1
|
Li XY, Gu XY, Li XM, Yan JG, Mao XL, Yu Q, Du YL, Kurihara H, Yan CY, Li WX. Supplementation with carnosine, a food-derived bioactive dipeptide, alleviates dexamethasone-induced oxidative stress and bone impairment via the NRF2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1091-1104. [PMID: 39291490 DOI: 10.1002/jsfa.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yuan Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Jian-Gang Yan
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Xin-Liang Mao
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Qin Yu
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Yu-Lan Du
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Hiroshi Kurihara
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Cerrato G, Liu P, Zhao L, Petrazzuolo A, Humeau J, Schmid ST, Abdellatif M, Sauvat A, Kroemer G. AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity. Mol Cancer 2024; 23:275. [PMID: 39702289 DOI: 10.1186/s12943-024-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON). METHODS We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD. CON was characterized using SYTO 14 fluorescent staining and holotomographic microscopy, and visualized by AI-deconvoluted transmitted light microscopy. A neural network-based quantitative structure-activity relationship (QSAR) model was trained to link molecular descriptors of compounds to the CON phenotype, and the classifier was validated using an independent dataset from the NCI-curated mechanistic collection of anticancer agents. RESULTS CON strongly correlated with the inhibition of DNA-to-RNA transcription. Cytotoxic drugs that inhibit RNA synthesis without causing DNA damage were as effective as conventional cytotoxicants in inducing ICD, as demonstrated by DAMPs release/exposure and vaccination efficacy in mice. The QSAR classifier successfully predicted drugs with a high likelihood of inducing CON. CONCLUSIONS We developed AI-based algorithms for predicting CON-inducing drugs based on molecular descriptors and their validation using automated micrographs analysis, offering a new approach for screening ICD inducers with minimized adverse effects in cancer therapy.
Collapse
Affiliation(s)
- Giulia Cerrato
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Adriana Petrazzuolo
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- International Centre for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Equipe Oncopharmacologie, Faculté Rockfeller, Lyon, France
| | - Sophie Theresa Schmid
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Centre de Recherche des Cordeliers, 15 Rue de l'École de Médecine, Paris, 75006, France.
| |
Collapse
|
3
|
Zeng H, Chen N, Chen F, Zhong X, Yang L, Lu Y, Chen M, Shen M, Wang S, Chen S, Cao J, Zhang X, Zhao J, Xu Y, Wang J, Hu M. Exercise alleviates hematopoietic stem cell injury following radiation via the carnosine/Slc15a2-p53 axis. Cell Commun Signal 2024; 22:582. [PMID: 39627813 PMCID: PMC11613893 DOI: 10.1186/s12964-024-01959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
Ionizing radiation (IR) can cause severe dysfunction of hematopoietic stem cells (HSCs), leading to acute or prolonged myelosuppression. In recent years, physical exercise has been recognized as a healthy lifestyle as it can fight a variety of diseases. However, whether it provides protection against IR is not fully understood. In this study, we revealed that long-term moderate exercise mitigated IR-induced hematopoietic injury by generating carnosine from skeletal muscles. We found that exercised mice displayed reduced loss of HSC number and function after IR, accompanied by alleviated bone marrow damage. Interestingly, these effects were largely abrogated by specific deletion of carnosine synthase Carns1 in skeletal muscles. In contrast, carnosine treatment protected HSCs against IR-induced injury. Mechanistically, we demonstrated that exercise-generated carnosine was specifically transported to HSCs via Slc15a2 and then inhibited p53 transcriptional activity by directly interacting with its core DNA-binding domain, which led to downregulation of the p53 target genes p21 and Puma, thus promoting the proliferation and survival and inhibiting the senescence of irradiated HSCs. More importantly, a similar role of the carnosine/Slc15a2-p53 axis was observed in human cord blood-derived HSCs. Collectively, our data reveal that moderate exercise or carnosine supplementation may be potential antiradiation strategies.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoyi Zhong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Kidney Center of PLA, Third Military Medical University, Chongqing, 400037, China
| | - Lijing Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yukai Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Kidney Center of PLA, Third Military Medical University, Chongqing, 400037, China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
4
|
Wang Q, Tripodi N, Valiukas Z, Bell SM, Majid A, de Courten B, Apostolopoulos V, Feehan J. The protective role of carnosine against type 2 diabetes-induced cognitive impairment. Food Sci Nutr 2024; 12:3819-3833. [PMID: 38873448 PMCID: PMC11167184 DOI: 10.1002/fsn3.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Zachary Valiukas
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Barbora de Courten
- STEM college, RMIT UniversityMelbourneVictoriaAustralia
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
- Australian Institute for Musculoskeletal Sciences, Immunology Program, Western HealthThe University of Melbourne and Victoria UniversityMelbourneVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| |
Collapse
|
5
|
Ma C, Zhao J, Zheng G, Wu S, Wu R, Yu D, Liao J, Zhang H, Liu L, Jiang L, Qian F, Zeng H, Wu G, Lu Z, Ye J, Zhang W. Qijiao Shengbai Capsule alleviated leukopenia by interfering leukotriene pathway: Integrated network study of multi-omics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155424. [PMID: 38537441 DOI: 10.1016/j.phymed.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Leukopenia could be induced by chemotherapy, which leads to bone marrow suppression and even affects the therapeutic progression of cancer. Qijiao Shengbai Capsule (QSC) has been used for the treatment of leukopenia in clinic, but its bioactive components and mechanisms have not yet been elucidated clearly. PURPOSE This study aimed to elucidate the molecular mechanisms of QSC in treating leukopenia. STUDY DESIGN Serum pharmacochemistry, multi-omics, network pharmacology, and validation experiment were combined to study the effect of QSC in murine leukopenia model. METHODS First, UPLC-QTOF-MS was used to clarify the absorbed components of QSC. Then, cyclophosphamide (CTX) was used to induce mice model with leukopenia, and the therapeutic efficacy of QSC was assessed by an integrative approach of multi-omics and network pharmacology strategy. Finally, molecular mechanisms and potential therapeutic targets were identified by validated experiments. RESULTS 121 compounds absorbed in vivo were identified. QSC significantly increase the count of white blood cells (WBCs) in peripheral blood of leukopenia mice with 15 days treatment. Multi-omics and network pharmacology revealed that leukotriene pathway and MAPK signaling pathway played crucial roles during the treatment of leukopenia with QSC. Six targets (ALOX5, LTB4R, CYSLTR1, FOS, JUN, IL-1β) and 13 prototype compounds were supposed to be the key targets and potential active components, respectively. The validation experiment further confirmed that QSC could effectively inhibit the inflammatory response induced by leukopenia. The inhibitors of ALOX5 activity can significantly increase the number of WBCs in leukopenia mice. Molecular docking of ALOX5 suggested that calycosin, daidzein, and medicarpin were the potentially active compounds of QSC. CONCLUSION Leukotriene pathway was found for the first time to be a key role in the development of leukopenia, and ALOX5 was conformed as the potential target. QSC may inhibit the inflammatory response and interfere the leukotriene pathway, it is able to improve hematopoiesis and achieve therapeutic effects in the mice with leukopenia.
Collapse
Affiliation(s)
- Chi Ma
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guangyong Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyu Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China
| | - Ruijun Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dianping Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongwei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Guizhou Hanfang Pharmaceutical Co., Ltd., Guizhou, 550014, China
| | - Lu Jiang
- Guizhou Hanfang Pharmaceutical Co., Ltd., Guizhou, 550014, China
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huawu Zeng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ji Ye
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China.
| |
Collapse
|
6
|
Ali M, Manjula SN, Mohiuddin I, Mruthunjaya K, Shakeel F, Mir SA, Wani SUD. Noni enhances the anticancer activity of cyclophosphamide and suppresses myelotoxicity and hepatotoxicity in tumor-bearing mice. J Cancer Res Clin Oncol 2024; 150:212. [PMID: 38662247 PMCID: PMC11045611 DOI: 10.1007/s00432-024-05734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIM Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Sri Adichunchanagiri University, B.G Nagar, Bellur, Karnataka, 571418, India.
| | - S N Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Ishfaq Mohiuddin
- Department of Zoology, Annamalai University, Annamalainagar, 608 002, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
7
|
Lei YY, Ye YH, Liu Y, Xu JL, Zhang CL, Lyu CM, Feng CG, Jiang Y, Yang Y, Ke Y. Achyranthes bidentata polysaccharides improve cyclophosphamide-induced adverse reactions by regulating the balance of cytokines in helper T cells. Int J Biol Macromol 2024; 265:130736. [PMID: 38479672 DOI: 10.1016/j.ijbiomac.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/18/2024]
Abstract
The manuscript aimed to study the immune function maintenance effect of Achyranthes bidentata polysaccharides (ABPs). The mice were divided into the control group, cyclophosphamide-induced (CTX) group, and ABPs-treated (ABP) group. The results showed that, compared with the CTX group, ABPs could significantly improve the spleen index and alleviate the pathological changes in immune organs. Ex vivo study of whole spleen cells, the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were increased. The proliferation of lymphocytes and the proportion of CD3+CD4+ Th cells in peripheral blood mononuclear cells were increased. The transcription of GATA-3, Foxp3, and ROR γ t were decreased, while the transcription of T-bet was increased. The transcriptome sequencing analysis showed that the differentially expressed genes (DEGs) caused by ABPs-treated were mostly downregulated in CTX-induced mice. The Th2-related genes were significantly enriched in DEGs, with representative genes, including Il4, II13, Il9, etc., while increasing the expression of immune effector genes simultaneously, including Ccl3, Ccr5, and Il12rb2. It was suggested that ABPs possibly regulated the balance of cytokines in helper T cells to ameliorate the immune function of CTX-induced mice.
Collapse
Affiliation(s)
- Yuan-Yuan Lei
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yu-Han Ye
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Ying Liu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Jia-Ling Xu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Cheng-Lin Zhang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chun-Ming Lyu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chen-Guo Feng
- Shanghai University of Traditional Chinese Medicine Innovation Research Institute of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Jiang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry, 200032, China
| | - Yang Yang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yan Ke
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| |
Collapse
|
8
|
Xu X, Shao T, Meng Y, Liu C, Zhang P, Chen K. Immunomodulatory mechanisms of an acidic polysaccharide from the fermented burdock residue by Rhizopus nigricans in RAW264.7 cells and cyclophosphamide-induced immunosuppressive mice. Int J Biol Macromol 2023; 252:126462. [PMID: 37619680 DOI: 10.1016/j.ijbiomac.2023.126462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
RBAPS is an acidic polysaccharide extracted from the burdock residue fermentation by Rhizopus nigricans. In RBAPS-activated RAW264.7 cells, transcriptome analysis identified a total of 1520 differentially expressed genes (DEGs), including 1223 down-regulated genes and 297 up-regulated genes. DEGs were enriched in the immune-related biological processes, involving in Mitogen-activated protein kinase (MAPK) and Toll-like receptor (TLR) signaling pathway, according to Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results of the confocal laser scanning microscope (CLSM) observation, antibody neutralization and Western blot verified that RBAPS modulated macrophages activation and cytokines secretion mainly via TLR4/MAPK/NF-κB signaling pathway. The immunomodulatory activity in vivo of RBAPS was investigated in cyclophosphamide (CTX)-induced immunosuppressive mice. RBAPS promoted the counts of white blood cells (WBC), red blood cells (RBC) and platelets (PLT) as well as the levels of immunoglobulins and cytokines (IgG, IgM, TNF-α, and IL-2) in immunosuppressive mice. RBAPS protected the spleen and thymus from CTX-induced injury by increasing the organ indexes, attenuating pathological damage, and promoting splenic lymphocytes proliferation. Importantly, RBAPS ameliorated the intestine integrity and function by promoting the expression of Occuldin, Claudin-5, Atg5, and Atg7, activating TLR4/MAPK signaling pathway in CTX-induced mice. This study suggested that RBAPS was a prime candidate of immunologic adjuvant in chemotherapy for the nutraceutical and pharmaceutical application.
Collapse
Affiliation(s)
- Xuan Xu
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Drug Research &Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Ying Meng
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Chunyan Liu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Drug Research &Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China.
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China.
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
9
|
Wu B, Li J, Wang Y, Yang J, Ye Y, Sun J, Sheng L, Wu M, Zhang Y, Gong Y, Zhou J, Ji J, Sun X. Exploring the impact of fungal spores from agricultural environments on the mice lung microbiome and metabolic profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115456. [PMID: 37714035 DOI: 10.1016/j.ecoenv.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and β diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Yang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengying Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yajun Gong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Hussein MMA, Abdelfattah-Hassan A, Eldoumani H, Essawi WM, Alsahli TG, Alharbi KS, Alzarea SI, Al-Hejaili HY, Gaafar SF. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front Pharmacol 2023; 14:1258387. [PMID: 37808196 PMCID: PMC10552532 DOI: 10.3389/fphar.2023.1258387] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background: We investigated the anti-cancer effect of carnosine-loaded niosomes (Car-NIO) and melittin-loaded niosomes (Mel-NIO) with olaparib in breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The thin film method was used for preparing the niosomes and characterized in terms of morphology, size, and polydispersity index (PDI). We further evaluated the impact of these peptides on breast cancer cells viability, RT-qPCR assays, malondialdehyde (MDA) activity, and cell cycle progression, to determine if these are linked to carnosine and melittin's anti-proliferative properties. Results: Car-NIO and Mel-NIO in vitro study inhibited cancer cell viability. They have also upregulated the expression of protein 53 (P53), BCL2-Associated X Protein (Bax), caspase-9, caspase-3, programmed cell death 4 (PDCD4), and Forkhead box O3 (FOXO3), while downregulated the expression of B-cell lymphoma 2 (Bcl2), poly (ADP-ribose) polymerase (PARP 1), and MicroRNA-183 (miRNA-183). The MCF-7 cells were arrested at the G2/M phase in Car-NIO, on the other hand, the MDA-MB-231 cells were arrested at the S phase. While the Mel-NIO and olaparib arrested the MCF-7 and MDA-MB-231 cells at the G0/1 phase. Conclusion: Our study successfully declared that Mel-NIO had more anti-cancer effects than Car-NIO in both MCF-7 and MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Mohamed M. A. Hussein
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa M. Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hassan Y. Al-Hejaili
- Pharmaceutical Care Department, King Salman Bin Abdulaziz Medical City, Ministry of Health, Medina, Saudi Arabia
| | - Sara F. Gaafar
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Akram S, Al-Shammari AM, Sahib HB, Jabir MS. Papaverine Enhances the Oncolytic Effects of Newcastle Disease Virus on Breast Cancer In Vitro and In Vivo. Int J Microbiol 2023; 2023:3324247. [PMID: 37720338 PMCID: PMC10504052 DOI: 10.1155/2023/3324247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/28/2022] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a lethal disease in females worldwide and needs effective treatment. Targeting cancer cells with selective and safe treatment seems like the best choice, as most chemotherapeutic drugs act unselectively. Papaverine showed promising antitumor activity with a high safety profile and increased blood flow through vasodilation. At the same time, it was widely noticed that virotherapy using the Newcastle disease virus proved to be safe and selective against a broad range of cancer cells. Furthermore, combination therapy is favorable, as it attacks cancer cells with multiple mechanisms and enhances virus entrance into the tumor mass, overcoming cancer cells' resistance to therapy. Therefore, we aimed at assessing the novel combination of the AMHA1 strain of Newcastle disease virus (NDV) and nonnarcotic opium alkaloid (papaverine) against breast cancer models in vitro and in vivo. Methods. In vitro experiments used two human breast cancer cell lines and one normal cell line and were treated with NDV, papaverine, and a combination. The study included a cell viability MTT assay, morphological analysis, and apoptosis detection. Animal experiments used the AN3 mouse mammary adenocarcinoma tumor model. Evaluation of the antitumor activity included growth inhibition measurement; the immunohistochemistry assay measured caspase protein expression. Finally, a semiquantitative microarray assay was used to screen changes in apoptotic proteins. In vitro, results showed that the combination therapy induces synergistic cytotoxicity and apoptosis against cancer cells with a negligible cytotoxic effect on normal cells. In vivo, combination treatment induced a significant antitumor effect with an obvious regression in tumor size and a remarkable and significant expression of caspase-3, caspase-8, and caspase-9 compared to monotherapies. Microarray analysis shows higher apoptosis protein levels in the combination therapy group. In conclusion, this study demonstrated the role of papaverine in enhancing the antitumor activity of NDV, suggesting a promising strategy for breast cancer therapy through nonchemotherapeutic drugs.
Collapse
Affiliation(s)
- Sura Akram
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | - Hayder B. Sahib
- Department of Pharmacology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Majid Sakhi Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| |
Collapse
|
12
|
Niu X, Chen D, He W, Tang Y, Zhao J. Development and Validation of a Novel UHPLC-MS/MS Method for the Quantification of Plinabulin in Plasma and Its Application in a Pharmacokinetic Study with Leukopenic Rats. Pharmaceuticals (Basel) 2023; 16:1153. [PMID: 37631067 PMCID: PMC10459361 DOI: 10.3390/ph16081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plinabulin, a new antitumor drug developed from marine natural products that targets microtubules in cancer cells, is currently being tested in a phase III clinical study. Plinabulin has been clinically proven to be effective on leukopenia. However, to our knowledge, there are no reports investigating the pharmacokinetics of plinabulin in individuals with leukopenia and healthy individuals. In this study, we developed a rapid and sensitive UHPLC-MS/MS method for the detection of plinabulin for the first time. Using a novel cyclophosphamide-induced leukopenia model, we investigated the differences in the pharmacokinetic characteristics of plinabulin between rats with leukopenia and normal rats. Plinabulin and propranolol (IS) peaks were separated by gradient elution for a total run time of 5 min. The methodological validation showed a good accuracy (101.96-109.42%) and precision (RSD ≤ 5.37%) with the lower limit of quantification at 0.5 ng/mL. The recovery of plinabulin was between 91.99% and 109.75% (RSD ≤ 7.92%). The values of the area under the plasma concentration-time curve (AUC0-t) for leukopenia groups and control groups at doses of 0.5 mg/kg, 1 mg/kg, and 3 mg/kg were 148.89 ± 78.74 h·μg/L and 121.75 ± 31.56 h·μg/L; 318.15 ± 40.00 h·μg/L and 272.06 ± 42.85 h·μg/L; and 1432.43 ± 197.47 h·μg/L and 1337.12 ± 193.56 h·μg/L; respectively. The half-lives (t1/2s) of plinabulin were 0.49-0.72 h for leukopenia groups and 0.39-0.70 h for control groups at three doses, and the clearance rates (CLs) of plinabulin were 2.13-3.87 L/h/kg for leukopenia groups and 2.29-4.23 L/h/kg for control groups. Pharmacokinetic results showed that there was no significant pharmacokinetic difference between the normal group and the leukopenia group. Based on the power model, plinabulin exhibits a lack of dose proportionality over the dose range of 0.5-3 mg/kg after intravenous administration. This study provides guidance for the development of plinabulin as a potential candidate for the treatment of chemotherapy-induced leukopenia.
Collapse
Affiliation(s)
- Xiaochen Niu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dan Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei He
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266073, China
| | - Jianchun Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266073, China
| |
Collapse
|
13
|
He Y, Jiang H, Du K, Wang S, Li M, Ma C, Liu F, Dong Y, Fu C. Exploring the mechanism of Taohong Siwu Decoction on the treatment of blood deficiency and blood stasis syndrome by gut microbiota combined with metabolomics. Chin Med 2023; 18:44. [PMID: 37088809 PMCID: PMC10122815 DOI: 10.1186/s13020-023-00734-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Taohong Siwu Decoction (THSWD) is a prescription which included in the "List of Ancient Classic Prescriptions (First Batch)" issued by the National Administration of Traditional Chinese Medicine (TCM) and the National Medical Products Administration of the People's Republic of China. THSWD is effective and widely applied clinically for many diseases caused by blood deficiency and stasis syndrome in TCM, such as primary dysmenorrhea, menopausal syndrome, coronary heart disease, angina pectoris, and diabetes. METHODS The TCM model of blood deficiency and blood stasis syndrome was prepared by ice water bath combined with cyclophosphamide, and the rats were randomly divided into control group, blood deficiency, and blood stasis model group, positive group, and THSWD treatment group. Pharmacodynamics measured the blood routine, blood coagulation, and other related indexes in rats. UHPLC-MS technology was used to analyze the changes in the fingerprints of metabolites in the plasma of rats with blood deficiency and blood stasis syndrome, and combined with mass spectrometry information and public database retrieval, to find potential biomarkers for screening metabolites. At the same time, 16S rDNA sequencing technology was used to identify intestinal flora, and statistical analysis was used to find differences in strain diversity between groups. RESULTS THSWD administration can significantly improve the physical signs, blood routine, and hematopoietic factors caused by the blood deficiency and blood stasis syndrome model, and improve the symptoms of blood deficiency. The results of the general pharmacological studies showed THSWD groups improved changes in blood plasma viscosity and coagulation-related factors caused by modeling, and improved coagulation function significantly. The metabolomic analysis found that compared to the model group, THSWD exerted better effects on β-alanine, taurine, L-tyrosine, L-arginine, Eugenol, sodium deoxycholate, and deethylatrazine. Twenty-three potential differential metabolites showed intervention effects, mainly involved in eight metabolic pathways, including amino acid metabolism, taurine and hypotaurine metabolism, vitamin metabolism, and nucleotide metabolism. Gut microbiota data showed that, compared to the control group, the relative abundance and value of Firmicutes and Bacteroidota of the blood deficiency and blood stasis model group was significantly reduced, while the relative abundance of Actinobacteria, Spirochaetota, Proteobacteria, Campilobacterota, and other pathogenic bacteria was significantly increased. Following THSWD intervention, the abundance of beneficial bacteria increased, and the abundance of pathogenic bacteria decreased. Correlation analysis between the gut microbiota and differential metabolites showed that the two are closely related. THSWD affected the host blood system through mutual adjustment of these two factors, and improved blood deficiency and blood stasis syndrome in rats. CONCLUSION The blood deficiency and blood stasis syndrome model of TCM disease caused by ice bath combined with cyclophosphamide lead to changes in the pharmacology, metabolomics, and gut microbiota. The intervention of THSWD can improve the symptoms caused by blood deficiency and blood stasis. The mechanism is mainly through the regulation of platelet function and amino acid metabolism.
Collapse
Affiliation(s)
- Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
- Guizhou Yibai Pharmaceutical Co., Ltd, 550008, Guiyang, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Shengju Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Yan Dong
- The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiao Road, Jinniu District, Chengdu, 610032, Sichuan, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
14
|
Zhao J, He R, Zhong H, Liu S, Hussain M, Sun P. Synergistic Antitumor Effect of Grifola frondose Polysaccharide—Protein Complex in Combination with Cyclophosphamide in H22 Tumor-Bearing Mice. Molecules 2023; 28:molecules28072954. [PMID: 37049720 PMCID: PMC10095761 DOI: 10.3390/molecules28072954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and remains a global health threat. The objective of the current study was to determine whether the combination of a cold-water extracted polysaccharide-protein complex from Grifolia frondosa (GFG) and cyclophosphamide (CTX) could inhibit tumor growth by suppressing the expression of angiogenesis-related proteins in H22 tumor-bearing mice. The results showed that the inhibition rate of GFG combined with CTX on H22 tumors was 65.29%, which was significantly higher than that of GFG treatment alone (24.82%). GFG combined with CTX significantly increased the expression levels of vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinase 2, and matrix metalloproteinase 9. Additionally, thymus index, spleen index, natural killer (NK) cell activity, interferon-γ (IFN-γ), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) levels increased significantly after GFG treatment, especially after high-doses of GFG combined with CTX treatment (p < 0.05). The thymus index, spleen index, NK cell activity, IFN-γ, IL-1β, TNF-α, and IL-2 levels were 1.90, 1.46, 1.30, 2.13, 1.64, 2.03, and 1.24 times of those treated with CTX alone. Thus, we proposed that GFG can alleviate the side effects of CTX by relieving the immunosuppressive effect, liver/renal injury, and oxidative stress. In conclusion, the combination of GFG and CTX for cancer treatment may be a promising strategy, and GFG is expected to be a potential adjuvant alternative for the treatment of HCC.
Collapse
|
15
|
Çağlı F, Baktır MA, Dolanbay M, Balcıoğlu E, Cumaoğlu A, Ermiş M, Karaman E, Yalçın B, Aygen EM. An evaluation of the effects on the ovaries of hyperbaric oxygen therapy in a rat model of premature ovarian failure created with cyclophosphamide. Turk J Obstet Gynecol 2023; 20:46-52. [PMID: 36908093 PMCID: PMC10013088 DOI: 10.4274/tjod.galenos.2023.47817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Objective To evaluate hyperbaric oxygen therapy (HBO) based on ovarian histology, total antioxidant status (TAS), total oxidant status (TOS), and anti-müllerian hormone (AMH), in the ovarian insufiency (POI) model created with cyclophosphamide (CYP). Materials and Methods The rats were separated into 3 groups of the control group (n=6), the CYP group (n=6), and the CYP+HBO group (n=6). The rats in the CYP group and the CYP+HBO group were injected intraperitoneally with 200 mg/kg CYP on day 1, followed by 8 mg/kg/day for 14 days to create POI. From the 15th day onwards, the rats in the CYP+HBO group were placed in a hyperbaric cabin and exposed to 100% oxygen at 2.4 atm pressure for one h, and were then returned to their cages at the end of the hour. Results A statistically significant decrease was determined in the primordial and primary follicle counts in the CYP group compared with the control group (p<0.05). In the CYP+HBO group, a statistically significant increase was determined in the primordial and primary follicle counts (p<0.05). The serum AMH levels were seen to be significantly decreased in the CYP group compared with both the control group and the CYP+HBO groups. The HBO was seen to decrease TOS and increase TAS. Conclusion HBO could be an alternative treatment to minimize the effect of ovarian follicle loss caused by CYP, which is used for treating tumors that commonly occur in young females of reproductive age.
Collapse
Affiliation(s)
- Fulya Çağlı
- Erciyes University Faculty of Medicine, Department of Obstetrics and Gynecology, Kayseri, Turkey
| | - Mehmet Akif Baktır
- Erciyes University Faculty of Medicine, Department of Physiology, Kayseri, Turkey
| | - Mehmet Dolanbay
- Erciyes University Faculty of Medicine, Department of Obstetrics and Gynecology, Kayseri, Turkey
| | - Esra Balcıoğlu
- Erciyes University Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Ahmet Cumaoğlu
- Erciyes University Faculity of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Mustafa Ermiş
- Erciyes University, Good Clinical Practice and Research Center, Kayseri, Turkey
| | - Enes Karaman
- Erciyes University Faculty of Medicine, Department of Obstetrics and Gynecology, Kayseri, Turkey
| | - Betül Yalçın
- Erciyes University Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Ercan Mustafa Aygen
- Erciyes University Faculty of Medicine, Department of Obstetrics and Gynecology, Kayseri, Turkey
| |
Collapse
|
16
|
Qin X, Zhang B, Sun X, Zhang M, Xiao D, Lin S, Liu Z, Cui W, Lin Y. Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7793-7803. [PMID: 36745737 DOI: 10.1021/acsami.2c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Xiaoqin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Chen L, Ren A, Wang Y, Qu Y, Gong H, Mayo KH, Zhou Y, Cheng H. Heterogalactan WPEP-N-b from Pleurotus eryngii enhances immunity in immunocompromised mice. Int J Biol Macromol 2023; 225:1010-1020. [PMID: 36410539 DOI: 10.1016/j.ijbiomac.2022.11.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This study reports on in vivo immunomodulatory activities mediated by WPEP-N-b, a heterogalactan from Pleurotus eryngii. Using cyclophosphamide (CTX)-induced immunosuppressed mice, we demonstrate here that WPEP-N-b enhances immunity as determined by the immune organ index, peripheral blood immune cell content, splenocyte proliferation, NK cell activity and T lymphocyte subpopulations. WPEP-N-b prevented apoptosis of bone marrow cells induced by CTX. The level of cytokines (i.e. TNF-α, IL-6 and IL-1β) and macrophage activity in these immunocompromised mice were restored upon treated with WPEP-N-b. Mechanistically, it appears that WPEP-N-b enhances splenocyte proliferation and NK cell activity might through the Toll-like receptor 4 (TLR4)-PKC signaling axis, and increases macrophage activity by activating JNK, p38 and NF-κB signaling pathways and Toll-like receptor 2 (TLR2) is the possible receptor of WPEP-N-b in macrophages. Our findings indicate that WPEP-N-b may function as a natural immune stimulant.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ai Ren
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yushi Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yunhe Qu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Changchun 130032, China
| | - Hesong Gong
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
19
|
Song-xin L, Zhi-man L, Zi-jun S, Yun-shi X, Li-juan Z, Duo-duo R, Yin-shi S. Effect of velvet antler on the immune activity of cyclophosphamide-induced immunosuppressed mice. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2128070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Liu Song-xin
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine of Lunan Pharmaceutical Group Co., Ltd., Linyi, People’s Republic of China
| | - Li Zhi-man
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shao Zi-jun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xia Yun-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhao Li-juan
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Ren Duo-duo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Sun Yin-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
20
|
Zhu L, Luo C, Ma C, Kong L, Huang Y, Yang W, Huang C, Jiang W, Yi J. Inhibition of the NF-κB pathway and ERK-mediated mitochondrial apoptotic pathway takes part in the mitigative effect of betulinic acid on inflammation and oxidative stress in cyclophosphamide-triggered renal damage of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114150. [PMID: 36215883 DOI: 10.1016/j.ecoenv.2022.114150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Betulinic acid (BA), an occurring pentacyclic triterpenoid, has various biological activities, such as anti-inflammation and antioxidation. Previous studies found that BA attenuated cyclophosphamide (CYP)-induced intestinal mucosal damage by inhibiting intestinal mucosal barrier dysfunctions and cell apoptosis. However, the effects and regulation mechanisms of BA on CYP-induced renal damage has not been reported in literature. Here, we found that BA pretreatment alleviated the elevation of serum urea level and inhibited the increase in serum neutrophil gelatinase-associated lipocalin level induced by CYP. Meanwhile, BA ameliorated renal tubular epithelial cell edema, and vacuolization of renal cortical tubular and renal glomerulus. Moreover, pretreatment with BA inhibited the mRNA expressions of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and increased mRNA expressions of anti-inflammatory cytokines such as IL-10 and transforming growth factor-β by inactivation nuclear factor kappa-B. Simultaneously, BA decreased the accumulation of reactive oxygen species and malondialdehyde, and lowered the levels of superoxide dismutase and glutathione, while increased the activity of glutathione peroxidase in CYP-induced kidney damage mice. Besides, BA reduced the phosphorylation of extracellular signal-regulated kinases (ERK), inhibited the ratio of Bcl-2/Bax and cell apoptosis in CYP-triggered kidney damage. Furthermore, BA and/or PD98059 (an inhibitor of ERK) regulated mitigation of CYP-elicited renal injury and deactivation of the ERK pathway and mitochondrial apoptotic pathway, indicating that the protective effect of BA on CYP-induced renal damage may be associated with the down-regulation of ERK-mediated mitochondrial apoptotic pathway. Thus, BA could be a candidate agent against chemotherapy drug-induced nephrotoxicity by reducing inflammation and oxidative stress through suppression of ERK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Weiwei Jiang
- College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang 421005, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
21
|
Zhang J, Wang X, Li H, Chen C, Liu X. Immunomodulatory Effects of Chicken Broth and Histidine Dipeptides on the Cyclophosphamide-Induced Immunosuppression Mouse Model. Nutrients 2022; 14:4491. [PMID: 36364753 PMCID: PMC9659005 DOI: 10.3390/nu14214491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
The carnosine and anserine, which represent histidine dipeptides (HD), are abundant in chicken broth (CB). HD are endogenous dipeptide that has excellent antioxidant and immunomodulatory effects. The immunomodulatory effect of CB hydrolysate (CBH) and HD in cyclophosphamide (CTX)-induced immunosuppressed mice was examined in this study. CBH and HD were given to mice via oral gavage for 15 days, accompanied by intraperitoneal CTX administration to induce immunosuppression. CBH and HD treatment were observed to reduce immune organ atrophy (p < 0.05) and stimulate the proliferation of splenic lymphocytes (p < 0.05) while improving white blood cell, immunoglobulin M (IgM), IgG, and IgA levels (p < 0.05). Moreover, CBH and HD strongly stimulated interleukin-2 (IL-2) and interferon-gamma (IFN-γ) production by up-regulating IL-2 and IFN-γ mRNA expression (p < 0.05) while inhibiting interleukin-10 (IL-10) overproduction and IL-10 mRNA expression (p < 0.05). In addition, CBH and HD prevented the inhibition of the nitric oxide (NP)/cyclic guanosine monophosphate-cyclic adenosine monophosphate (cGMP-cAMP)/protein kinase A (PKA) signaling pathway (p < 0.05). These results indicate that CBH and HD have the potential to prevent immunosuppression induced by CTX. Our data demonstrate that CBH can effectively improve the immune capacity of immunosuppressed mice similar to the same amount of purified HD, which indicates that CBH plays its role through its own HD.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xixi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Animal Disease Control Center, Beijing 102618, China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Cunshe Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
22
|
rhCNB Improves Cyclophosphamide-Induced Immunodeficiency in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4891399. [PMID: 36204132 PMCID: PMC9532092 DOI: 10.1155/2022/4891399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Background This study aims to explore the immunomodulatory effect of rhCNB on mice with cyclophosphamide (CTX)-induced immunodeficiency through TLR4/MAPK pathway. Methods BALB/c mice were randomly divided into three groups: a negative control group, an immunosuppression model group, and a rhCNB treatment group. Tail vein injection of cyclophosphamide (40 mg/kg) was used to establish a mouse immunosuppression model. Intraperitoneal injection of rhCNB (20 mg/kg) was administered to the treatment group, whereas equal quantities of normal saline were given to the control group and model group. Perform peripheral blood routine of CD4, CD8, and CD19 lymphocyte subsets and peripheral blood Th1/Th2 cell subsets 24 hours after the last administration. RT-PCR was used to detect mRNA levels of TLR4, P38, JNK, T-bet, and GATA3, the spleen immune organ index was measured, and the histopathological status of the spleen and thymus was observed. Results The results showed that compared with the control group, WBC, PLT, LYM, NEU, immune organ index, CD4+/CD8+ and CD19+ subgroup ratio, and peripheral blood Th1/Th2 cell subgroups decreased in the model group. The mRNA levels of TLR4, P38, JNK, T-bet, and GATA3 decreased compared with the model group, while they increased in the treatment group. Conclusions rhCNB has an immunomodulatory effect by regulating the expression of Th1/Th2 cytokine balance through the TLR4/MAPK signaling pathway and promoting the differentiation and proliferation of lymphocytes, thereby improving the immune function.
Collapse
|
23
|
Liu C, Wang S, Xiang Z, Xu T, He M, Xue Q, Song H, Gao P, Cong Z. The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz. Front Pharmacol 2022; 13:952061. [PMID: 36091757 PMCID: PMC9452894 DOI: 10.3389/fphar.2022.952061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.
Collapse
Affiliation(s)
- Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| |
Collapse
|
24
|
Qiu J, Yard BA, Krämer BK, van Goor H, van Dijk P, Kannt A. Association Between Serum Carnosinase Concentration and Activity and Renal Function Impairment in a Type-2 Diabetes Cohort. Front Pharmacol 2022; 13:899057. [PMID: 35873562 PMCID: PMC9304884 DOI: 10.3389/fphar.2022.899057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction: Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D). Methods: We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up. Results: CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up. Discussion: Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD.
Collapse
Affiliation(s)
- Jiedong Qiu
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
| | - Benito A. Yard
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernhard K. Krämer
- 5th Medical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
| | - Peter van Dijk
- Department of Endocrinology, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands
- Isala, Diabetes Centre, Zwolle, Netherlands
- *Correspondence: Peter van Dijk, ; Aimo Kannt,
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Institute of Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Peter van Dijk, ; Aimo Kannt,
| |
Collapse
|
25
|
Tang Y, Pu Q, Zhao Q, Zhou Y, Jiang X, Han T. Effects of Fucoidan Isolated From Laminaria japonica on Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Front Immunol 2022; 13:916618. [PMID: 35664002 PMCID: PMC9160524 DOI: 10.3389/fimmu.2022.916618] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of Laminaria japonica fucoidan (LF) on immune regulation and intestinal microflora in cyclophosphamide (CTX)-treated mice were investigated in this work. Results indicated that LF significantly enhanced the spleen and thymus indices, promoted spleen lymphocyte and peritoneal macrophages proliferation, and increased the immune-related cytokines production in serum. Moreover, LF could regulate intestinal flora composition, increasing the abundance of Lactobacillaceae and Alistipes, and inhibiting Erysipelotrichia, Turicibacter, Romboutsia, Peptostreptococcaceae, and Faecalibaculum. These results were positively correlated with immune characteristics. Overall, LF could be useful as a new potential strategy to mitigate CTX immunosuppression and intestinal microbiota disorders.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiuyan Pu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
26
|
Zeng M, Zhang Y, Zhang X, Zhang W, Yu Q, Zeng W, Ma D, Gan J, Yang Z, Jiang X. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115028. [PMID: 35077825 DOI: 10.1016/j.jep.2022.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiqi Shengsui formula (YQSSF) is a commonly used formula to treat chemotherapy-induced myelosuppression, but little is known about its therapeutic mechanisms. AIM OF THIS STUDY This study aims to examine the effect of YQSSF in treating myelosuppression and explore its mechanism. MATERIALS AND METHODS A myelosuppression BALB/c mouse model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CTX). The efficacy of YQSSF in alleviating chemotherapy-induced myelosuppression was evaluated by blood cell count, immune organ (thymus, spleen, liver) index, bone marrow nucleated cell (BMNC) count and histopathological analysis of bone marrow and spleen. Then, ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to analyze the ingredients of YQSSF extract. Key effects and potential mechanism of YQSSF extract in alleviating myelosuppression were predicted by network pharmacology method. Finally, cell cycle and TUNEL staining of bone marrow cells was detected to verify the key effects, and RT-qPCR or Western blotting were performed to measure the gene and protein expressions of the effect targets respectively to confirm the predicted mechanism of YQSSF for myelosuppression. RESULTS YQSSF up-regulated the number of peripheral blood leukocytes and BMNC, reduced spleen index and liver index, improved the pathological morphology of bone marrow and spleen. A total of 40 ingredients were isolated from YQSSF extract using UPLC-Q/TOF-MS analysis. Network pharmacology revealed that YQSSF regulated both proliferation and apoptosis to alleviate myelosuppression. Finally, YQSSF decreased G0/G1 ratio, increased the proportion of bone marrow cells in S phase and proliferation index (PI), and reduced apoptotic cells in femur bone marrow. RT-qPCR and Western blotting showed that YQSSF up-regulated the expression levels of CDK4, CDK6, CyclinB1, c-Myc and Bcl-2, as well as down-regulated the expression levels of Cyt-c, Fas, Caspase-8/3 and p53. CONCLUSIONS YQSSF promotes the proliferation and inhibits the apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Dongming Ma
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
27
|
Zhang H, Zhang L, Yang C, Zhang Y, Li J, Zhang X, Chen J, Huang B, Zhao D, Li X, Zhang W, Qi B. Prevention Effect of Protopanaxadiol-Type Saponins Saponins and Protopanaxatriol-Type Saponins on Myelosuppression Mice Induced by Cyclophosphamide. Front Pharmacol 2022; 13:845034. [PMID: 35431938 PMCID: PMC9011104 DOI: 10.3389/fphar.2022.845034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 11/07/2022] Open
Abstract
Ginsenosides from ginseng are used as a therapeutic agent for various diseases. They enhance the immunomodulatory effect in cyclophosphamide (CP)-treated tumor disease. The structural characteristics of steroidal saponins are mainly divided into protopanaxadiol-type saponin (PDS) and protopanaxatriol-type saponin (PTS). At present, few researchers have studied which kind of saponin plays a more important role, thus, we compared the prevention effect of PDS and PTS on myelosuppression mice induced by CP. The components and contents of saponin and monosaccharide were analyzed by using ultra high performance liquid chromatography-charged aerosol detector (UPLC-CAD) and reversed phase-high performance liquid chromatography (RP-HPLC), respectively. Thirty-two mice were randomly divided into four groups, including control, model (CP), CP+PDS, and CP+PTS. The mice were orally administered with PDS or PTS for 28 days and then injected with CP saline solution on 25, 26, 27, and 28 days at a dose of 50 mg × kg-1. After the end of modeling, the whole blood of mice from the ophthalmic venous plexus was collected to detect routine blood tests, inflammatory cytokines, and hematopoiesis-related cytokines. Cell cycle and the apoptosis of bone marrow in the right femur were detected. The spleen and thymus were used to calculate the organ index and histological examination, and splenocytes were used to detect the percentage of CD4+ and CD25+ T cells. In the saponins analysis, PDS mainly included the Rb1, Rc, Rb2, and Rd of protopanaxadiol-type ginsenosides (accounted for 91.64%), and PTS mainly included the Re, Rg1, and Rf of protopanaxatriol-type ginsenosides (accounted for 75.46%). The animal results showed that both PDS and PTS improved the most indicators of myelosuppression mice induced by CP, including increased weight, blood cell numbers, hematopoiesis-related cytokines, and inflammatory cytokines; promoted the cell cycle of bone marrow and inhibited the apoptosis of bone marrow; elevated the spleen and thymus indexes and CD4+ count of splenocytes. The prevention effect of PDS was better than PTS in some indicators, such as red blood cells, hemoglobin, interleukin (IL)-1β, IL-4, IL-10, tumor necrosis factor-α, CD4+, and thymus index. These results suggest both PDS and PTS can prevent myelosuppression of mice induced by CP. Meanwhile, PDS and its metabolite showed higher bioavailability and bioactivity compared with PTS.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunhui Yang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Baotai Huang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhang
- Office of Academic Research, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wei Zhang, ; Bin Qi,
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wei Zhang, ; Bin Qi,
| |
Collapse
|
28
|
Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-κB and PI3K-Akt signaling pathways. Food Res Int 2021; 150:110756. [PMID: 34865774 DOI: 10.1016/j.foodres.2021.110756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Accepted: 10/09/2021] [Indexed: 01/16/2023]
Abstract
The present study investigated the effect of sulfation on the immunomodulatory effect of Cyclocarya paliurus polysaccharide (CP) through a Cyclophosphamide (CTX)-induced immunosuppression mice model. The results showed that sulfated Cyclocarya paliurus polysaccharide (SCP3) had stronger immunomodulatory ability than CP. Administration of SCP3 alleviated immune organ atrophy and restored hematopoiesis in immunosuppressed mice, enhanced splenocyte proliferation, and promoted cytokines and nitric oxide (NO) production in splenocyte supernatants, as well as the number of CD3+, CD4+ and CD8+ T lymphocytes. Meantime, SCP3 significantly improved oxidative stress via increasing the activities of antioxidant enzymes and decreasing the levels of malondialdehyde (MDA) in liver. In addition, SCP3 significantly upregulated the phosphorylation expression of JNK, Erk 1/2, p38 of MAPKs signaling pathway at a dose of 50 mg/kg and accordingly showed increased phosphorylation of Akt, NF-κB (p65), IκB-α, and promoted the degradation of IkB-α. Furthermore, SCP3 significantly increased the expression of the upstream signaling molecule MyD88. All results demonstrated that sulfation can be an effective way to enhance the immunomodulatory effect of polysaccharides. SCP3 has high potential to be a functional food supplement candidate for alleviating chemotherapy drug-induced immunosuppression.
Collapse
|
29
|
Chen L, Ji N, Zhang M, Chen W. The Influence of Wuzhi Capsule on the Pharmacokinetics of Cyclophosphamide. Recent Pat Anticancer Drug Discov 2021; 17:195-203. [PMID: 34758719 DOI: 10.2174/1574892816666211110152119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cyclophosphamide is approved for the treatment of a variety of tumors, yet the use of cyclophosphamide is limited by kidney and liver toxicity. In the clinic, the Wuzhi capsule is approved to attenuate cyclophosphamide toxicity in the kidney and liver. OBJECTIVE We aimed to investigate the effects of the principal ingredients of Wuzhi capsule, schisandrin A (SIA) and schisantherin A (STA), on the pharmacokinetics of cyclophosphamide. METHODS The essential pharmacokinetic data and physicochemical parameters of SIA, STA, and cyclophosphamide were collected. Physiologically based pharmacokinetic (PBPK) models of SIA, STA, and cyclophosphamide were built in Simcyp Simulator and verified using published clinical pharmacokinetic data. The verified PBPK models were used to predict potential herb-drug interactions (HDIs) between cyclophosphamide and SIA and STA in cancer patients. RESULTS The area under the plasma concentration-time curve (AUC) of cyclophosphamide was increased by 18% and 1% when co-administered with STA and SIA at a single dose, respectively, and increased by 301% and 29% when co-administered with STA and SIA at multiple doses, respectively. The maximum concentration (Cmax) of cyclophosphamide was increased by 75% and 7% when co-administered with STA and SIA at multiple doses, respectively. CONCLUSION The AUC and Cmax of cyclophosphamide were increased when cyclophosphamide was combined with the Wuzhi capsule, compared to cyclophosphamide alone. Our study shows that the adverse drug reactions and toxicity of cyclophosphamide should be closely monitored and an effective dosage adjustment of cyclophosphamide may need to be considered when co-administered with the Wuzhi capsule.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY. United States
| | - Min Zhang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| |
Collapse
|
30
|
Chen Q, Xu Z, Li X, Du D, Wu T, Zhou S, Yan W, Wu M, Jin Y, Zhang J, Wang S. Epigallocatechin gallate and theaflavins independently alleviate cyclophosphamide-induced ovarian damage by inhibiting the overactivation of primordial follicles and follicular atresia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153752. [PMID: 34601223 DOI: 10.1016/j.phymed.2021.153752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cyclophosphamide (CTX), which has been used to treat common female cancers for several years, often causes ovarian damage, early menopause and infertility. However, strategies for the effective prevention and treatment of CTX-induced ovarian damage are still lacking. Epigallocatechin gallate (EGCG) and theaflavins (TFs), key molecules derived from green tea or black tea, have been shown to exert preventive effects on many ageing-related diseases. PURPOSE We aimed to explore the potential preventive and protective effects of EGCG and TFs on CTX-induced ovarian damage and compare the two compounds. STUDY DESIGN Six-week-old female mice were administered a low or high dose of EGCG or TFs. The low dose was equivalent to the average daily amount of tea consumed by a drinker. METHODS We determined the oestrous cycle and serum hormone levels to evaluate ovarian endocrine function, and we performed mating tests for reproductivity. We also assessed the follicle count and AMH level to evaluate ovarian reserve, and we performed Masson's trichrome and Sirius red staining to evaluate ovarian fibrosis. We conducted γ-H2AX and TUNEL analyses to evaluate DNA damage, and we also measured the relevant indicators of oxidative stress and follicular activation, including NRF2, HO-1, SOD2, AKT, mTOR and RPS6. RESULTS EGCG and TFs treatment independently improved the ovarian endocrine function and reproductivity of mice that were administered CTX. EGCG and TFs also increased the ovarian reserve of these animals. Furthermore, EGCG and TFs alleviated oxidation-induced damage to ovarian DNA in mice by activating the NRF2/HO-1 and SOD2 pathways and reducing the apoptosis of growing follicles. At the same time, EGCG and TFs reduced the overactivation of primordial follicles by inhibiting the AKT/mTOR/RPS6 pathway. CONCLUSION The present study showed that EGCG and TFs independently improved ovarian function in mice with CTX-induced ovarian damage, thereby providing useful information for designing a potential clinical strategy that will protect against chemotherapy-induced ovarian damage.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Zheyuan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Department of pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Tian JS, Zhao HL, Gao Y, Wang Q, Xiang H, Xu XP, Huang S, Yan DL, Qin XM. Branched-Chain Amino Acids Catabolism Pathway Regulation Plays a Critical Role in the Improvement of Leukopenia Induced by Cyclophosphamide in 4T1 Tumor-Bearing Mice Treated With Lvjiaobuxue Granule. Front Pharmacol 2021; 12:657047. [PMID: 34759816 PMCID: PMC8573099 DOI: 10.3389/fphar.2021.657047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Cyclophosphamide is a common tumor chemotherapy drug used to treat various cancers. However, the resulting immunosuppression leads to leukopenia, which is a serious limiting factor in clinical application. Therefore, the introduction of immunomodulators as adjuvant therapy may help to reduce the hematological side effects of cyclophosphamide. Lvjiaobuxue granule has been widely used in the clinical treatment of gynecological diseases such as anemia and irregular menstruation. Recently, it has been found to increase the function of white blood cells, but its mechanism of action is still unclear. We aimed to reveal the mechanisms of Lvjiaobuxue granule against acute leukopenia by an integrated strategy combining metabolomics with network pharmacology. Methods: Subcutaneously inoculated 4T1 breast cancer cells to prepare tumor-bearing mice, intraperitoneal injection of cyclophosphamide to establish a 4T1 tumor-bearing mice leukopenia animal model, using pharmacodynamic indicators, metabolomics, network pharmacology and molecular biology and other technical methods. To comprehensively and systematically elucidate the effect and mechanism of Lvjiaobuxue granule in improving cyclophosphamide-induced leukopenia in 4T1 tumor-bearing mice. Results: Lvjiaobuxue granule can improve the blood routine parameters and organ index levels of the leukopenia model of 4T1 tumor-bearing mice. Metabolomics studies revealed that 15 endogenous metabolites in the spleen of mice were considered as potential biomarkers of Lvjiaobuxue granule for their protective effect. Metabonomics and network pharmacology integrated analysis indicated that Lvjiaobuxue granule exerted the leukocyte elevation activity by inhibiting the branched-chain amino acids (BCAAs) degradation pathway and increasing the levels of valine, leucine and isoleucine. The results of molecular biology also showed that Lvjiaobuxue granule can significantly regulate the key enzymes in the catabolism of BCAAs, which further illustrates the importance of BCAAs in improving leukopenia. Conclusion: Lvjiaobuxue granule exerts obvious pharmacological effects on the leukopenia model of 4T1 tumor-bearing mice induced by cyclophosphamide, which could be mediated by regulating the branched-chain amino acid degradation pathway and the levels of valine, leucine and isoleucine.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Jiuzhitang Co. Ltd., Changsha, China
| | - Hui-liang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qi Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Huan Xiang
- School of Physical Education, Shanxi University, Taiyuan, China
| | | | - Sheng Huang
- Jiuzhitang Co. Ltd., Changsha, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
32
|
Sun D, Sun C, Qiu G, Yao L, Yu J, Al Sberi H, Fouda MS, Othman MS, Lokman MS, Kassab RB, Abdel Moneim AE. Allicin mitigates hepatic injury following cyclophosphamide administration via activation of Nrf2/ARE pathways and through inhibition of inflammatory and apoptotic machinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39625-39636. [PMID: 33763830 DOI: 10.1007/s11356-021-13392-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Treatment with anti-neoplastic agents, including cyclophosphamide (CP), is associated with several adverse reactions. Here, we distinguished the potential protective effect of allicin against CP-mediated hepatotoxicity in rats. To assess the effect of allicin, four experimental groups were used, with 7 rats per group, including control, allicin (10 mg/kg), CP (200 mg/kg), and allicin + CP-treated groups. All groups were treated for 10 days. Blood and liver samples were collected for biochemical, molecular, and histological analyses. Treatment with CP led to deformations in the liver tissue that were associated with higher liver function markers (alanine transaminase, aspartate transaminase, and alkaline phosphatase). Additionally, a disturbance in the redox balance was observed after CP exposure, as indicated by increased levels of oxidants, including malondialdehyde and nitric oxide, and the decreased levels of endogenous antioxidants, including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. At the molecular level, CP treatment resulted in reduced expression of the Nrf2/ARE pathway and other genes related to this pathway, including NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit. CP also led to a hyper-inflammatory response in hepatic tissue, with increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha and interlukin-1beta, and upregulation of nitric oxide synthase 2. CP also enhanced the immunoreactivity of the profibrogenic cytokine, transforming growth factor-beta, in liver tissue. Upregulation of caspase 3 and Bcl-2-associated X protein and downregulation of B-cell lymphoma 2 were also observed in response to CP treatment. Treatment with allicin reversed the molecular, biochemical, and histological changes that occurred with CP exposure. These results suggest that allicin can be used in combination with CP to avoid hepatotoxicity.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Yu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Manar S Fouda
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Mohamed S Othman
- Basic Sciences Department, Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
33
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
34
|
Wu F, Huang H. Surface morphology and protective effect of Hericium erinaceus polysaccharide on cyclophosphamide-induced immunosuppression in mice. Carbohydr Polym 2021; 251:116930. [DOI: 10.1016/j.carbpol.2020.116930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
35
|
Fan L, Wang X, Huang J, Gan C, Jiang S, Yang X, Yang C, Yao M. Comparison of the pharmacokinetic profiles of 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of Sanguisorba officinalis L. extract by LC-MS/MS. J Sep Sci 2020; 43:4103-4122. [PMID: 32909652 DOI: 10.1002/jssc.202000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
A selective, accurate, and efficient liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of 13 phenolic acids. Additionally, for more comprehensively determining the chemical constituents in Sanguisorba officinalis L. extract, a previously developed method was employed for the simultaneous determination of six triterpenes. Thus, two methods were used to ensure the comprehensiveness and reliability of this study. Based on these methods, the pharmacokinetic profiles of the 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of S. officinalis L. extract were compared for the first time in the present study. Quantitative detection of the 13 phenolic acids and 6 triterpenes was performed using the multiple reaction monitoring mode with the electrospray ion source in negative and positive electrospray ionization, respectively. Chromatographic separation was performed on an Agilent Eclipse Plus C18 RRHD column (50 × 2.1 mm, 1.8 µm) using gradient elution with a mobile phase composed of methanol-0.1% aqueous formic acid. The pharmacokinetic results demonstrated that the pharmacokinetic characteristics of the 19 analytes in leukopenia rats differed significantly from those determined in normal rats, which could provide a helpful reference for the clinical application of S. officinalis L. in the prevention and treatment of leucopenia.
Collapse
Affiliation(s)
- Linzi Fan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Jing Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Meicun Yao
- Department of Pharmaceutical Analysis and Quality Assessment, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
36
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
37
|
Lin X, Yang F, Huang J, Jiang S, Tang Y, Li J. Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway. Life Sci 2020; 256:117901. [PMID: 32504759 DOI: 10.1016/j.lfs.2020.117901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cyclophosphamide (CTX) is an effective anti-tumor and immunosuppressive agent, but it induces nephrotoxicity in clinical applications. The present study aimed to evaluate the protective effect of pyrroloquinoline quinone (PQQ) on CTX-induced nephrotoxicity. MAIN METHODS We injected male ICR mice with CTX (80 mg/kg/day), and determined nephrotoxicity indices, MDA and antioxidant defenses, inflammatory cytokines, and the levels of main proteins in the Nrf2-HO-1 and NLRP3 signaling pathways. KEY FINDINGS PQQ has significantly decreased the serum levels of creatinine and urea compared to Model group. When treated with PQQ, MDA, IL-1β, IL-6, and TNF-α levels have decreased, and SOD, GSH-Px, and CAT activity have increased in the kidney tissues of CTX-induced mice. PQQ activated the Nrf2-mediated signaling pathway, as indicated by the increased expression of Nrf2, HO-1, GCLM, and NQO1. Moreover, PQQ inhibited the NLRP3 inflammatory pathway, as indicated by the reduced expression of NLRP3, ASC, and Caspase-1. SIGNIFICANCE Our results suggest that PQQ protects against CTX-induced nephrotoxicity, probably by activating the Nrf2-mediated antioxidant pathway and inhibiting the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou 310008, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Su Jiang
- ECA Healthcare Inc., Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, No. 19 Keji Road, Jinzhou 121013, China..
| |
Collapse
|
38
|
Xu P, Sun Y, Song Y, Jiao J, Shen B, Li W, Jiang C, Li Y, Zhang X, Yu J, Fu L, Guo X. ATM kinase regulates tumor immunoreactions in lymphocyte-predominant breast cancer through modulation of NKG2D ligand and TNF cytokines on tumor cells. Med Mol Morphol 2020; 53:210-220. [PMID: 32067111 DOI: 10.1007/s00795-020-00247-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
To explore impact of Ataxia telangiectasia mutated (ATM) kinase on immunoreactions in lymphocyte-predominant breast cancer (LPBC), particularly its role in triple negative breast cancer (TNBC), 194 cases of LPBC were identified with pertinent clinical information retrieved. The expressions of ATM, activated ATM (P-ATM), Fas ligand (FASL), tumor necrosis factor-related apoptosis-induced ligand (TRAIL), major histocompatibility complex class I chain-related protein A (MICA), CD8, and Forkhead box P3 (FOXP3) were assessed by immunohistochemically. We found that ATM expressed on tumor cells was correlated with upregulated expression of P-ATM and MICA (P < 0.05), down-regulated expression of FASL and TRAIL (P < 0.01), and decreased Ki-67 tumor labeling (P < 0.05). However, within the TNBC group, only a negative correlation with FASL expression was found (P = 0.001). ATM and MICA expressions were significantly down -regulated in TNBC (P < 0.01) compared to non-TNBC, while TRAIL was significantly upregulated (P < 0.01). Tregs were increased in TNBC (P < 0.05), with CD8 + TILs decreased (P < 0.01). Ki-67 index was higher in TNBC than in non-TNBC (P < 0.01). ATM may play an important role in immunoreaction of LPBC, probably through upregulation of MICA and down-regulation of FASL and TRAIL. The down-regulated ATM expression in TNBC might be responsible for impaired tumor immunoactivity, rapid tumor growth, and aggressive clinical course.
Collapse
Affiliation(s)
- Peng Xu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Yuanyuan Sun
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Yuanming Song
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Jiao Jiao
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Beibei Shen
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Weidong Li
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Chengying Jiang
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Yaqing Li
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Xinmin Zhang
- Department of Pathology, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Fu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China
| | - Xiaojing Guo
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Tianjin, 300060, China.
| |
Collapse
|
39
|
Meng M, Wang H, Li Z, Guo M, Hou L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/NF-κB signalling in BALB/c mice. Food Funct 2019; 10:3262-3271. [PMID: 31089650 DOI: 10.1039/c9fo00482c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polysaccharides are closely associated with immune regulation. In this study, the aim was to investigate the effect of polysaccharides from Cordyceps gunnii mycelia (PPS) in cyclophosphamide (CTX)-induced immunodeficient mice. Compared with the CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice with orally administered PPS were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and proliferative activities of the lymphocytes were elevated. The recovery of peripheral white blood cells, red blood cells, hemoglobins and platelets was accelerated. Furthermore, the results from ELISA showed that PPS could up-regulate the serum levels of IL-2, IL-12, IFN-γ and IgG, and reduce the level of TGF-β. Histopathological analysis of the spleen revealed the protective effect of PPS against CTX-induced immunosuppression. Western blotting results showed that PPS possessed immunomodulatory activity via TLR4/TRAF6/NF-κB signalling pathways. Finally, the intestinal absorption of PPS was poor, as detected in the Caco-2 transwell system. Taken together, these findings suggest that PPS plays a crucial role in protection against immunosuppression in cyclophosphamide-treated mice and could be a potential candidate for use in immune therapy regimens.
Collapse
Affiliation(s)
- Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China.
| | | | | | | | | |
Collapse
|
40
|
Caglayan C. The effects of naringin on different cyclophosphamide-induced organ toxicities in rats: investigation of changes in some metabolic enzyme activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26664-26673. [PMID: 31292874 DOI: 10.1007/s11356-019-05915-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
Cyclophosphamide (CYP) is a common anticancer drug used in the treatment of various malignancies. Naringin (NG) is a natural bioflavonoid that have been reported to have many medicinal and pharmacological properties. Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase (CA), α-glycosidase (α-Gly), and aldose reductase (AR) enzymes are the essential biological molecules needed for metabolic processes in all living cells. In the present study, the aim was to investigate the effect of NG against CYP-induced liver, brain, kidney, heart, and testis toxicities on some metabolic enzyme activities such as AChE, BChE, CA, α-Gly, and AR. Thirty-five male Wistar rats were randomly divided into five groups with each group consisting of seven rats. The rats were subjected to oral treatment of NG (50 and 100 mg/kg body weight) for 7 days before administering a single dose of CYP (200 mg/kg body weight, i.p) on the seventh day. Treatment with NG in all tissues regulated these enzyme activities in CYP-induced rats. The results of this study showed that NG regulates abnormal increases and decreases in CYP-induced metabolic enzyme activities in all tissues.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Faculty of Veterinary Medicine, Department of Biochemistry, Bingol University, 12000, Bingol, Turkey.
| |
Collapse
|
41
|
Wang Z, Li Y, Wang C, Xia H, Liang Y, Li Z. Oral administration of Urtica macrorrhiza Hand.-Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression. Exp Ther Med 2019; 18:2178-2186. [PMID: 31410170 PMCID: PMC6676156 DOI: 10.3892/etm.2019.7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
As a strategy to prevent the well-known immunosuppressant effects of cyclophosphamide (CY), the immunomodulatory activity of the polysaccharide isolated from Urtica macrorrhiza Hand.-Mazz. (UMHMPS) was investigated in the present study. The chemical properties of UMHMPS, including total carbohydrates, uronic acid, protein contents, monosaccharide compositions, molecular weight and structural confirmation, were investigated. The immunomodulatory activity of UMHMPS was evaluated using a CY-induced immunosuppression mouse model. The results revealed that UMHMPS, which is composed of rhamnose, gluconic acid, galactose acid, galactose and xylose, exhibited potent immunomodulatory activity and low toxicity in mice. It increased the secretions of secretory immunoglobulin A, interferon (IFN)-γ and interleukin (IL)-4, and maintained the balance of the ratios of IFN-γ/IL-4 and cluster of differentiation (CD)3+/CD19+ cells in Peyer's patches. Furthermore, it increased the expression of Toll-like receptor (TLR)-4, indicating that TLR4 may be one of the receptors of UMHMPS. Therefore, the present study provides evidence for the potential use of UMHMPS as an immune enhancement drug in chemotherapy.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Chongjing Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Hongying Xia
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Yueqin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Zhongkun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| |
Collapse
|
42
|
Ybarra N, Seuntjens J. Radio-selective effects of a natural occurring muscle-derived dipeptide in A549 and normal cell lines. Sci Rep 2019; 9:11513. [PMID: 31395939 PMCID: PMC6687720 DOI: 10.1038/s41598-019-47944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) causes morbidity and long-term side effects. A challenge in RT is to maximize cancer cells killing while minimizing damage to normal tissue. The ideal radio-protector selectively improves survival and limits damage to normal tissues while reducing survival of cancer cells. Muscle-derived dipeptide, L-carnosine (CAR) is a potent antioxidant, with radio-protective, but also anticancer properties, affecting the cell cycle of cancer cells. We tested CAR effects in lung cancer cells, differentiated and undifferentiated normal cells. We hypothesized that CAR antioxidant properties will confer protection to the two normal cell lines against RT, while preventing lung cancer cell proliferation, and that CAR may act as a radiosensitizer of lung cancer cells due to its effects on cell-cycle progression of cancer cells. Under the experimental conditions reported here, we found that CAR increased radio-sensitivity of lung (A549) cancer cells by increasing the percentage of cells in G2/M (radiosensitive) phase of cell cycle, it negatively affected their bioenergetics, therefore reduced their viability, and DNA-double strand break repair capacity. CAR had either no effect or reduced RT-induced damage in normal cells, depending on the cell type. CAR is a versatile natural occurring compound, that could improve RT-induced lung cancer cells killing, while reducing the damage to normal differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Norma Ybarra
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada.
| | - Jan Seuntjens
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada
| |
Collapse
|
43
|
Cao L, Li X, Wu T, Cai X, Zhang Y, Ji J, Zhang X, Gao Y, Feng F. Facile Synthesis of a Carnosine‐Pendent Cationic Polymer via Free Radical Polymerization and Application in Gene Delivery. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leilei Cao
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xiao Li
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Tiantian Wu
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xuetong Cai
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yajie Zhang
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Jinkai Ji
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xiaoran Zhang
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yajing Gao
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| |
Collapse
|
44
|
Zhang Y, Li Y, Luo W, Tang Y, Wang J, Yang R, Gao WQ. Histological, cellular and behavioural analyses of effects of chemotherapeutic agent cyclophosphamide in the developing cerebellum. Cell Prolif 2019; 52:e12608. [PMID: 30932251 PMCID: PMC6536418 DOI: 10.1111/cpr.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023] Open
Abstract
Objectives We performed histological, cellular and behavioural analyses of the effects of cyclophosphamide (CTX), a chemotherapeutic drug, in the developing cerebellum and aimed to provide valuable insights into clinical application of CTX in children. Materials and methods C57BL/6 mice and Math1‐dependent GFP expression transgenic mice were used in the research. H&E staining was performed to analyse histological effects of CTX in the cerebellum. Staining for EdU and TUNEL was used to estimate the cell proliferation and apoptosis. Rotarod test and hanging wire test were used to evaluate the behavioural functions. Immunofluorescent staining was used to identify the cell types. The differentiation markers and genes related to Sonic Hedgehog (SHH) signalling were measured via quantitative real‐time PCR or immunoblotting. Results We found that while CTX induced a significant reduction in cell proliferation and increased apoptosis in the EGL in 48 hours, the behavioural functions and the multilayer laminar structure of cerebella were largely restored when the mice grew to adults. Mechanistically, granule neuron progenitors, driven by the SHH signalling, enhanced the capability of proliferation quickly after CTX administration was stopped, which allowed the developing cerebellum to catch up and to gradually replenish the injury. Conclusion The chemotherapeutic agent CTX induces an immediate damage to the developing cerebellum, but the cerebellar multilayer laminar structure and motor function can be largely restored if the agent is stopped shortly after use.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Lu S, Lu R, Song H, Wu J, Liu X, Zhou X, Yang J, Zhang H, Tang C, Guo H, Hu J, Mao G, Lin H, Su Z, Zheng H. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int J Biol Macromol 2018; 124:1264-1273. [PMID: 30508545 DOI: 10.1016/j.ijbiomac.2018.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Natrin, a new member of the cysteine-rich secretory protein (CRISP) family purified from the snake venom of Naja naja atra, has been demonstrated to have anticancer activity. However, the underlying molecular mechanisms need further elucidation. In this study, MTT was used to evaluate cell viability. Apoptotic cells were analyzed by employing a transmission electron microscope (TEM). Metabolomic study of the metabolic perturbations caused by natrin-induced apoptosis in differentiated SMMC-7721 cells was performed for the first time by using integrative ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). To investigate the possible mechanism in the mitochondrial pathway of natrin-induced apoptosis, we measured apoptosis-related mRNA changes using real-time fluorescent quantitative PCR (FQ-PCR). Cell proliferation was significantly inhibited after treatment with natrin in a dose-dependent manner. Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) clearly demonstrated that metabolic profiles were affected by natrin. The results of multivariate statistical analysis showed that a total of 13 metabolites were characterized as potential biomarkers highly implicated in natrin-induced apoptosis, which corresponded to fluctuations of five pathways, including sphingolipid metabolism, fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism and glycosphingolipid biosynthesis. Furthermore, natrin-induced apoptosis showed an increase in the Bax/Bcl-2 ratio in the mitochondrial pathway compared with controls. This study illustrated that rapid and holistic cell metabolomics combining molecular biological approaches might be a powerful tool for evaluating the underlying mechanisms of natrin-induced apoptosis, which would help to deepen specific insights into the anti-hepatoma mechanisms of natrin and facilitate the clinical application of natrin in the future.
Collapse
Affiliation(s)
- Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China; Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Rigang Lu
- Guangxi Institute For Food and Drug Control, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Jianqing Yang
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jian Hu
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Guifu Mao
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hanmei Lin
- Gynaecology, The First Affiliated Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning, China.
| |
Collapse
|
46
|
Sun NX, Liu HP, Liu XH, Zhang Y, Liu XQ, Wang S, Xu XX, Tian WT. Immunological activities of polysaccharide extracted fromElaeagnus angustifolia L. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1516240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Na-xin Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hui-ping Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xu-hui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiao-qing Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shu Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiang-xin Xu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wen-tan Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
47
|
Qi Q, Dong Z, Sun Y, Li S, Zhao Z. Protective Effect of Bergenin against Cyclophosphamide-Induced Immunosuppression by Immunomodulatory Effect and Antioxidation in Balb/c Mice. Molecules 2018; 23:E2668. [PMID: 30336565 PMCID: PMC6222609 DOI: 10.3390/molecules23102668] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
In this study, the aim was to investigate the effect of bergenin on immune function and antioxidation in cyclophosphamide (Cy)-induced immunosuppressed mice. Firstly, we estimated its effect on immune organs. Histological analysis and indexes of immune organs showed that cyclophosphamide exhibited spleen and thymus injury compared with the normal control, which was alleviated by bergenin. Secondly, bergenin also enhanced the humoral immune function through increasing the level of IgM and IgG in serum. Thirdly, bergenin also enhanced the cellular immune function. The results indicate that bergenin increased peritoneal macrophage functions, the proliferation of T and B lymphocytes, NK and CTL cell activities, and T (CD4⁺ and CD8⁺) lymphocyte subsets. Besides, bergenin also had the ability to modulate the Th1/Th2 balance. Moreover, bergenin prevented the Cy-induced decrease in numbers of peripheral RBC, WBC and platelets, providing supportive evidence for their anti-leukopenia activities. Finally, bergenin also reversed the Cy-induced decrease in the total antioxidant capacity including activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In conclusion, bergenin protected against Cy-induced adverse reactions by enhancing humoral and cellular immune functions and augmenting antioxidative activity and could be considered as a potential immunomodulatory agent.
Collapse
Affiliation(s)
- Qiuchen Qi
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Siying Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, Shandong, China.
| |
Collapse
|
48
|
Zhang BF, Hu Y, Liu X, Cheng Z, Lei Y, Liu Y, Zhao X, Mu M, Yu L, Cheng ML. The role of AKT and FOXO3 in preventing ovarian toxicity induced by cyclophosphamide. PLoS One 2018; 13:e0201136. [PMID: 30071053 PMCID: PMC6071999 DOI: 10.1371/journal.pone.0201136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclophosphamide (CTX) has immunosuppressive effects and has been wildly used as one anti-cancer drug in clinical. Significant toxicity has been noticed particularly in the reproductive system. CTX promotes the maturation of ovarian follicles, decreases follicular reserve, and ultimately lead to ovarian failure or even premature ovarian failure (POF). The placental extract (HPE) has been shown to have some beneficial impact on reproductive system; however, little is known regarding to the effect of HPE on protecting CTX-induced ovarian injury and the mechanism involved. Whether human placental extracts (HPE) has a protective effect on CTX-induced toxicity on ovarian was studied by using a CTX-induced ovarian injury animal model. The effects of HEP on histopathology, the number of atretic follicles, the weight of the ovary, serum hormone levels, and apoptosis in granulosa cells were studied in mice with CTX or control vehicle. Our results have demonstrated that HPE inhibited p-Rictor, reduced the expression of Bad, Bax and PPAR, and activated Akt and Foxo3a (increased their phosphorylation). Mice treated with HPE showed higher ovarian weight, lower number of atretic follicles, higher serum levels of the hormones E2 and progesterone, and lower apoptosis and serum levels of LH and FSH in granulosa cells, than that in the control animal group. Our data show that ovarian injury can be attenuated by HPE. HPE likely protects follicular granulosa cells from undergoing significant apoptosis and reduce atresia follicle formation, therefore, alleviates CTX-induced ovarian injury.
Collapse
Affiliation(s)
- Bao-fang Zhang
- The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - YaXin Hu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinyan Liu
- Shandong Institute of Biological Products,Taishan district, Shandong, China
| | - Zhuo Cheng
- Peking University Health Science Center School of Foundational Education, Beijing,China
| | - Yu Lei
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - YongMei Liu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Yu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming-liang Cheng
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (LY); (MLC)
| |
Collapse
|
49
|
Protective Effects of Fullerene C 60 Nanoparticles and Virgin Olive Oil against Genotoxicity Induced by Cyclophosphamide in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1261356. [PMID: 30116471 PMCID: PMC6079351 DOI: 10.1155/2018/1261356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The potential effects of the fullerene C60 nanoparticle (C60) as well as virgin olive oil (VOO) against the cyclophosphamide- (CP-) induced cytotoxic and mutagenic effects were evaluated by two main methods: molecular intersimple sequence repeat (ISSR) assay and cytogenetic biomarkers. Thirty adult male rats were divided to five groups (control, CP, C60, CP + C60, and CP + VOO). CP was i.p. injected with a single dose of 200 mg/kg; C60 and VOO were given orally (4 mg/kg dissolved in VOO and 1 ml, resp.) in alternative days for 20 days. The ISSR analysis revealed an increased in the DNA fragmentation level for liver and heart tissues represented by 21.2% and 32.6%, respectively, in the CP group. The DNA polymorphism levels were modulated and improved in CP + C60 (8.9% and 12%) and CP + VOO (9.8% and 12.7%) for hepatic and cardiac tissues, respectively. The bone marrow cytogenetic analysis revealed that C60 and VOO had significantly decreased the frequency of CP-induced chromosomal aberrations (chromosomal ring, deletion, dicentric chromosome, fragmentation, and polyploidy). Fullerene C60 and VOO have ability to reduce DNA damage and decrease chromosomal aberrations. In conclusion, fullerene C60 and VOO have protective effects against the CP-induced mutagenicity and genotoxicity. Fullerene C60 and VOO open an interesting field concerning their potential antigenotoxic agents against deleterious side effects of chemotherapeutics.
Collapse
|
50
|
Hamza RZ, Al-Juaid NS, Althubaiti EH. Antioxidant Effect of Carnosine on Aluminum Oxide Nanoparticles (Al2O3-NPs)-induced Hepatotoxicity and Testicular Structure Alterations in Male Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.740.750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|