1
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2025; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2024; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
3
|
Li S, Guo Z, Liu J, Ma Y, Zhang X, Hou L, Wang Q, Jiang W, Wang Q. CD11b-NOX2 mutual regulation-mediated microglial exosome release contributes to rotenone-induced inflammation and neurotoxicity in BV2 microglia and primary cultures. Free Radic Biol Med 2024; 224:436-446. [PMID: 39265792 DOI: 10.1016/j.freeradbiomed.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Epidemiological studies have revealed a potent association between chronic exposure to rotenone, a commonly used pesticide, in individuals and the incidence of Parkinson's disease (PD). We previously identified the contribution of the activation of microglial NADPH oxidase (NOX2) in rotenone-induced neurotoxicity. However, the regulation of NOX2 activation remains unexplored. Integrins are known to be bidirectionally regulated in the plasma membrane through the inside-out and outside-in signaling. CD11b is the α-chain of integrin macrophage antigen complex-1. This study aimed to investigate whether CD11b mediates rotenone-induced NOX2 activation. We observed that rotenone exposure increased NOX2 activation in BV2 microglia, which was associated with elevated CD11b expression. Silencing CD11b significantly reduced rotenone-induced ROS production and p47phox phosphorylation, a key step for NOX2 activation. Furthermore, the Src-FAK-PKB and Syk-Vav1-Rac1 signaling pathways downstream of CD11b were found to be essential for CD11b-mediated NOX2 activation in rotenone-intoxicated microglia. Interestingly, we also found that inhibition of NOX2 decreased rotenone-induced CD11b expression, indicating a crosstalk between CD11b and NOX2. Subsequently, the inhibition of the CD11b-NOX2 axis suppressed rotenone-induced microglial activation and exosome release. Furthermore, inhibiting exosome synthesis in microglia blocked rotenone-induced gene expression of proinflammatory factors and related neurotoxicity. Finally, blocking the CD11b-NOX2 axis and exosome synthesis or endocytosis mitigated microglial activation and dopaminergic neurodegeneration in rotenone-intoxicated midbrain primary cultures. Our findings highlight the crucial involvement of the CD11b-NOX2 axis in rotenone-induced inflammation and neurotoxicity, offering fresh perspectives on the underlying mechanisms of pesticide-induced neuronal damage.
Collapse
Affiliation(s)
- Su Li
- School of Public Health, Dalian Medical University, Dalian, 116044, China; Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Ziyang Guo
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yu Ma
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qinghui Wang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Wanwei Jiang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Wang Q, Liu J, Zhang Y, Li Z, Zhao Z, Jiang W, Zhao J, Hou L, Wang Q. Microglial CR3 promotes neuron ferroptosis via NOX2-mediated iron deposition in rotenone-induced experimental models of Parkinson's disease. Redox Biol 2024; 77:103369. [PMID: 39357423 PMCID: PMC11471230 DOI: 10.1016/j.redox.2024.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
The activation of complement receptor 3 (CR3) in microglia contributes to neurodegeneration in neurological disorders, including Parkinson's disease (PD). However, it remains unclear for mechanistic knowledge on how CR3 mediates neuronal damage. In this study, the expression of CR3 and its ligands iC3b and ICAM-1 was found to be up-regulated in the midbrain of rotenone PD mice, which was associated with elevation of iron content and disruption of balance of iron metabolism proteins. Interestingly, genetic deletion of CR3 blunted iron accumulation and recovered the expression of iron metabolism markers in response to rotenone. Furthermore, reduced lipid peroxidation, ferroptosis of dopaminergic neurons and neuroinflammation were detected in rotenone-lesioned CR3-/- mice compared with WT mice. The regulatory effect of CR3 on ferroptotic death of dopaminergic neurons was also mirrored in vitro. Mechanistic study revealed that iron accumulation in neuron but not the physiological contact between microglia and neurons was essential for microglial CR3-regulated neuronal ferroptosis. In a cell-culture system, microglial CR3 silence significantly dampened iron deposition in neuron in response to rotenone, which was accompanied by mitigated lipid peroxidation and neurodegeneration. Furthermore, ROS released from activated microglia via NOX2 was identified to couple microglial CR3-mediated iron accumulation and subsequent neuronal ferroptosis. Finally, supplementation with exogenous iron was found to recover the sensitivity of CR3-/- mice to rotenone-induced neuronal ferroptosis. Altogether, our findings suggested that microglial CR3 regulates neuron ferroptosis through NOX2 -mediated iron accumulation in experimental Parkinsonism, providing novel points of the immunopathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Yu Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Zhen Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Zirui Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Wanwei Jiang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- The Library of Dalian Medical University, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
5
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Kennedy PGE, Fultz M, Phares J, Yu X. Immunoglobulin G and Complement as Major Players in the Neurodegeneration of Multiple Sclerosis. Biomolecules 2024; 14:1210. [PMID: 39456143 PMCID: PMC11506455 DOI: 10.3390/biom14101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) and is termed as one of the most common causes of neurological disability in young adults. Axonal loss and neuronal cell damage are the primary causes of disease progression and disability. Yet, little is known about the mechanism of neurodegeneration in the disease, a limitation that impairs the development of more effective treatments for progressive MS. MS is characterized by the presence of oligoclonal bands and raised levels of immunoglobulins in the CNS. The role of complement in the demyelinating process has been detected in both experimental animal models of MS and within the CNS of affected MS patients. Furthermore, both IgG antibodies and complement activation can be detected in the demyelinating plaques and cortical gray matter lesions. We propose here that both immunoglobulins and complement play an active role in the neurodegenerative process of MS. We hypothesize that the increased CNS IgG antibodies form IgG aggregates and bind complement C1q with high affinity, activating the classical complement pathway. This results in neuronal cell damage, which leads to neurodegeneration and demyelination in MS.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK;
| | - Matthew Fultz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| |
Collapse
|
7
|
Cai Y, Zhang X, Yang C, Jiang Y, Chen Y. Melatonin alleviates high-fat-diet-induced dry eye by regulating macrophage polarization via IFT27 and lowering ERK/JNK phosphorylation. iScience 2024; 27:110367. [PMID: 39100927 PMCID: PMC11294704 DOI: 10.1016/j.isci.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Dry eye disease is the most common ocular surface disease globally, requiring a more effective treatment. We observed that a high-fat diet induced macrophage polarization to M1 and further induced inflammation in the meibomian and lacrimal glands. A four-week treatment with melatonin (MLT) eye drops can regulate macrophage polarization and alleviate dry eye signs. To investigate the therapeutic effects and mechanisms of action of MLT on high-fat-diet-induced dry eye disease in mice, RAW 264.7 cells pretreated with LPS and/or MLT underwent digital RNA with the perturbation of genes sequencing (DRUG-seq). Results showed that IFT27 was up-regulated, and MAPK pathways were suppressed after MLT pre-treatment. ERK/JNK phosphorylation was reduced in meibomian glands of MLT-treated dry eye mice and increased in IFT27 knockdown RAW 264.7 cells. In summary, MLT regulated macrophage polarization via IFT27 and reduced ERK/JNK phosphorylation. These results support that MLT is a promising medication for dry eye disease.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Kunanopparat A, Dinh TTH, Ponpakdee P, Padungros P, Kaewduangduen W, Ariya-anandech K, Tummamunkong P, Samaeng A, Sae-ear P, Leelahavanichkul A, Hirankarn N, Ritprajak P. Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion. Open Biol 2024; 14:230315. [PMID: 38806144 PMCID: PMC11293457 DOI: 10.1098/rsob.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Truc Thi Huong Dinh
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Pathophysiology and Immunology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Pranpariya Ponpakdee
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Kasirapat Ariya-anandech
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Amanee Samaeng
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-ear
- Faculty of Dentistry, Oral Biology Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
10
|
Sun Q, Wang Y, Hou L, Li S, Hong JS, Wang Q, Zhao J. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free Radic Biol Med 2024; 212:384-402. [PMID: 38182072 PMCID: PMC10842931 DOI: 10.1016/j.freeradbiomed.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.
Collapse
Affiliation(s)
- Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Department of Neurology, Dalian University Affiliated Xinhua Hospital, No. 156 W. Wansui Road, Dalian 116021, China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health, Sciences, NIH, MD F1-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
11
|
Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YYI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115550. [PMID: 37832486 PMCID: PMC10807506 DOI: 10.1016/j.ecoenv.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ziyang Guo
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaomeng Zhang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Tian
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Song
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
12
|
Zhou R, Chen SH, Zhao Z, Tu D, Song S, Wang Y, Wang Q, Feng J, Hong JS. Complement C3 Enhances LPS-Elicited Neuroinflammation and Neurodegeneration Via the Mac1/NOX2 Pathway. Mol Neurobiol 2023; 60:5167-5183. [PMID: 37268807 PMCID: PMC10415527 DOI: 10.1007/s12035-023-03393-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Recent studies showed increased expression of complements in various neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. However, the mechanism regulating the expression of complements and their roles in the pathogenesis of neurodegeneration are unclear. We hypothesized that acute neuroinflammation increases the expression and activation of brain complements, which, in turn, participate in chronic neuroinflammation and progressive neurodegeneration. We initially focused on the complement component C3, because C3 can activate microglia by binding to C3 receptors and attaching to damaged neurons destined to be phagocytosed by microglia. We found that complement C3 is upregulated in lipopolysaccharide (LPS)-stimulated neuron/glial cultures. Mechanistic studies revealed that microglia-released proinflammatory factors initiated the enhanced expression of C3 in astroglia during acute neuroinflammation. On the other hand, the sustained C3 expression during chronic neuroinflammation requires releasing damage-associated molecule patterns (DAMPs) from damaged/degenerating brain cells. Our results suggested that DAMPs might act on microglial integrin receptor Mac1 to trigger the activation of NADPH oxidase (NOX2). Activated microglial NOX2 increases the production of extracellular reactive oxygen species (ROS), elevating the levels of intracellular ROS of astroglia and sustaining the astroglial C3 expression. This was supported by the findings showing reduced C3 expression and attenuated neurodegeneration in LPS-treated neuron/glial cultures prepared from mice deficient in Mac1 or NOX2. LPS-induced neurodegeneration and oxidative stress are significantly reduced in C3 KO neuron/glial cultures and mouse brains. Together, this study provides the first evidence demonstrating the role of C3 in regulating chronic neuroinflammation and in driving progressive neurodegeneration.
Collapse
Affiliation(s)
- Ran Zhou
- Respiratory Department, The First People's Hospital of Yunnan Provience, Kunming, 650032, People's Republic of China
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA.
| | - Zhan Zhao
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Dezhen Tu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
| | - Sheng Song
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yubao Wang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qingshan Wang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
| |
Collapse
|
13
|
Wang Q, Xue Q. Bioinformatics analysis of potential common pathogenic mechanism for carotid atherosclerosis and Parkinson's disease. Front Aging Neurosci 2023; 15:1202952. [PMID: 37649719 PMCID: PMC10464527 DOI: 10.3389/fnagi.2023.1202952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Cerebrovascular disease (CVD) related to atherosclerosis and Parkinson's disease (PD) are two prevalent neurological disorders. They share common risk factors and frequently occur together. The aim of this study is to investigate the association between atherosclerosis and PD using genetic databases to gain a comprehensive understanding of underlying biological mechanisms. Methods The gene expression profiles of atherosclerosis (GSE28829 and GSE100927) and PD (GSE7621 and GSE49036) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for these two disorders, we constructed protein-protein interaction (PPI) networks and functional modules, and further identified hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The diagnostic effectiveness of these hub genes was evaluated using Receiver Operator Characteristic Curve (ROC) analysis. Furthermore, we used single sample gene set enrichment analysis (ssGSEA) to analyze immune cell infiltration and explored the association of the identified hub genes with infiltrating immune cells through Spearman's rank correlation analysis in R software. Results A total of 50 shared DEGs, with 36 up-regulated and 14 down-regulated genes, were identified through the intersection of DEGs of atherosclerosis and PD. Using LASSO regression, we identified six hub genes, namely C1QB, CD53, LY96, P2RX7, C3, and TNFSF13B, in the lambda.min model, and CD14, C1QB, CD53, P2RX7, C3, and TNFSF13B in the lambda.1se model. ROC analysis confirmed that both models had good diagnostic efficiency for atherosclerosis datasets GSE28829 (lambda.min AUC = 0.99, lambda.1se AUC = 0.986) and GSE100927 (lambda.min AUC = 0.922, lambda.1se AUC = 0.933), as well as for PD datasets GSE7621 (lambda.min AUC = 0.924, lambda.1se AUC = 0.944) and GSE49036 (lambda.min AUC = 0.894, lambda.1se AUC = 0.881). Furthermore, we found that activated B cells, effector memory CD8 + T cells, and macrophages were the shared correlated types of immune cells in both atherosclerosis and PD. Conclusion This study provided new sights into shared molecular mechanisms between these two disorders. These common hub genes and infiltrating immune cells offer promising clues for further experimental studies to explore the common pathogenesis of these disorders.
Collapse
Affiliation(s)
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Inactivation of microglia dampens blood-brain barrier permeability and loss of dopaminergic neurons in paraquat-lesioned mice. Food Chem Toxicol 2023; 174:113692. [PMID: 36842752 DOI: 10.1016/j.fct.2023.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Prior studies indicated the involvement of neuroinflammation in the dopaminergic neurodegeneration in mice of paraquat (PQ)-induced Parkinson's disease (PD), but the underlying mechanisms remain to be elucidated. The present study explored whether microglia-mediated inflammation disrupted blood-brain barrier (BBB) and its related mechanism. C57BL/6 mice were injected intraperitoneally with PQ, twice a week for six weeks, following with or without minocycline (intraperitoneal injection, once every two days). The microglial activation, BBB permeability, expression of tight junctions (TJs) proteins and matrix metalloproteinase (MMP), as well as the loss of dopaminergic neurons and neurological deficits assessment, were evaluated. Minocycline efficiently restrained nigral microglial activation induced by PQ in mice. PQ-induced increase of EB content in the brain and excessive expression of zonula occludin-1 (ZO-1), claudin-5 and occludin were significantly dampened by minocycline treatment. Inhibition of microglial activation by minocycline greatly ameliorated the loss of dopaminergic neurons and neurological dysfunctions in PQ-exposed mice. Also, microglial inactivation downregulated the expression of MMP-2/9 in PQ-lesioned mice. These findings suggested the potential protection of suppressing microglia-mediated neuroinflammation against dopaminergic neurodegeneration through attenuating BBB disruption in a mouse of PQ-induced PD, and MMP-2/9 might involve in the contribution, which needs to be verified in future study.
Collapse
|
15
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
16
|
Hou L, Liu J, Sun F, Huang R, Chang R, Ruan Z, Wang Y, Zhao J, Wang Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase-NLRP3 inflammasome axis-dependent microglial activation. J Neuroinflammation 2023; 20:42. [PMID: 36804009 PMCID: PMC9938991 DOI: 10.1186/s12974-023-02732-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
INTRODUCTION The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.
Collapse
Affiliation(s)
- Liyan Hou
- grid.411971.b0000 0000 9558 1426Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044 China
| | - Jianing Liu
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ruixue Huang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Rui Chang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Zhengzheng Ruan
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ying Wang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. .,School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
17
|
Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol 2023; 14:1106515. [PMID: 36814920 PMCID: PMC9939898 DOI: 10.3389/fimmu.2023.1106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.
Collapse
Affiliation(s)
- Iswarya Muthukumarasamy
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sharleen M. Buel
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jennifer M. Hurley
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
18
|
Barangi S, Hosseinzadeh P, Karimi G, Tayarani Najaran Z, Mehri S. Osthole attenuated cytotoxicity induced by 6-OHDA in SH-SY5Y cells through inhibition of JAK/STAT and MAPK pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:953-959. [PMID: 37427324 PMCID: PMC10329246 DOI: 10.22038/ijbms.2023.68292.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 07/11/2023]
Abstract
Objectives Natural coumarin called osthole is regarded as a medicinal herb with widespread applications in Traditional Chinese Medicine. It has various pharmacological properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. In some neurodegenerative diseases, osthole also shows neuroprotective properties. In this study, we explored how osthole protects human neuroblastoma SH-SY5Y cells from the cytotoxicity of 6-hydroxydopamine (6-OHDA). Materials and Methods Using the MTT assay and DCFH-DA methods, respectively, the viability of the cells and the quantity of intracellular reactive oxygen species (ROS) were evaluated. Signal Transducers and Activators of Transcription (STAT), Janus Kinase (JAK), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and caspase-3 activation levels were examined using western blotting. Results In SH-SY5Y cells, the results showed that a 24-hour exposure to 6-OHDA (200 µM) lowered cell viability but markedly elevated ROS, p-JAK/JAK, p-STAT/STAT, p-ERK/ERK, p-JNK/JNK ratio, and caspase-3 levels. Interestingly, osthole (100 µM) pretreatment of cells for 24 hr prevented 6-OHDA-induced cytotoxicity by undoing all effects of 6-OHDA. Conclusion In summary, our data showed that osthole protects SH-SY5Y cells against 6-OHDA-induced cytotoxicity by inhibiting ROS generation and reducing the activity of the JAK/STAT, MAPK, and apoptotic pathways.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Neuroprotective Action of Coumarin Derivatives through Activation of TRKB-CREB-BDNF Pathway and Reduction of Caspase Activity in Neuronal Cells Expressing Pro-Aggregated Tau Protein. Int J Mol Sci 2022; 23:ijms232112734. [PMID: 36361524 PMCID: PMC9654711 DOI: 10.3390/ijms232112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphorylation and aggregation of the microtubule binding protein tau is a neuropathological hallmark of Alzheimer’s disease/tauopathies. Tau neurotoxicity provokes alterations in brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB)/cAMP-response-element binding protein (CREB) signaling to contribute to neurodegeneration. Compounds activating TRKB may therefore provide beneficial effects in tauopathies. LM-031, a coumarin derivative, has demonstrated the potential to improve BDNF signaling in neuronal cells expressing pro-aggregated ΔK280 tau mutant. In this study, we investigated if LM-031 analogous compounds provide neuroprotection effects through interaction with TRKB in SH-SY5Y cells expressing ΔK280 tauRD-DsRed folding reporter. All four LMDS compounds reduced tau aggregation and reactive oxygen species. Among them, LMDS-1 and -2 reduced caspase-1, caspase-6 and caspase-3 activities and promoted neurite outgrowth, and the effect was significantly reversed by knockdown of TRKB. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in these cells, implying that the neuroprotective effects of LMDS-1/2 are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. Furthermore, LMDS-1/2 demonstrated their ability to quench the intrinsic fluorescence of tryptophan residues within the extracellular domain of TRKB, thereby consolidating their interaction with TRKB. Our results suggest that LMDS-1/2 exert neuroprotection through activating TRKB signaling, and shed light on their potential application in therapeutics of Alzheimer’s disease/tauopathies.
Collapse
|
20
|
Role of NADPH Oxidases in Blood-Brain Barrier Disruption and Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11101966. [PMID: 36290688 PMCID: PMC9598888 DOI: 10.3390/antiox11101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
NADPH oxidases (Nox) are one of the main sources of reactive oxygen species (ROS) in the central nervous system (CNS). While these enzymes have been shown to be involved in physiological regulation of cerebral vascular tone, excessive ROS produced by Nox1-5 play a critical role in blood–brain barrier (BBB) dysfunction in numerous neuropathologies. Nox-derived ROS have been implicated in mediating matrix metalloprotease (MMP) activation, downregulation of junctional complexes between adjacent brain endothelial cells and brain endothelial cell apoptosis, leading to brain microvascular endothelial barrier dysfunction and consequently, increases in BBB permeability. In this review, we will highlight recent findings on the role played by these enzymes in BBB disruption induced by ischemic stroke.
Collapse
|
21
|
Zheng Y, Fan L, Xia S, Yang Q, Zhang Z, Chen H, Zeng H, Fu X, Peng Y, Xu C, Yu K, Liu F, Cao S. Role of complement C1q/C3-CR3 signaling in brain injury after experimental intracerebral hemorrhage and the effect of minocycline treatment. Front Immunol 2022; 13:919444. [PMID: 36189326 PMCID: PMC9520460 DOI: 10.3389/fimmu.2022.919444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
AimThe complement cascade is activated and may play an important pathophysiologic role in brain injury after experimental intracerebral hemorrhage (ICH). However, the exact mechanism of specific complement components has not been well studied. This study determined the role of complement C1q/C3-CR3 signaling in brain injury after ICH in mice. The effect of minocycline on C1q/C3-CR3 signaling-induced brain damage was also examined.MethodsThere were three parts to the study. First, the natural time course of C1q and CR3 expression was determined within 7 days after ICH. Second, mice had an ICH with CR3 agonists, LA-1 or vehicle. Behavioral score, neuronal cell death, hematoma volume, and oxidative stress response were assessed at 7 days after ICH. Third, the effect of minocycline on C1q/C3-CR3 signaling and brain damage was examined.ResultsThere were increased numbers of C1q-positive and CR3-positive cells after ICH. Almost all perihematomal C1q-positive and CR3-positive cells were microglia/macrophages. CR3 agonist LA-1 aggravated neurological dysfunction, neuronal cell death, and oxidative stress response on day 7 after ICH, as well as enhancing the expression of the CD163/HO-1 pathway and accelerating hematoma resolution. Minocycline treatment exerted neuroprotective effects on brain injury following ICH, partly due to the inhibition of C1q/C3-CR3 signaling, and that could be reversed by LA-1.ConclusionsThe complement C1q/C3-CR3 signaling is upregulated after ICH. The activation of C1q/C3-CR3 signaling by LA-1 aggravates brain injury following ICH. The neuroprotection of minocycline, at least partly, is involved with the repression of the C1q/C3-CR3 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fuyi Liu
- *Correspondence: Fuyi Liu, ; Shenglong Cao,
| | | |
Collapse
|
22
|
Fabisiak T, Patel M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol 2022; 10:976953. [PMID: 36035987 PMCID: PMC9399352 DOI: 10.3389/fcell.2022.976953] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The roles of both neuroinflammation and oxidative stress in the pathophysiology of epilepsy have begun to receive considerable attention in recent years. However, these concepts are predominantly studied as separate entities despite the evidence that neuroinflammatory and redox-based signaling cascades have significant crosstalk. Oxidative post-translational modifications have been demonstrated to directly influence the function of key neuroinflammatory mediators. Neuroinflammation can further be controlled on the transcriptional level as the transcriptional regulators NF-KB and nrf2 are activated by reactive oxygen species. Further, neuroinflammation can induce the increased expression and activity of NADPH oxidase, leading to a highly oxidative environment. These factors additionally influence mitochondria function and the metabolic status of neurons and glia, which are already metabolically stressed in epilepsy. Given the implication of this relationship to disease pathology, this review explores the numerous mechanisms by which neuroinflammation and oxidative stress influence one another in the context of epilepsy. We further examine the efficacy of treatments targeting oxidative stress and redox regulation in animal and human epilepsies in the literature that warrant further investigation. Treatment approaches aimed at rectifying oxidative stress and aberrant redox signaling may enable control of neuroinflammation and improve patient outcomes.
Collapse
|
23
|
Zhang X, Tu D, Li S, Li N, Li D, Gao Y, Tian L, Liu J, Zhang X, Hong JS, Hou L, Zhao J, Wang Q. A novel synthetic peptide SVHRSP attenuates dopaminergic neurodegeneration by inhibiting NADPH oxidase-mediated neuroinflammation in experimental models of Parkinson's disease. Free Radic Biol Med 2022; 188:363-374. [PMID: 35760232 DOI: 10.1016/j.freeradbiomed.2022.06.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Current treatment of Parkinson's disease (PD) ameliorates symptoms but fails to block disease progression. This study was conducted to explore the protective effects of SVHRSP, a synthetic heat-resistant peptide derived from scorpion venom, against dopaminergic neurodegeneration in experimental models of PD. Results showed that SVHRSP dose-dependently reduced the loss of dopaminergic neuron in the nigrostriatal pathway and motor impairments in both rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse PD models. Microglial activation and imbalance of M1/M2 polarization were also abrogated by SVHRSP in both models. In rotenone-treated primary midbrain neuron-glial cultures, loss of dopaminergic neuron and microglial activation were mitigated by SVHRSP. Furthermore, lipopolysaccharide (LPS)-elicited microglial activation, M1 polarization and related dopaminergic neurodegeneration in primary cultures were also abrogated by SVHRSP, suggesting that inhibition of microglial activation contributed to SVHRSP-afforded neuroprotection. Mechanistic studies revealed that SVHRSP blocked both LPS- and rotenone-induced microglial NADPH oxidase (NOX2) activation by preventing membrane translocation of cytosolic subunit p47phox. NOX2 knockdown by siRNA markedly attenuated the inhibitory effects of SVHRSP against LPS- and rotenone-induced gene expressions of proinflammatory factors and related neurotoxicity. Altogether, SVHRSP protects dopaminergic neurons by blocking NOX2-mediated microglial activation in experimental PD models, providing experimental basis for the screening of clinical therapeutic drugs for PD.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Dezhen Tu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Donglai Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yun Gao
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lu Tian
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Liyan Hou
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
24
|
Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23052793. [PMID: 35269933 PMCID: PMC8910886 DOI: 10.3390/ijms23052793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic neuroinflammation has been considered to be involved in the progressive dopaminergic neurodegeneration in Parkinson’s disease (PD). However, the mechanisms remain unknown. Accumulating evidence indicated a key role of the blood–brain barrier (BBB) dysfunction in neurological disorders. This study is designed to elucidate whether chronic neuroinflammation damages dopaminergic neurons through BBB dysfunction by using a rotenone-induced mouse PD model. Results showed that rotenone dose-dependently induced nigral dopaminergic neurodegeneration, which was associated with increased Evans blue content and fibrinogen accumulation as well as reduced expressions of zonula occludens-1 (ZO-1), claudin-5 and occludin, three tight junction proteins for maintaining BBB permeability, in mice, indicating BBB disruption. Rotenone also induced nigral microglial activation. Depletion of microglia or inhibition of microglial activation by PLX3397 or minocycline, respectively, greatly attenuated BBB dysfunction in rotenone-lesioned mice. Mechanistic inquiry revealed that microglia-mediated activation of matrix metalloproteinases-2 and 9 (MMP-2/-9) contributed to rotenone-induced BBB disruption and dopaminergic neurodegeneration. Rotenone-induced activation of MMP-2/-9 was significantly attenuated by microglial depletion and inactivation. Furthermore, inhibition of MMP-2/-9 by a wide-range inhibitor, SB-3CT, abrogated elevation of BBB permeability and simultaneously increased tight junctions expression. Finally, we found that microglial depletion and inactivation as well as inhibition of MMP-2/-9 significantly ameliorated rotenone-elicited nigrostriatal dopaminergic neurodegeneration and motor dysfunction in mice. Altogether, our findings suggested that microglial MMP-2/-9 activation-mediated BBB dysfunction contributed to dopaminergic neurodegeneration in rotenone-induced mouse PD model, providing a novel view for the mechanisms of Parkinsonism.
Collapse
|
25
|
Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune responses in the Parkrtdinson's disease brain. Neurobiol Dis 2022; 168:105700. [DOI: 10.1016/j.nbd.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
|
26
|
Guo Z, Ruan Z, Zhang D, Liu X, Hou L, Wang Q. Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. CHEMOSPHERE 2022; 291:132982. [PMID: 34822863 DOI: 10.1016/j.chemosphere.2021.132982] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Rotenone is a neurotoxic pesticide widely used in agriculture. Dopaminergic neuron has long been considered as the target of rotenone. We recently reported that rotenone exposure also resulted in hippocampal and cortical neurodegeneration and cognitive dysfunction in mice. However, the mechanisms remain unknown. Here, we elucidated whether blood brain barrier (BBB) disruption and subsequent neuronal apoptosis mediated by microglial activation were involved in rotenone-elicited cognitive impairments. Results showed that rotenone dose-dependently elevated evens blue extravasation, fibrinogen accumulation and reduced expressions of tight junction proteins in the hippocampus and cortex of mice. Interestingly, microglial depletion and inactivation by PLX3397 and minocycline, respectively, markedly attenuated rotenone-elicited increase of BBB permeability, indicating a critical role of microglia. Furthermore, microglial depletion and inactivation were shown to abrogate rotenone-induced activation of matrix metalloproteinases 2 and 9 (MMP-2/-9), two important factors to regulate tight junction degradation and BBB permeability, in mice. Moreover, SB-3CT, a widely used MMP-2/-9 inhibitor, increased BBB integrity and simultaneously elevated expressions of tight junction proteins in rotenone-intoxicated mice. Finally, we found that SB-3CT significantly mitigated rotenone-induced neuronal apoptosis and synaptic loss as well as learning and memory impairments in mice. Altogether, this study revealed that rotenone elicited cognitive impairments in mice through microglia-mediated BBB disruption and neuronal apoptosis via MMP-2/-9, providing a novel aspect for the pathogenesis of pesticide-induced neurotoxicity and Parkinson's disease (PD)-related dementia.
Collapse
Affiliation(s)
- Ziyang Guo
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, 116044, China; Public Health Development Branch, Shaoxing Yuecheng People's Hospital, Shaoxing, 312000, China
| | - Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China; Xi'an Center for Disease Control and Prevention, Xi'an, 710018, China
| | - Xiaohui Liu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
27
|
The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules 2022; 12:biom12020337. [PMID: 35204837 PMCID: PMC8869249 DOI: 10.3390/biom12020337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
The functions of the complement system to both innate and adaptive immunity through opsonization, cell lysis, and inflammatory activities are well known. In contrast, the role of complement in the central nervous system (CNS) which extends beyond immunity, is only beginning to be recognized as important to neurodevelopment and neurodegeneration. In addition to protecting the brain against invasive pathogens, appropriate activation of the complement system is pivotal to the maintenance of normal brain function. Moreover, overactivation or dysregulation may cause synaptic dysfunction and promote excessive pro-inflammatory responses. Recent studies have provided insights into the various responses of complement components in different neurological diseases and the regulatory mechanisms involved in their pathophysiology, as well as a glimpse into targeting complement factors as a potential therapeutic modality. However, there remain significant knowledge gaps in the relationship between the complement system and different brain disorders. This review summarizes recent key findings regarding the role of different components of the complement system in health and pathology of the CNS and discusses the therapeutic potential of anti-complement strategies for the treatment of neurodegenerative conditions.
Collapse
|
28
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
29
|
Xiao HX, Song B, Li Q, Shao YM, Zhang YB, Chang XL, Zhou ZJ. Paraquat mediates BV-2 microglia activation by raising intracellular ROS and inhibiting Akt1 phosphorylation. Toxicol Lett 2022; 355:116-126. [PMID: 34863858 DOI: 10.1016/j.toxlet.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Microglia is the innate immune cell in central nervous system (CNS) and plays an important role in neuroinflammation. Microglia mediated neuroinflammation is the key factor affecting the development of neurodegenerative diseases. Although there was evidence that paraquat (PQ) could induce inflammatory response, its mechanism was not clear. The present study investigated the mechanisms of PQ-induced inflammatory responses in BV-2 microglia cells, and tried to reveal the role of ROS/Akt1 pathway. The results showed that the cell activation markers (iNOS and CD206) of BV-2 cells were increased after PQ treatment, suggesting that BV-2 microglia were activated. PQ induced the reactive oxygen species (ROS) and inhibited the AKT1 phosphorylation in BV-2 cells. Besides, the M1 markers expression (IL-6, TNF-α and IL-1β) were significantly increased after PQ treatment, which suggested that PQ induced the increase of M1 phenotype of BV-2 microglia. Pre-treated with NAC (ROS scavenger), the M1 phenotype was decreased while the p-Akt1 was restored compared to PQ stimulation. Furthermore, we built an Akt1(S473E)-overexpression BV-2 cell line. The Akt1 (S473E) partially attenuated the PQ induced increase in M1 phenotype, while ROS did not significantly change. These results indicated that PQ induced BV-2 microglia activation by increased ROS mediated Akt1 activation inhibition, leading to neuroinflammation.
Collapse
Affiliation(s)
- Hong-Xi Xiao
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Bo Song
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qian Li
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yi-Ming Shao
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yu-Bin Zhang
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiu-Li Chang
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Zhi-Jun Zhou
- School of Public Health, MOE Key Laboratory of Public Health Safety, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
31
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
32
|
Wu S, Lan J, Li L, Wang X, Tong M, Fu L, Zhang Y, Xu J, Chen X, Chen H, Li R, Wu Y, Xin J, Yan X, Li H, Xue K, Li X, Zhuo C, Jiang W. Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms. Cell Biol Toxicol 2021; 39:237-258. [PMID: 34713381 DOI: 10.1007/s10565-021-09649-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Sirt6, a class III NAD+-dependent deacetylase of the sirtuin family, is a highly specific H3 deacetylase and plays important roles in regulating cellular growth and death. The induction of oxidative stress and death is the critical mechanism involved in cardiomyocyte injury and cardiac dysfunction in doxorubicin-induced cardiotoxicity, but the regulatory role of Sirt6 in the fate of DOX-impaired cardiomyocytes is poorly understood. In the present study, we exposed Sirt6 heterozygous (Sirt6+/-) mice and their littermates as well as cultured neonatal rat cardiomyocytes to DOX, then investigated the role of Sirt6 in mitigating oxidative stress and cardiac injury in the DOX-treated myocardium. Sirt6 partial knockout or silencing worsened cardiac damage, remodeling, and oxidative stress injury in mice or cultured cardiomyocytes with DOX challenge. Cardiomyocytes infected with adenoviral constructs encoding Sirt6 showed reversal of this DOX-induced damage. Intriguingly, Sirt6 reduced oxidative stress injury by upregulating endogenous antioxidant levels, interacted with oxidative stress-stirred p53, and acted as a co-repressor of p53 in nuclei. Sirt6 was recruited by p53 to the promoter regions of the target genes Fas and FasL and further suppressed p53 transcription activity by reducing histone acetylation. Sirt6 inhibited Fas/FasL signaling and attenuated both Fas-FADD-caspase-8 apoptotic and Fas-RIP3 necrotic pathways. These results indicate that Sirt6 protects the heart against DOX-induced cardiotoxicity by upregulating endogenous antioxidants, as well as suppressing oxidative stress and cell death signaling pathways dependent on ROS-stirred p53 transcriptional activation, thus reducing Fas-FasL-mediated apoptosis and necrosis. •Sirt6 is significantly decreased in DOX-insulted mouse hearts and cardiomyocytes. •Sirt6 attenuates DOX-induced cardiac atrophy, dysfunction and oxidative stress. • Sirt6 reduces oxidative stress injury by upregulating endogenous antioxidants. • Sirt6 interacts with p53 as a co-repressor to suppress p53 transcriptional regulation and inhibits Fas-FasL-mediated apoptosis and necrosis downstream of p53.
Collapse
Affiliation(s)
- Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.,Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaoxiao Wang
- Cancer Hospital, Chongqing University, Chongqing, China.,Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Mingming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Fu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuemei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hongying Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Juanjuan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kunyue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
33
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Qiu X, Wang Q, Hou L, Zhang C, Wang Q, Zhao X. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson's disease model. Toxicol Lett 2021; 349:1-11. [PMID: 34052309 DOI: 10.1016/j.toxlet.2021.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Pesticides exposure can lead to damage of dopaminergic neurons, which are associated with increased risk of Parkinson's disease (PD). However, the etiology of PD remains poorly understood and no therapeutic strategy is available. Previous studies suggested the involvement of NLRP3 inflammasome in the onset of PD. This study was designed to investigate whether glibenclamide, an inhibitor of NLRP3 inflammasome, could offer a reliable protective strategy for PD in a mouse PD model induced by paraquat and maneb. We found that glibenclamide exerted potent neuroprotection against paraquat and maneb-induced upregulation of α-synuclein, dopaminergic neurodegeneration and motor impairment in brain of mice. Mechanistically, glibenclamide treatment blocked NLRP3 inflammasome activation evidenced by reduced expressions of NLRP3, activated caspase-1 and mature interleukin-1β in glibenclamide co-treated mice compared with those in paraquat and maneb group mice. Furthermore, glibenclamide treatment mitigated paraquat and maneb-induced microglial M1 proinflammatory response and nuclear factor-κB activation in mice. Finally, the increased superoxide production, lipid peroxidation, protein levels of NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) induced by paraquat and maneb were all attenuated by glibenclamide. Overall, our findings demonstrated that glibenclamide protected dopaminergic neurons in a mouse PD model induced by combined exposures of paraquat and maneb through suppression of NLRP3 inflammasome activation, microglial M1 polarization and oxidative stress.
Collapse
Affiliation(s)
- Xiaofei Qiu
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, 266033, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qinghui Wang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Cuili Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Xiulan Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
35
|
Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. ACTA ACUST UNITED AC 2021; 57:medicina57060604. [PMID: 34208136 PMCID: PMC8230853 DOI: 10.3390/medicina57060604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading contagious infectious disease caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that primarily affects the respiratory tract as well as the central nervous system (CNS). SARS-CoV-2 infection occurs through the interaction of the viral protein Spike with the angiotensin II receptor (ACE 2), leading to an increase of angiotensin II and activation of nicotinamide adenine dinucleotide phosphate oxidase2 (NOX2), resulting in the release of both reactive oxygen species (ROS) and inflammatory molecules. The purpose of the review is to explain that SARS-CoV-2 infection can determine neuroinflammation that induces NOX2 activation in microglia. To better understand the role of NOX2 in inflammation, an overview of its involvement in neurodegenerative diseases (NDs) such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) is provided. To write this manuscript, we performed a PubMed search to evaluate the possible relationship of SARS-CoV-2 infection in NOX2 activation in microglia, as well as the role of NOX2 in NDs. Several studies highlighted that NOX2 activation in microglia amplifies neuroinflammation. To date, there is no clinical treatment capable of counteracting its activation, however, NOX2 could be a promising pharmaceutical target useful for both the treatment and prevention of NDs and COVID-19 treatment.
Collapse
|
36
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
37
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
38
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
39
|
Jing L, Hou L, Zhang D, Li S, Ruan Z, Zhang X, Hong JS, Wang Q. Microglial Activation Mediates Noradrenergic Locus Coeruleus Neurodegeneration via Complement Receptor 3 in a Rotenone-Induced Parkinson's Disease Mouse Model. J Inflamm Res 2021; 14:1341-1356. [PMID: 33859489 PMCID: PMC8044341 DOI: 10.2147/jir.s299927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chronic exposure to the insecticide rotenone can damage dopaminergic neurons and lead to an increased risk of Parkinson’s disease (PD). Whereas it is not clear whether rotenone induces neurodegeneration of noradrenergic locus coeruleus (LC/NE) neurons. Chronic neuroinflammation mediated by microglia has been involved in the pathogenesis of PD. Evidence shows that complement receptor 3 (CR3) is a crucial regulator of microglial activation and related neurodegeneration. However, it is not clear whether CR3 mediates rotenone-elicited degeneration of LC/NE neurons through microglia-mediated neuroinflammation. Materials and Methods Wild type (WT) and CR3 knockout (KO) mice were treated with rotenone. PLX3397 and minocycline were used to deplete or inactivate the microglia. Leukadherin-1 (LA-1) was used to modulate CR3. LC/NE neurodegeneration, microglial phenotype, and expression of CR3 were determined by using immunohistochemistry, Western blot and real-time polymerase chain reaction (PCR) techniques. The glutathione (GSH) and malondialdehyde (MDA) contents were measured by using commercial kits. Results Rotenone exposure led to dose- and time-dependent LC/NE neuronal loss and microglial activation in mice. Depletion of microglia by PLX3397 or inhibition of microglial activation by minocycline significantly reduced rotenone-induced LC/NE neurodegeneration. Mechanistic studies revealed that CR3 played an essential role in the rotenone-induced activation of microglia and neurodegeneration of LC/NE neurons. Rotenone elevated the expression of CR3, and genetic ablation of CR3 markedly reduced rotenone-induced microglial activation and M1 polarization. LA-1 also suppressed rotenone-induced toxic microglial M1 activation. Furthermore, lack of CR3 or treatment with LA-1 reduced oxidative stress in the brainstem of rotenone-intoxicated mice. Finally, we found that mice deficient in CR3 or treated with LA-1 were more resistant to rotenone-induced LC/NE neurodegeneration than WT or vehicle-treated mice, respectively. Conclusion Our results indicate that CR3-mediated microglial activation participates in rotenone-induced LC/NE neurodegeneration, providing novel insight into environmental toxin-induced neurotoxicity and related Parkinsonism.
Collapse
Affiliation(s)
- Lu Jing
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Dongdong Zhang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zhengzheng Ruan
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| |
Collapse
|
40
|
Andoh M, Koyama R. Microglia regulate synaptic development and plasticity. Dev Neurobiol 2021; 81:568-590. [PMID: 33583110 PMCID: PMC8451802 DOI: 10.1002/dneu.22814] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Synapses are fundamental structures of neural circuits that transmit information between neurons. Thus, the process of neural circuit formation via proper synaptic connections shapes the basis of brain functions and animal behavior. Synapses continuously undergo repeated formation and elimination throughout the lifetime of an organism, reflecting the dynamics of neural circuit function. The structural transformation of synapses has been described mainly in relation to neural activity-dependent strengthening and weakening of synaptic functions, that is, functional plasticity of synapses. An increasing number of studies have unveiled the roles of microglia, brain-resident immune cells that survey the brain parenchyma with highly motile processes, in synapse formation and elimination as well as in regulating synaptic function. Over the past 15 years, the molecular mechanisms underlying microglia-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of microglia-dependent regulation causes synaptic dysfunction that leads to brain diseases. In this review, we will broadly introduce studies that report the roles of microglia in synaptic plasticity and the possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Wang K, Shi Y, Liu W, Liu S, Sun MZ. Taurine improves neuron injuries and cognitive impairment in a mouse Parkinson's disease model through inhibition of microglial activation. Neurotoxicology 2021; 83:129-136. [PMID: 33450328 DOI: 10.1016/j.neuro.2021.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
Clinical and experimental findings support the view that activation of hippocampus microglia through NADPH oxidase contributes to cognitive impairment in Parkinson's disease (PD). Taurine, an antioxidant, displays an exclusive physical property on brain function, such as learning and memory. To date, the role of taurine in improving cognitive impairment in PD is not fully uncovered. Hence, we evaluated the protective effect of taurine on cognitive ability and explored the related mechanism in the model built by paraquat and maneb (P + M)-induced PD mice. Then the ability of learning and memory was observed by Morris water maze, neuron loss was evaluated by immunohistochemistry in hippocampus, the level of postsynaptic density 95 (PSD95) and microglia activation was assessed by immunostaining, the molecules (gp91phox, p47phox, mac1, p-Src/Src and p-Erk/Erk) were examined by western blot. The results showed that taurine could alleviate the impairments in learning and memory induced by P + M injection in mice (decreased escape latency on day 4, P < 0.01; decreased swimming distance on day 4, P < 0.05; increased percent time in target quadrant, P < 0.05), corresponding with activation of microglia (decreased IBa-1 density, P < 0.001; decreased the protein expression of p47phox, P < 0.05; decreased protein expression of gp91phox, P < 0.01; decreased p-Src/Src, P < 0.01; decreased p-Erk/Erk, P < 0.01; decreased mac 1, P < 0.01), decreased neuron loss (increased number of NeurN+ neuron, P < 0.001; increased protein expression of NeruN, P < 0.01; decreased protein expression of caspase 3, P < 0.01) and increased PSD95 level in hippocampus (P < 0.01). The results indicated that mac1 and Src-Erk signaling was involved in increased NADPH oxidase expression in hippocampus microglia of P + M mice, and taurine could improve injuries in learning and memory through mac1 reduction. The new findings in mac1 triggering hippocampal microglia NADPH oxidase through Src/Erk pathway of the present study might provide a therapy target for PD.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China; Department of Clinical Nutrition, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yongquan Shi
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China; Department of Chinese Traditional Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
42
|
Doroshenko ER, Drohomyrecky PC, Gower A, Whetstone H, Cahill LS, Ganguly M, Spring S, Yi TJ, Sled JG, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Deficiency in Microglia Results in Exacerbated Axonal Injury and Tissue Loss in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:570425. [PMID: 33732230 PMCID: PMC7959796 DOI: 10.3389/fimmu.2021.570425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear receptor that functions to maintain metabolic homeostasis, regulate cell growth, and limit the development of excessive inflammation during immune responses. Previously, we reported that PPAR-δ-deficient mice develop a more severe clinical course of experimental autoimmune encephalomyelitis (EAE); however, it was difficult to delineate the role that microglia played in this disease phenotype since PPAR-δ-deficient mice exhibited a number of immune defects that enhanced CNS inflammation upstream of microglia activation. Here, we specifically investigated the role of PPAR-δ in microglia during EAE by using mice where excision of a floxed Ppard allele was driven by expression of a tamoxifen (TAM)-inducible CX3C chemokine receptor 1 promoter-Cre recombinase transgene (Cx3cr1CreERT2: Ppardfl/fl). We observed that by 30 days of TAM treatment, Cx3cr1CreERT2: Ppardfl/fl mice exhibited Cre-mediated deletion primarily in microglia and this was accompanied by efficient knockdown of Ppard expression in these cells. Upon induction of EAE, TAM-treated Cx3cr1CreERT2: Ppardfl/fl mice presented with an exacerbated course of disease compared to TAM-treated Ppardfl/fl controls. Histopathological and magnetic resonance (MR) studies on the spinal cord and brains of EAE mice revealed increased Iba-1 immunoreactivity, axonal injury and CNS tissue loss in the TAM-treated Cx3cr1CreERT2: Ppardfl/fl group compared to controls. In early EAE, a time when clinical scores and the infiltration of CD45+ leukocytes was equivalent between Cx3cr1CreERT2: Ppardfl/fl and Ppardfl/fl mice, Ppard-deficient microglia exhibited a more reactive phenotype as evidenced by a shorter maximum process length and lower expression of genes associated with a homeostatic microglia gene signature. In addition, Ppard-deficient microglia exhibited increased expression of genes associated with reactive oxygen species generation, phagocytosis and lipid clearance, M2-activation, and promotion of inflammation. Our results therefore suggest that PPAR-δ has an important role in microglia in limiting bystander tissue damage during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Annette Gower
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Heather Whetstone
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
43
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
44
|
Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P, Raut S, Sarkar A, Singh U, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 2021; 162:160-178. [PMID: 32939758 PMCID: PMC7808166 DOI: 10.1111/imm.13264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is characterized by gradual onset and limited availability of specific biomarkers. Apart from various aetiologies such as infection, trauma, genetic mutation, the interaction between the immune system and CNS is widely associated with neuronal damage in neurodegenerative diseases. The immune system plays a distinct role in disease progression and cellular homeostasis. It induces cellular and humoral responses, and enables tissue repair, cellular healing and clearance of cellular detritus. Aberrant and chronic activation of the immune system can damage healthy neurons. The pro-inflammatory mediators secreted by chief innate immune components, the complement system, microglia and inflammasome can augment cytotoxicity. Furthermore, these inflammatory mediators accelerate microglial activation resulting in progressive neuronal loss. Various animal studies have been carried out to unravel the complex pathology and ascertain biomarkers for these harmful diseases, but have had limited success. The present review will provide a thorough understanding of microglial activation, complement system and inflammasome generation, which lead the healthy brain towards neurodegeneration. In addition to this, possible targets of immune components to confer a strategic treatment regime for the alleviation of neuronal damage are also summarized.
Collapse
Affiliation(s)
- Falguni Baidya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Mariya Bohra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Aishika Datta
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Deepaneeta Sarmah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Birva Shah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Priya Jagtap
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Swapnil Raut
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Ankan Sarkar
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Upasna Singh
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Kiran Kalia
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Anupom Borah
- Department of Life Science and BioinformaticsAssam UniversitySilcharAssamIndia
| | - Xin Wang
- Department of NeurosurgeryBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Kunjan R. Dave
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Dileep R. Yavagal
- Department of Neurology and NeurosurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Pallab Bhattacharya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| |
Collapse
|
45
|
Klegeris A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen Res 2021; 16:423-429. [PMID: 32985460 PMCID: PMC7996015 DOI: 10.4103/1673-5374.293134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sterile inflammatory processes are essential for the maintenance of central nervous system homeostasis, but they also contribute to various neurological disorders, including neurotrauma, stroke, and demyelinating or neurodegenerative diseases. Immune mechanisms in the central nervous system and periphery are regulated by a diverse group of endogenous proteins, which can be broadly divided into the pro-inflammatory damage-associated molecular patterns (DAMPs) and anti-inflammatory resolution-associated molecular patterns (RAMPs), even though there is notable overlap between the DAMP- and RAMP-like activities for some of these molecules. Both groups of molecular patterns were initially described in peripheral immune processes and pathologies; however, it is now evident that at least some, if not all, of these immunomodulators also regulate neuroimmune processes and contribute to neuroinflammation in diverse central nervous system disorders. The review of recent literature demonstrates that studies on DAMPs and RAMPs of the central nervous system still lag behind the much broader research effort focused on their peripheral counterparts. Nevertheless, this review also reveals that over the last five years, significant advances have been made in our understanding of the neuroimmune functions of several well-established DAMPs, including high-mobility group box 1 protein and interleukin 33. Novel neuroimmune functions have been demonstrated for other DAMPs that previously were considered almost exclusively as peripheral immune regulators; they include mitochondrial transcription factor A and cytochrome C. RAMPs of the central nervous system are an emerging area of neuroimmunology with very high translational potential since some of these molecules have already been used in preclinical and clinical studies as candidate therapeutic agents for inflammatory conditions, such as multiple sclerosis and rheumatoid arthritis. The therapeutic potential of DAMP antagonists and neutralizing antibodies in central nervous system neuroinflammatory diseases is also supported by several of the identified studies. It can be concluded that further studies of DAMPs and RAMPs of the central nervous system will continue to be an important and productive field of neuroimmunology.
Collapse
Affiliation(s)
- Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
46
|
Huang R, Hou L, Zhai X, Ruan Z, Sun W, Zhang D, Zhao X, Wang Q. 2,5-hexanedione induces NLRP3 inflammasome activation and neurotoxicity through NADPH oxidase-dependent pathway. Free Radic Biol Med 2021; 162:561-570. [PMID: 33212186 DOI: 10.1016/j.freeradbiomed.2020.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
Abstract
Chronic exposure to n-hexane causes sensorimotor neuropathy, which is mediated by 2,5-hexanedione (HD), a toxic metabolite of n-hexane. Activation of the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome is involved in multiple neurodegenerative diseases. However, whether the NLRP3 inflammasome contributes to HD-induced neurotoxicity remains unclear. In this study, the effects of HD on NLRP3 inflammasome activation and the underlying mechanisms were determined by using HD-treated rat and cell culture models. Increased NLRP3 expression, caspase-1 activation and interleukin-1β production were observed in both the brain and spinal cord of HD-treated rats. Double-immunofluorescence staining showed that ASC speck formation and caspase-1 expression were mainly localized in microglia. HD-induced activation of the NLRP3 inflammasome was further mirrored in BV2 microglial cells and was associated with NADPH oxidase activation. Interestingly, inhibition of NADPH oxidase by apocynin or specific siRNAs significantly mitigated HD-induced NLRP3 inflammasome activation. Furthermore, apocynin suppressed activation of the MAPK and NF-κB signaling pathways. Blocking activation of p38-MAPK and NF-κB significantly reduced HD-induced capase-1 activation and interleukin-1β maturation, indicating a critical role of NADPH oxidase and downstream MAPK and NF-κB pathways in regulating activation of NLRP3 inflammasome, in HD-treated microglia. Finally, we found that inhibition of microglial NLRP3 inflammasome and NADPH oxidase activation abrogated HD-induced microglial activation and neurodegeneration in both SHSY5Y neuronal cells and primary cortical neuron-glia cultures. Altogether, our findings suggest that NADPH oxidase-dependent activation of microglial NLRP3 inflammasome contributes to HD-induced neurotoxicity, providing novel insight into the mechanisms of this solvent-induced neuropathy.
Collapse
Affiliation(s)
- Ruixue Huang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xingyue Zhai
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiulan Zhao
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
47
|
New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21239302. [PMID: 33291304 PMCID: PMC7730912 DOI: 10.3390/ijms21239302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The immune system has been increasingly recognized as a major contributor in the pathogenesis of Parkinson’s disease (PD). The double-edged nature of the immune system poses a problem in harnessing immunomodulatory therapies to prevent and slow the progression of this debilitating disease. To tackle this conundrum, understanding the mechanisms underlying immune-mediated neuronal death will aid in the identification of neuroprotective strategies to preserve dopaminergic neurons. Specific innate and adaptive immune mediators may directly or indirectly induce dopaminergic neuronal death. Genetic factors, the gut-brain axis and the recent identification of PD-specific T cells may provide novel mechanistic insights on PD pathogenesis. Future studies to address the gaps in the identification of autoantibodies, variability in immunophenotyping studies and the contribution of gut dysbiosis to PD may eventually provide new therapeutic targets for PD.
Collapse
|
48
|
Propson NE, Gedam M, Zheng H. Complement in Neurologic Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:277-298. [PMID: 33234021 DOI: 10.1146/annurev-pathol-031620-113409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.
Collapse
Affiliation(s)
- Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
49
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
50
|
Li N, Stewart T, Sheng L, Shi M, Cilento EM, Wu Y, Hong JS, Zhang J. Immunoregulation of microglial polarization: an unrecognized physiological function of α-synuclein. J Neuroinflammation 2020; 17:272. [PMID: 32943057 PMCID: PMC7500012 DOI: 10.1186/s12974-020-01940-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Microglial function is vital for maintaining the health of the brain, and their activation is an essential component of neurodegeneration. There is significant research on factors that provoke “reactive” or “inflammatory” phenotypes in conditions of injury or disease. One such factor, exposure to the aggregated or oligomeric forms of α-synuclein, an abundant brain protein, plays an essential role in driving microglial activation; including chemotactic migration and production of inflammatory mediators in Lewy body (LB) diseases such as Parkinson’s disease. On the other hand, it is increasingly recognized that microglia also undergo changes, dependent on the cellular environment, that promote mainly reconstructive and anti-inflammatory functions, i.e., mostly desirable functions of microglia in a physiological state. What maintains microglia in this physiological state is essentially unknown. Methods In this study, using in vitro and in vivo models, we challenged primary microglia or BV2 microglia with LPS + IFN-γ, IL-4 + IL-13, α-synuclein monomer, and α-synuclein oligomer, and examined microglia phenotype and the underlying mechanism by RT-PCR, Western blot, ELISA, IF, IHC, Co-IP. Results We described a novel physiological function of α-synuclein, in which it modulates microglia toward an anti-inflammatory phenotype by interaction with extracellular signal-regulated kinase (ERK) and recruitment of the ERK, nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Conclusions These findings suggest a previously unrecognized function of monomeric α-synuclein that likely gives new insights into the pathogenesis and potential therapies for Lewy body-related diseases and beyond, given the abundance and multiple functions of α-synuclein in brain tissue.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Eugene M Cilento
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Yufeng Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jau-Syong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA. .,Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|