by enhanced CPT1-6A activity. HFD skewed C16:0-CoAs towards catabolism over anabolism in pupa, thereby adversely affecting overall development. Our developed platform emphasizes the importance of integrating biological knowledge in the design of pathway-oriented platforms to derive maximal physiological insights from analysis of complex biological systems.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxing Zhou
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Cao Z, Wang X, Huang X, Mak HY. Are endoplasmic reticulum subdomains shaped by asymmetric distribution of phospholipids? Evidence from a C. elegans model system. Bioessays 2020; 43:e2000199. [PMID: 33169432 DOI: 10.1002/bies.202000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein-protein and protein-lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER-LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched in ER tubules that form cage-like structures around a subset of LDs. Such enrichment is strongly dependent on polyunsaturated and cyclopropane fatty acids. Based on these findings, we speculate on molecular events that lead to the formation of seipin-positive peri-LD cages in which protein movement is restricted. We hypothesize that asymmetric distribution of specific phospholipids distinguishes cage membrane tubules from the bulk ER.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaowei Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
26
|
Shi Y, Lam SM, Liu H, Luo G, Zhang J, Yao S, Li J, Zheng L, Xu N, Zhang X, Shui G. Comprehensive lipidomics in apoM -/- mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation. J Genet Genomics 2020; 47:523-534. [PMID: 33309167 DOI: 10.1016/j.jgg.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Apolipoprotein M (apoM) participates in both high-density lipoprotein and cholesterol metabolism. Little is known about how apoM affects lipid composition of the liver and serum. In this study, we systemically investigated the effects of apoM on liver and plasma lipidomes and how apoM participates in lipid cycling, via apoM knockout in mice and the human SMMC-7721 cell line. We used integrated mass spectrometry-based lipidomics approaches to semiquantify more than 600 lipid species from various lipid classes, which include free fatty acids, glycerolipids, phospholipids, sphingolipids, glycosphingolipids, cholesterol, and cholesteryl esters (CEs), in apoM-/- mouse. Hepatic accumulation of neutral lipids, including CEs, triacylglycerols, and diacylglycerols, was observed in apoM-/- mice; while serum lipidomic analyses showed that, in contrast to the liver, the overall levels of CEs and saturated/monounsaturated fatty acids were markedly diminished. Furthermore, the level of ApoB-100 was dramatically increased in the liver, whereas significant reductions in both ApoB-100 and low-density lipoprotein (LDL) cholesterol were observed in the serum of apoM-/- mice, which indicated attenuated hepatic LDL secretion into the circulation. Lipid profiles and proinflammatory cytokine levels indicated that apoM-/- leads to hepatic steatosis and an overall state of metabolic distress. Taken together, these results revealed that apoM knockout leads to hepatic steatosis, impaired lipid secretion, and an overall state of metabolic distress.
Collapse
Affiliation(s)
- Yuanping Shi
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Guanghua Luo
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jun Zhang
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Shuang Yao
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zheng
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Institute of Laboratory Medicine, Lunds University, Klinikgatan 19, S-22185, Lund, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Yin Y, Guo Z, Chen K, Tian T, Tan J, Chen X, Chen J, Yang B, Tang S, Peng K, Liu S, Liang Y, Zhang K, Yu L, Li M. Ultra-high α-linolenic acid accumulating developmental defective embryo was rescued by lysophosphatidic acid acyltransferase 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2151-2167. [PMID: 32573846 DOI: 10.1111/tpj.14889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
For decades, genetic engineering approaches to produce unusual fatty acids (UFAs) in crops has reached a bottleneck, including reduced seed oil production and seed vigor. Currently, plant models in the field of research are primarily used to investigate defects in oil production and seedling development, while the role of UFAs in embryonic developmental defects remains unknown. In this study, we developed a transgenic Arabidopsis plant model, in which the embryo exhibits severely wrinkled appearance owing to α-linolenic acid (ALA) accumulation. RNA-sequencing analysis in the defective embryo suggested that brassinosteroid synthesis, FA synthesis and photosynthesis were inhibited, while FA degradation, endoplasmic reticulum stress and oxidative stress were activated. Lipidomics analysis showed that ultra-accumulated ALA is released from phosphatidylcholine as a free FA in cells, inducing severe endoplasmic reticulum and oxidative stress. Furthermore, we identified that overexpression of lysophosphatidic acid acyltransferase 2 rescued the defective phenotype. In the rescue line, the pool capacity of the Kennedy pathway was increased, and the esterification of ALA indirectly to triacylglycerol was enhanced to avoid stress. This study provides a plant model that aids in understanding the molecular mechanism of embryonic developmental defects and generates strategies to produce higher levels of UFAs.
Collapse
Affiliation(s)
- Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resource Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiajun Tan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinfeng Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bing Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuyan Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kangfu Peng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resource Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
28
|
Tian Z, Zhang S, Wang H, Chen Z, Sun M, Sun L, Gong L, Li Y, Jiang H. Intervention of Uncaria and Its Components on Liver Lipid Metabolism in Spontaneously Hypertensive Rats. Front Pharmacol 2020; 11:910. [PMID: 32765256 PMCID: PMC7381107 DOI: 10.3389/fphar.2020.00910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil is widely used in the treatment of hypertension. The Uncaria extract and its bioactives, rhynchophylline and isorhynchophylline, reduced the blood pressure and fatty content in liver cells. In the present study, the antihypertensive effects of Uncaria ethanol extract (UET), rhynchophylline (RT) and isorhynchophylline (IT) were investigated in spontaneously hypertensive rats (SHR) using UPLC-Q-Orbitrap/MS based lipidomics approach. Histological changes in the liver were evaluated. Cytolysis and fatty degeneration in the liver tissues were observed in the SHR group. Lipid species in WKY, SHR treated with UET, RT, and IT were plotted to obtain the Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) score plots. Fifty-six endogenous metabolites in the liver such as glycerides, glycerophospholipids, unsaturated fatty acids, and sphingomyelins were selected as potential hypertension associated biomarkers. In order to further explore the metabolite targets of UET for antihypertensive, student's t test and correlation analysis were performed to recognize the pattern recognition and to select the significant metabolites. Similar and prolonged reduction in blood pressure was observed in all SHR groups treated with UET, RT, and IT, while the metabolite profiles were perturbed slightly compared to that of the untreated SHR. Further analysis showed that only a few common components were observed in both RT and IT, which showed similar antihypertensive effect in spite of the distinct metabolic pathways. These results help in understanding the mechanisms of isomeric ingredients in exhibiting the antihypertensive effect but with different targets.
Collapse
Affiliation(s)
- Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiming Zhang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huanjuan Wang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenshan Chen
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengjia Sun
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Traditional Chinese Medicine Clinical Research Base for Hypertension of Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
29
|
Hussein AM, Wang Y, Mathieu J, Margaretha L, Song C, Jones DC, Cavanaugh C, Miklas JW, Mahen E, Showalter MR, Ruzzo WL, Fiehn O, Ware CB, Blau CA, Ruohola-Baker H. Metabolic Control over mTOR-Dependent Diapause-like State. Dev Cell 2020; 52:236-250.e7. [PMID: 31991105 DOI: 10.1016/j.devcel.2019.12.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Regulation of embryonic diapause, dormancy that interrupts the tight connection between developmental stage and time, is still poorly understood. Here, we characterize the transcriptional and metabolite profiles of mouse diapause embryos and identify unique gene expression and metabolic signatures with activated lipolysis, glycolysis, and metabolic pathways regulated by AMPK. Lipolysis is increased due to mTORC2 repression, increasing fatty acids to support cell survival. We further show that starvation in pre-implantation ICM-derived mouse ESCs induces a reversible dormant state, transcriptionally mimicking the in vivo diapause stage. During starvation, Lkb1, an upstream kinase of AMPK, represses mTOR, which induces a reversible glycolytic and epigenetically H4K16Ac-negative, diapause-like state. Diapause furthermore activates expression of glutamine transporters SLC38A1/2. We show by genetic and small molecule inhibitors that glutamine transporters are essential for the H4K16Ac-negative, diapause state. These data suggest that mTORC1/2 inhibition, regulated by amino acid levels, is causal for diapause metabolism and epigenetic state.
Collapse
Affiliation(s)
- Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lilyana Margaretha
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98109, USA
| | - Chaozhong Song
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Daniel C Jones
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Christopher Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth Mahen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Megan R Showalter
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Walter L Ruzzo
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - C Anthony Blau
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Mokoena NZ, Sebolai OM, Albertyn J, Pohl CH. Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans. Prostaglandins Other Lipid Mediat 2020; 148:106426. [PMID: 32032704 DOI: 10.1016/j.prostaglandins.2020.106426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of important biological functions in most biological systems. These PUFAs can be oxygenated via enzymatic or free radical-mediated reactions to form bioactive oxygenated lipid mediators termed oxylipins. Eicosanoids are broad class of oxylipins that are transient and locally synthesized signalling molecules, including prostaglandins, leukotrienes, lipoxins and thromboxanes, which mediate various physiological responses, such as inflammation. In addition to arachidonic acid-derived eicosanoids, current developments in lipidomic methodologies have brought attention to vast number of oxylipins produced from other PUFAs, including omega-3. Although, the molecular mechanisms of how PUFAs and oxylipins contribute to majority of the fundamental biological processes are largely unclear, a model organism Caenorhabditis elegans remains a powerful model for exploring lipid metabolism and functions of PUFAs and oxylipins. For instance, the ability of C. elegans to modify fatty acid composition with dietary supplementation and genetic manipulation enables the dissection of the roles of omega-3 and omega-6 PUFAs in many biological processes that include aging, reproduction, and neurobiology. However, much remains to be elucidated concerning the roles of oxylipins, but thus far, C. elegans is well-known for the synthesis of vast set of cytochrome (CYP) eicosanoids. These CYP eicosanoids are extremely susceptible to changes in the relative bioavailability of the different PUFAs, thus providing a better insight into complex mechanisms connecting essential dietary fatty acids to various biological processes. Therefore, this review provides an overview of the synthesis and function of PUFAs and oxylipins in mammals. It also focusses on what is known regarding the production of PUFAs and oxylipins in C. elegans and their functions.
Collapse
Affiliation(s)
- N Z Mokoena
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - O M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - J Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - C H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
31
|
Yao S, Zhang J, Zhan Y, Shi Y, Yu Y, Zheng L, Xu N, Luo G. Insulin Resistance in Apolipoprotein M Knockout Mice is Mediated by the Protein Kinase Akt Signaling Pathway. Endocr Metab Immune Disord Drug Targets 2020; 20:771-780. [PMID: 31702495 PMCID: PMC7360917 DOI: 10.2174/1871530319666191023125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous clinical studies have suggested that apolipoprotein M (apoM) is involved in glucose metabolism and plays a causative role in insulin sensitivity. OBJECTIVE The potential mechanism of apoM on modulating glucose homeostasis is explored and differentially expressed genes are analyzed by employing ApoM deficient (ApoM-/- ) and wild type (WT) mice. METHODS The metabolism of glucose in the hepatic tissues of high-fat diet ApoM-/- and WT mice was measured by a glycomics approach. Bioinformatic analysis was applied for analyzing the levels of differentially expressed mRNAs in the liver tissues of these mice. The insulin sensitivity of ApoM-/- and WT mice was compared using the insulin tolerance test and the phosphorylation levels of protein kinase Akt (AKT) and insulin stimulation in different tissues were examined by Western blot. RESULTS The majority of the hepatic glucose metabolites exhibited lower concentration levels in the ApoM-/- mice compared with those of the WT mice. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that ApoM deficiency affected the genes associated with the metabolism of glucose. The insulin tolerance test suggested that insulin sensitivity was impaired in ApoM-/- mice. The phosphorylation levels of AKT in muscle and adipose tissues of ApoM-/- mice were significantly diminished in response to insulin stimulation compared with those noted in WT mice. CONCLUSION ApoM deficiency led to the disorders of glucose metabolism and altered genes related to glucose metabolism in mice liver. In vivo data indicated that apoM might augment insulin sensitivity by AKT-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Xu
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| | - Guanghua Luo
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| |
Collapse
|
32
|
Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics 2019; 47:69-83. [PMID: 32178981 DOI: 10.1016/j.jgg.2019.11.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Mass spectrometry (MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes. The metabolomes of cells, tissues, and organisms comprise a variety of molecules including lipids, amino acids, sugars, organic acids, and so on. Metabolomics mainly focus on the hydrophilic classes, while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes. The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases, but system-level understanding is largely lacking, which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies. While scientists are continuously striving to develop high-coverage omics approaches, integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation. Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology, facilitating the study of interconnection between lipids and other metabolites in disease progression. In this review, we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health. We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.
Collapse
Affiliation(s)
- Raoxu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Lipidall Technologies Company Limited, Changzhou, 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial function in UCP1 knock-in pigs. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1375-1383. [PMID: 31271850 DOI: 10.1016/j.bbalip.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/31/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022]
Abstract
Uncoupling protein 1 (UCP1) plays a key role in nonshivering thermogenesis and is involved in the pathogenesis of obesity. In a previous study, we generated adipocyte-specific UCP1 knock-in (UCP1-KI) pigs, which exhibited improved thermoregulatory ability and decreased fat deposition. To investigate whether UCP1 knock-in alters the lipid composition of adipose tissues, lipidomics of inguinal subcutaneous white adipose tissue (iWAT) and backfat from 6-month-old cold-treated UCP1-KI pigs and wild-type (WT) pigs were profiled. In addition, genome-wide RNA-sequencing of iWAT was performed to further study the genetic basis for lipid alterations. The results showed that iWAT and backfat from UCP1-KI pigs exhibited distinct lipidomic profiles, as the mild lipid alteration was observed in backfat of UCP1 knock-in pigs. Inguinal WAT from UCP1-KI pigs contained significantly decreased total triacylglycerol (p < 0.05), together with the downregulation of genes involved in fatty acid metabolism, suggesting the decreased lipogenesis in iWAT of UCP1-KI pigs. Significantly increased levels of total sphingolipids (p<0.05) were also observed in iWAT from UCP1-KI pigs. Notably, two mitochondrial-specific lipid species, cardiolipin CL72:8 (18:2) and CL74:9 (18:2), were found to be dramatically increased in iWAT from UCP1-KI pigs, suggesting enhanced mitochondrial function. This observation was further supported by the significant upregulation of numerous mitochondrial-related genes and significantly increased number of large mitochondria and mitochondrial cristae in iWAT of UCP1-KI pigs. Taken together, these data illustrate the specific role of UCP1 in lipid metabolism of fat tissues in pigs and provide new data for characterization of fat traits in UCP1-KI pigs.
Collapse
|
34
|
Cao Z, Hao Y, Fung CW, Lee YY, Wang P, Li X, Xie K, Lam WJ, Qiu Y, Tang BZ, Shui G, Liu P, Qu J, Kang BH, Mak HY. Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat Commun 2019; 10:2902. [PMID: 31263173 PMCID: PMC6602954 DOI: 10.1038/s41467-019-10835-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Exogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolite-modulated targeting of the C. elegans seipin ortholog, SEIP-1. Loss of SEIP-1 function reduces the size of a subset of LDs while over-expression of SEIP-1 has the opposite effect. Ultrastructural analysis reveals SEIP-1 enrichment in an endoplasmic reticulum (ER) subdomain, which co-purifies with LDs. Analyses of C. elegans and bacterial genetic mutants indicate a requirement of polyunsaturated fatty acids (PUFAs) and microbial cyclopropane fatty acids (CFAs) for SEIP-1 enrichment, as confirmed by dietary supplementation experiments. In mammalian cells, heterologously expressed SEIP-1 engages nascent lipid droplets and promotes their subsequent expansion in a conserved manner. Our results suggest that microbial and polyunsaturated fatty acids serve unexpected roles in regulating cellular fat storage by promoting LD diversity. Lipid droplets (LDs) are fat storage organelles that are initiated and expanded by seipins at ER contact sites. Here the authors show that the C. elegans seipin ortholog SEIP-1 is recruited to these sites by certain dietary fatty acids to support the expansion of a subset of LDs.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yan Hao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yiu Yiu Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pengfei Wang
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuesong Li
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kang Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen Jiun Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifei Qiu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianan Qu
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Byung-Ho Kang
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
35
|
Plasma lipidomic profiling in murine mutants of Hermansky-Pudlak syndrome reveals differential changes in pro- and anti-atherosclerotic lipids. Biosci Rep 2019; 39:BSR20182339. [PMID: 30710063 PMCID: PMC6379572 DOI: 10.1042/bsr20182339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of lipid-rich plaques in the arterial wall. Its pathogenesis is very complicated and has not yet been fully elucidated. It is known that dyslipidemia is a major factor in atherosclerosis. Several different Hermansky-Pudlak syndrome (HPS) mutant mice have been shown either anti-atherosclerotic or atherogenic phenotypes, which may be mainly attributed to corresponding lipid perturbation. To explore the effects of different HPS proteins on lipid metabolism and plasma lipid composition, we analyzed the plasma lipid profiles of three HPS mutant mice, pa (Hps9 -/-), ru (Hps6 -/-), ep (Hps1 -/-), and wild-type (WT) mice. In pa and ru mice, some pro-atherosclerotic lipids, e.g. ceramide (Cer) and diacylglycerol (DAG), were down-regulated whereas triacylglycerol (TAG) containing docosahexaenoic acid (DHA) (22:6) fatty acyl was up-regulated when compared with WT mice. Several pro-atherosclerotic lipids including phosphatidic acid (PA), lysophosphatidylserine (LPS), sphingomyelin (SM), and cholesterol (Cho) were up-regulated in ep mice compared with WT mice. The lipid droplets in hepatocytes showed corresponding changes in these mutants. Our data suggest that the pa mutant resembles the ru mutant in its anti-atherosclerotic effects, but the ep mutant has an atherogenic effect. Our findings may provide clues to explain why different HPS mutant mice exhibit distinct anti-atherosclerotic or atherogenic effects after being exposed to high-cholesterol diets.
Collapse
|
36
|
Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil's Fatty Acids on the Skin. Mar Drugs 2018; 16:E256. [PMID: 30061538 PMCID: PMC6117694 DOI: 10.3390/md16080256] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 33303, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan 33305, Taiwan.
| |
Collapse
|
37
|
Wang H, Zhao X, Ni C, Dai Y, Guo Y. Zearalenone regulates endometrial stromal cell apoptosis and migration via the promotion of mitochondrial fission by activation of the JNK/Drp1 pathway. Mol Med Rep 2018; 17:7797-7806. [PMID: 29620184 DOI: 10.3892/mmr.2018.8823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 11/05/2022] Open
Abstract
Increased endometrial stromal cell (ESC) survival and migration is responsible for the development and progression of endometriosis. However, little is known about the mechanisms underlying ESC survival and migration, and limited therapeutic strategies that are able to reverse these abnormalities are available. The present study investigated the effects of zearalenone (ZEA) on ESC survival and migration, particularly focusing on mitochondrial fission and the c‑Jun N‑terminal kinase (JNK)/dynamin‑related protein 1 (Drp1) pathway. The results revealed that ZEA induced ESC apoptosis in a dose‑dependent manner. Furthermore, ZEA treatment triggered excessive mitochondrial fission resulting in structural and functional mitochondrial damage, leading to the collapse of the mitochondrial membrane potential and subsequent leakage of cytochrome c into the cytoplasm. This triggered the mitochondrial pathway of apoptosis. Additionally, ZEA‑induced mitochondrial fission decreased ESC migration through F‑actin/G‑actin homeostasis dysregulation. ZEA also increased JNK phosphorylation and subsequently Drp1 phosphorylation at the serine 616 position, resulting in Drp1 activation. JNK/Drp1 pathway inhibition abolished the inhibitory effects of ZEA on ESC survival and migration. In summary, the present study demonstrated that ZEA reduced ESC survival and migration through the stimulation of mitochondrial fission by activation of the JNK/Drp1 pathway.
Collapse
Affiliation(s)
- Huixiang Wang
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaoli Zhao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chengxiang Ni
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yuyang Dai
- Department of National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yan Guo
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
38
|
Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence. J Proteomics 2018; 178:82-91. [DOI: 10.1016/j.jprot.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
|
39
|
Lam SM, Wang R, Miao H, Li B, Shui G. An integrated method for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal development up to reproductive senescence. Anal Chim Acta 2018; 1037:152-158. [PMID: 30292289 DOI: 10.1016/j.aca.2018.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022]
Abstract
Development of rapid metabolomic methods poised for pathway discovery is expected to facilitate the identification of therapeutic candidates in the metabolomic approach to translational medicine. Using sphingolipid homeostasis as a prototype, we present herein an integrated method to facilitate a fast interrogation of altered sphingolipid (and phospholipid) metabolism associated with perturbed endolysosomal functions in mammalian systems. Constructed upon high performance liquid chromatography coupled to mass spectrometry, this method allows semi-quantitative measurements of more than 300 individual species within 20 min. The method was applied to investigate cardiac- and neural-specific developmental changes in sphingolipid regulation from the postnatal stage to reproductive senescence in mice, revealing that endogenous lysobisphosphatidic acids and specific complex glycosphingolipids are tightly co-regulated to foster concerted reductions in sphingolipid levels at distinct stages of postnatal development. Our lipidomic data suggest that such changing regulatory patterns in sphingolipid homeostasis is attributed to differential endolysosomal degradation of complex sphingolipids, which may be critical in ensuring efficient sphingolipid catabolism and organismal health at each stage of postnatal development.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Raoxu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huan Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou 213022, Jiangsu Province, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Tian H, Li B, Shui G. Untargeted LC–MS Data Preprocessing in Metabolomics. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0030-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|