1
|
Pritts JD, Falkowski VM, Biel TG, Embretsen M, Aryal B, Tillotson J, Namuswe F, Rao VA. Analytical characterization of aberrant trisulfide bond formation in therapeutic proteins and their impact on product quality. J Pharm Sci 2025; 114:1495-1503. [PMID: 39778740 DOI: 10.1016/j.xphs.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Post translational modifications (PTMs) of proteins play an integral role in maintaining the overall structure and function of proteins including their proper folding, binding, and potency. However, not all PTMs play a positive role in protein drugs as some can lead to product-related impurities that negatively impact protein function. One example of a PTM is trisulfide formation, which appears as a product related species in multiple biologic drug products. The impacts of trisulfide formation on protein structure, stability, potency, and safety remains under investigation. Herein, we investigated and report the impact of aberrant trisulfides on erythropoietin (EPO) and somatropin (growth hormone/GH) therapeutic proteins. Utilizing LC-MS we show that one EPO product contains measurable basal levels of trisulfide bonds in its formulation and exposure to H2S induced aberrant trisulfides in all products investigated. We report that exposure to H2S produces moderate effects on protein stability via thermal melting monitored by circular dichroism, protein purity utilizing size exclusion chromatography, and particle content using micro-flow imaging. No changes were observed in protein folding via circular dichroism, immunogenicity screening via a THP1-blue assay, or receptor binding activity via biolayer interferometry. Together, these data provide evidence on the effects of aberrant trisulfide formation on overall product quality.
Collapse
Affiliation(s)
- Jordan D Pritts
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vincent M Falkowski
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas G Biel
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Mattias Embretsen
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA; Virginia Commonwealth University, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Joseph Tillotson
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA; Pfizer Inc., NY, USA
| | - Frances Namuswe
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Tobita R, Kageyama L, Saito A, Tahara S, Kajimoto S, Nakabayashi T. Highly sensitive Raman measurements of protein aqueous solutions using liquid-liquid phase separation. Chem Commun (Camb) 2024. [PMID: 39072433 DOI: 10.1039/d4cc03035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A highly sensitive method is proposed for obtaining the Raman spectra of low-concentration proteins and nucleic acids in an aqueous solution using liquid-liquid phase separation. This method uses water droplets formed by adding a large amount of polyethylene glycol into a biomolecular aqueous solution. Ordinary spontaneous Raman spectra are obtained with a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Reona Tobita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Lisa Kageyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Ayaka Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Shinya Tahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
3
|
Ikeda-Imafuku M, Fukuta T, Tuan Giam Chuang V, Sawa T, Maruyama T, Otagiri M, Ishida T, Ishima Y. Acute Kidney Injury Caused by Rhabdomyolysis Is Ameliorated by Serum Albumin-Based Supersulfide Donors through Antioxidative Pathways. Pharmaceuticals (Basel) 2024; 17:128. [PMID: 38256961 PMCID: PMC10819804 DOI: 10.3390/ph17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress is responsible for the onset and progression of various kinds of diseases including rhabdomyolysis-induced acute kidney injury (AKI). Antioxidants are, therefore, thought to aid in the recovery of illnesses linked to oxidative stress. Supersulfide species have been shown to have substantial antioxidative activity; however, due to their limited bioavailability, few supersulfide donors have had their actions evaluated in vivo. In this study, human serum albumin (HSA) and N-acetyl-L-cysteine polysulfides (NACSn), which have polysulfides in an oxidized form, were conjugated to create a supersulfide donor. HSA is chosen to be a carrier of NACSn because of its extended blood circulation and high level of biocompatibility. In contrast to a supersulfide donor containing reduced polysulfide in HSA, the NACSn-conjugated HSAs exhibited stronger antioxidant activity than HSA and free NACSn without being uptaken by the cells in vitro. The supersulfide donor reduced the levels of blood urea nitrogen and serum creatinine significantly in a mouse model of rhabdomyolysis-induced AKI. Supersulfide donors significantly reduced the expression of oxidative stress markers in the kidney. These results indicate that the developed supersulfide donor has the therapeutic effect on rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan; (M.I.-I.); (T.F.)
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan; (M.I.-I.); (T.F.)
| | - Victor Tuan Giam Chuang
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia;
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan;
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
- Laboratory of Biopharmaceutics, Kyoto Pharmaceutical University 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
4
|
Wang J, Zhang C, Zhao R, Wang P, Jin M, Xu J. Antioxidant N-acetylcysteine removing ROS: an antifouling strategy inspired by mussels. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1962-1973. [PMID: 37859626 DOI: 10.1039/d3em00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Marine biofouling is a thorny issue that causes serious economic losses and adverse ecological impacts on marine ecosystems. Effective and promising antifouling strategies such as surface hydration, flow shear force, and lubricant injection have been developed to address this challenge. However, for the complex marine environment, they still appear inadequate. Mussels are a common fouling organism with strong surface adhesion ability. However, when hypoxia and the oxidative cross-linking reaction of 3,4-dihydroxy phenyl-L-alanine (DOPA) in the structure of adhesion proteins are disrupted, their adhesion ability will be greatly reduced. Inspired by this, we developed an effective antifouling strategy based on reactive oxygen species (ROS) scavenging using N-acetylcysteine (NAC) and evaluated its performance. As a ROS scavenger interfered with the oxidative cross-linking reaction of DOPA in an aqueous solution, the adhesion of DOPA was also affected on the surface of NAC functionalized polyvinyl chloride (PVC) (PVC-NAC). In addition, the colonization level of mussels and the adhesion rate of marine bacteria and benthic diatoms on PVC-NAC were low. The antifouling strategy proposed in this paper was eco-friendly and broad-spectrum, and may provide a new idea for solving marine biofouling and reducing the environmental and economic impacts of fouling organisms.
Collapse
Affiliation(s)
- Jine Wang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Chen Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Rui Zhao
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Pei Wang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Meihua Jin
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Jiujun Xu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| |
Collapse
|
5
|
Chen HJ, Qian L, Li K, Qin YZ, Zhou JJ, Ji XY, Wu DD. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis 2022. [PMID: 37492730 PMCID: PMC10363594 DOI: 10.1016/j.gendis.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the three known gas signal transducers, and since its potential physiological role was reported, the literature on H2S has been increasing. H2S is involved in processes such as vasodilation, neurotransmission, angiogenesis, inflammation, and the prevention of ischemia-reperfusion injury, and its mechanism remains to be further studied. At present, the role of post-translational processing of proteins has been considered as a possible mechanism for the involvement of H2S in a variety of physiological processes. Current studies have shown that H2S is involved in S-sulfhydration, phosphorylation, and S-nitrosylation of proteins, etc. This paper focuses on the effects of protein modification involving H2S on physiological and pathological processes, looking forward to providing guidance for subsequent research.
Collapse
|
6
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
7
|
Kurian GP, Korula PJ, Jacob JM, Desha AMK, Karuppusami R, Kandasamy S. Patient Characteristics and Outcomes in Necrotizing Soft-tissue Infections: Results from a Prospective Cohort Study in a Tertiary Care Center Intensive Care Unit in South India. Indian J Crit Care Med 2022; 26:452-456. [PMID: 35656036 PMCID: PMC9067491 DOI: 10.5005/jp-journals-10071-24153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Necrotizing soft tissue infections (NSTIs) are life-threatening infections characterized by progressive destruction of muscle, fascia, and overlying subcutaneous tissue. Prospective studies in the field are few, and data from the Indian subcontinent are bleak. Prompt diagnosis and timely treatment are critical for optimal outcomes. The aims of this study are to provide detailed information on the clinical profile of patients with NSTIs and to identify predictors of mortality in order to pick up reversible factors that may improve outcomes. Materials and methods This study was a prospective cohort study of adult patients with NSTIs in a tertiary center in South India. All patients who were admitted to the surgical intensive care unit (ICU) of the institute with a diagnosis of NSTI were screened and enrolled. All patients were managed according to the local protocol for treatment of NSTIs and intensive care support. Results In our cohort of patients, simple and multiple logistic regression analysis showed that four factors, namely, AKIN stage 3, shock, need for mechanical ventilation for more than 3 days, and low serum albumin values were found to be significantly associated with higher mortality. Conclusion The successful management of these patients calls for early diagnosis, resuscitation, surgical debridement, appropriate and timely antibiotics, and early ventilatory weaning before multi-organ failure associated with shock and AKI occurs. How to cite this article Kurian GP, Korula PJ, Jacob JM, Desha AMK, Karuppusami R, Kandasamy S. Patient Characteristics and Outcomes in Necrotizing Soft-tissue Infections: Results from a Prospective Cohort Study in a Tertiary Care Center Intensive Care Unit in South India. Indian J Crit Care Med 2022;26(4):452-456.
Collapse
Affiliation(s)
- George Prashanth Kurian
- Division of Critical Care and Surgical ICU, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pritish John Korula
- Division of Critical Care and Surgical ICU, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jubin Merin Jacob
- Department of Anesthesiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Reka Karuppusami
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Subramani Kandasamy
- Division of Critical Care and Surgical ICU, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
9
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
10
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
11
|
Niu H, Tang J, Zhu X, Li Z, Zhang Y, Ye Y, Zhao Y. A three-channel fluorescent probe to image mitochondrial stress. Chem Commun (Camb) 2021; 56:7710-7713. [PMID: 32524110 DOI: 10.1039/d0cc02668a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dual-recognition probes based on one reacting site inevitably encounter competition problems. Here, NPClA, a two-photon fluorescent probe based on a dual-site response for SO2/HOCl, was developed and applied in imaging mitochondrial stress.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China. and College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xiaofei Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zipeng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongru Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yufen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
12
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 2020; 38:101813. [PMID: 33279869 PMCID: PMC7718489 DOI: 10.1016/j.redox.2020.101813] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease is known as a major cause of chronic kidney disease and end stage renal disease. Polysulfides, a class of chemical agents with a chain of sulfur atoms, are found to confer renal protective effects in acute kidney injury. However, whether a polysulfide donor, sodium tetrasulfide (Na2S4), confers protective effects against diabetic nephropathy remains unclear. Our results showed that Na2S4 treatment ameliorated renal dysfunctional and histological damage in diabetic kidneys through inhibiting the overproduction of inflammation cytokine and reactive oxygen species (ROS), as well as attenuating renal fibrosis and renal cell apoptosis. Additionally, the upregulated phosphorylation and acetylation levels of p65 nuclear factor κB (p65 NF-κB) and signal transducer and activator of transcription 3 (STAT3) in diabetic nephropathy were abrogated by Na2S4 in a sirtuin-1 (SIRT1)-dependent manner. In renal tubular epithelial cells, Na2S4 directly sulfhydrated SIRT1 at two conserved CXXC domains (Cys371/374; Cys395/398), then induced dephosphorylation and deacetylation of its targeted proteins including p65 NF-κB and STAT3, thereby reducing high glucose (HG)-caused oxidative stress, cell apoptosis, inflammation response and epithelial-to-mesenchymal transition (EMT) progression. Most importantly, inactivation of SIRT1 by a specific inhibitor EX-527, small interfering RNA (siRNA), a de-sulfhydration reagent dithiothreitol (DTT), or mutation of Cys371/374 and Cys395/398 sites at SIRT1 abolished the protective effects of Na2S4 on diabetic kidney insulting. These results reveal that polysulfides may attenuate diabetic renal lesions via inactivation of p65 NF-κB and STAT3 phosphorylation/acetylation through sulfhydrating SIRT1.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Si-Ping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Meng-Yuan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
13
|
Sanz-González SM, García-Medina JJ, Zanón-Moreno V, López-Gálvez MI, Galarreta-Mira D, Duarte L, Valero-Velló M, Ramírez AI, Arévalo JF, Pinazo-Durán MD. Clinical and Molecular-Genetic Insights into the Role of Oxidative Stress in Diabetic Retinopathy: Antioxidant Strategies and Future Avenues. Antioxidants (Basel) 2020; 9:E1101. [PMID: 33182408 PMCID: PMC7697026 DOI: 10.3390/antiox9111101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) overproduction and ROS-signaling pathways activation attack the eyes. We evaluated the oxidative stress (OS) and the effects of a daily, core nutritional supplement regimen containing antioxidants and omega 3 fatty acids (A/ω3) in type 2 diabetics (T2DM). A case-control study was carried out in 480 participants [287 T2DM patients with (+)/without (-) diabetic retinopathy (DR) and 193 healthy controls (CG)], randomly assigned to a daily pill of A/ω3. Periodic evaluation through 38 months allowed to outline patient characteristics, DR features, and classic/OS blood parameters. Statistics were performed by the SPSS 24.0 program. Diabetics displayed significantly higher circulating pro-oxidants (p = 0.001) and lower antioxidants (p = 0.0001) than the controls. Significantly higher plasma malondialdehyde/thiobarbituric acid reactive substances (MDA/TBARS; p = 0.006) and lower plasma total antioxidant capacity (TAC; p = 0.042) and vitamin C (0.020) was found in T2DM + DR versus T2DM-DR. The differential expression profile of solute carrier family 23 member 2 (SLC23A2) gene was seen in diabetics versus the CG (p = 0.001), and in T2DM + DR versus T2DM - DR (p < 0.05). The A/ω3 regime significantly reduced the pro-oxidants (p < 0.05) and augmented the antioxidants (p < 0.05). This follow-up study supports that a regular A/ω3 supplementation reduces the oxidative load and may serve as a dietary prophylaxis/adjunctive intervention for patients at risk of diabetic blindness.
Collapse
Affiliation(s)
- Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
| | - José J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, General University Hospital Morales Meseguer, Ave. Marques de los Velez, s/n 30008 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120 El Palmar Murcia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Area of Health, Valencian International University, Calle Pintor Sorolla 21, 46002 Valencia, Spain
| | - María I. López-Gálvez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, The University Clinic Hospital, Ave. Ramón y Cajal 3, 47003 Valladolid, Spain
| | - David Galarreta-Mira
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Ophthalmology, The University Clinic Hospital, Ave. Ramón y Cajal 3, 47003 Valladolid, Spain
| | - Lilianne Duarte
- Department of Ophthalmology, Complexo Hospitalar “Entre Douro e Vouga”, 4520-211 Santa Maria da Feira, Portugal;
| | - Mar Valero-Velló
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
| | - Ana I. Ramírez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
- Department of Immunology, Ophthalmology and Otorrinolaringology, Faculty of Optics and Optometry, Universidad Complutense, Calle Arcos de Jalón 118, 28037 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Faculty of Medicine, Universidad Complutense, Plaza Ramón y Cajal, s/n 28040 Madrid, Spain
| | - J. Fernando Arévalo
- Wilmer s Eye Institute at the Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - María D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (S.M.S.-G.); (J.J.G.-M.); (V.Z.-M.); (M.V.-V.); (M.D.P.-D.)
- Cellular and Molecular Ophthalmo-Biology Group, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (M.I.L.-G.); (D.G.-M.)
| | | |
Collapse
|
14
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
15
|
Li C, Ma Q, Toan S, Wang J, Zhou H, Liang J. SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol 2020; 36:101659. [PMID: 32738788 PMCID: PMC7395441 DOI: 10.1016/j.redox.2020.101659] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Endothelial cells lining the microvasculature are particularly vulnerable to the deleterious effects of cardiac ischemia/reperfusion (I/R) injury, a susceptibility that is partially mediated by dysregulated intracellular calcium signals. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) functions to recycle calcium from the cytosol back to the endoplasmic reticulum. The purpose of this study is to explore the roles and mechanisms of SERCA in protecting microcirculation against cardiac I/R injury. Our data showed that overexpression of SERCA significantly reduced I/R-induced luminal stenosis and vascular wall edema, possibly through normalization of the ratio between eNOS and ET-1. I/R-induced erythrocyte morphological changes in micro-vessels could be reversed by SERCA overexpression through transcriptional inhibition of the expression of adhesive factors. In addition, SERCA-sustained endothelial barrier integrity reduced the likelihood of inflammatory cells infiltrating the myocardium. Furthermore, we found that SERCA overexpression attenuated intracellular calcium overload, suppressed mitochondrial calcium uniporter (MCU) expression, and prevented the abnormal opening of mitochondrial permeability transition pores (mPTP) in I/R-treated cardiac microvascular endothelial cells (CMECs). Interestingly, the administration of calcium activator or MCU agonist induced endothelial necroptosis in vitro and thus abolished the microvascular protection afforded by SERCA in reperfused heart tissue in vivo. In conclusion, by using gene delivery strategies to specifically target SERCA in vitro and in vivo, we identify a potential novel pathway by which SERCA overexpression protects microcirculation against cardiac I/R injury in a manner dependent on the calcium/MCU/necroptosis pathway. These findings should be taken into consideration in the development of pharmacological strategies for therapeutic interventions against cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Chen Li
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, 528000, Guangdong, China
| | - Qinghui Ma
- Department of Oncology Hematology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, 528000, Guangdong, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Jin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianqiu Liang
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, 528000, Guangdong, China.
| |
Collapse
|
16
|
Shinkai Y, Kumagai Y. Sulfane Sulfur in Toxicology: A Novel Defense System Against Electrophilic Stress. Toxicol Sci 2020; 170:3-9. [PMID: 30985901 DOI: 10.1093/toxsci/kfz091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Electrophiles can undergo covalent modification of cellular proteins associated with its dysfunction, thereby exerting toxicity. Small nucleophilic molecules such as glutathione protect cells from electrophilic insult by binding covalently to electrophiles to form adducts that are excreted into the extracellular space. Recent studies indicate that sulfane sulfur, which is defined as a sulfur atom with 6 valence electrons and no charge, plays an essential role in protection against electrophile toxicity because sulfane sulfur can be highly nucleophilic compared to the corresponding thiol group. Advances in the development of assays to detect sulfane sulfur have revealed that sulfane sulfur-containing molecules such as persulfide/polysulfide species are ubiquitous in cells and tissues. Also, there is growing evidence that the binding of sulfane sulfur to electrophiles forms sulfur adducts as detoxified metabolites. Although the biosynthesis pathways of sulfane sulfur are known, its regulatory function in toxicology is still unclear. This review outlines the current knowledge of the synthesis, chemical properties, detection methods, interactions with electrophiles, and toxicological significance of sulfane sulfur, as well as suggesting directions for future research.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
17
|
Li M, Li R. IL-2 regulates oral mucosa inflammation through inducing endoplasmic reticulum stress and activating the NF- ĸB pathway. J Recept Signal Transduct Res 2020; 40:187-193. [PMID: 32054394 DOI: 10.1080/10799893.2020.1725570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: The molecular mechanism underlying oral mucosa inflammation remains unknown.Aim: The aim of our study is to explore the influence of interleukin-2 (IL-2) in regulating oral mucosa viability and inflammation response.Methods: Oral mucosa epithelium was treated with IL-2. Cell viability and death were determined via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefo (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Inflammation response was measured via enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Western blot and immunofluorescence were used to verify the alterations of nuclear factor-κB (NF-κB) pathway.Results: IL-2 treatment induced a loss of cell viability in oral mucosa. Besides, inflammatory factors transcription and expression were significantly elevated in response to IL-2 treatment. In addition, oxidative stress and cell apoptosis were also augmented by IL-2 treatment. Mechanistically, IL-2 treatment was associated with an activation of the NF-ĸB pathway. Inhibition of NF-ĸB pathway could abolish the promotive effects exerted by IL-2 on oral mucosa death and inflammation response.Conclusion: Taken together, our results demonstrated that IL-2 treatment activated NF-ĸB pathway and then promoted oral mucosa inflammation, leading to intracellular oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Ronghua Li
- Department of stomatology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
18
|
Zhang Y, Zhang H, Shi W, Wang W. Mief1 augments thyroid cell dysfunction and apoptosis through inhibiting AMPK-PTEN signaling pathway. J Recept Signal Transduct Res 2020; 40:15-23. [PMID: 31960779 DOI: 10.1080/10799893.2020.1716799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Inflammation-mediated thyroid cell dysfunction and apoptosis increases the like-hood of hypothyroidism.Aim: Our aim in the present study is to explore the role of mitochondrial elongation factor 1 (Mief1) in thyroid cell dysfunction induced by TNFα.Materials and methods: Different doses of TNFα were used to incubate with thyroid cells in vitro. The survival rate, apoptotic index and proliferation capacity of thyroid cells were measured. Cellular energy metabolism and endoplasmic reticulum function related to protein synthesis were detected.Results: In response to TNFα treatment, the levels of Mief1 were increased, coinciding with a drop in the viability of thyroid cells in vitro. Loss of Mief1 attenuates TNFα-induced cell death through reducing the ratio of cell apoptosis. Further, we found that Mief1 deletion reversed cell energy metabolism and this effect was attributable to mitochondrial protection. Mief1 knockdown sustained mitochondrial membrane potential and reduced mitochondrial ROS overproduction. In addition, Mief1 knockdown also reduced endoplasmic reticulum stress, as evidenced by decreased levels of Chop and Caspase-12. Finally, our data verified that TNFα treatment inhibited the activity of AMPK-PTEN pathway whereas Mief1 deletion reversed the activity of AMPK and thus promoted the upregulation of PTEN. However, inhibition of AMPK-PTEN pathways could abolish the beneficial effects exerted by Mief1 deletion on thyroid cells damage and dysfunction.Conclusions: Altogether, our data indicate that immune abnormality-mediated thyroid cell dysfunction and death are alleviated by Mief1 deletion possible driven through reversing the activity of AMPK-PTEN pathways.
Collapse
Affiliation(s)
- Yonglan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, Tianjin, People's Republic of China
| | - Wenjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Song J, Lu C, Zhao W, Shao X. Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J Cell Physiol 2019; 234:20969-20979. [PMID: 31025320 DOI: 10.1002/jcp.28701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
The role of mitochondrial dysfunction and its molecular mechanism in inflammation-induced acute liver failure (ALF) remain unknown. Despite the numerous studies performed to date, very few therapies are available for inflammation-induced ALF. Therefore, our study is aimed to explore the regulatory effects of mitochondrial stress and the Akt-Sirt3 pathway on the development of TNF-α-induced hepatocyte death and assess the therapeutic effects of melatonin on the damaged liver. Our results exhibited that TNF-α treatment induced hepatocyte damage in vitro; the effect of which was dose-dependently inhibited by melatonin. At the molecular level, TNF-α-treated hepatocytes expressed lower levels of Sirt3 and subsequently exhibited mitochondrial stress. Interestingly, melatonin treatment improved mitochondrial bioenergetics, reduced mitochondrial oxidative stress, reversed mitochondrial dynamics, and repressed mitochondrial apoptosis by reversing the decrease in Sirt3 expression after TNF-α challenge. In addition, we found that melatonin-regulated Sirt3 expression in a manner dependent on the Akt pathway. Blockade of the Akt pathway abolished the protective exerted by melatonin on mitochondria and hepatocyte under TNF-α treatment. In conclusion, TNF-α promotes hepatocyte apoptosis by inducing mitochondrial stress. However, melatonin significantly increases the activity of the Akt/Sirt3 axis and consequently maintains mitochondrial homeostasis, restoring hepatocyte viability in an inflammatory environment. Thus, the information compiled here might provide important perspectives for the use of melatonin in the clinic for preventive and therapeutic applications in patients with ALF based on its anti-inflammatory and mitochondria-protective effects.
Collapse
Affiliation(s)
- Jie Song
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Zhong J, Tan Y, Lu J, Liu J, Xiao X, Zhu P, Chen S, Zheng S, Chen Y, Hu Y, Guo Z. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: A novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol 2019; 26:101287. [PMID: 31386965 PMCID: PMC6692063 DOI: 10.1016/j.redox.2019.101287] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
The basic pathophysiological mechanisms underlying septic cardiomyopathy have not yet been completely clarified. Disease-specific treatments are lacking, and care is still based on supportive modalities. The aim of our study was to assess the protective effects of melatonin on septic cardiomyopathy, with a focus on the interactions between receptor-interacting protein kinase 3 (Ripk3), the mitochondria, endoplasmic reticulum (ER) and cytoskeletal degradation in cardiomyocytes. Ripk3 expression was increased in heart samples challenged with LPS, followed by myocardial inflammation, cardiac dysfunction, myocardial breakdown and cardiomyocyte death. The melatonin treatment attenuated septic myocardial injury in a comparable manner to the genetic depletion of Ripk3. Molecular investigations revealed that Ripk3 intimately regulated mitochondrial function, ER stress, cytoskeletal homeostasis and cardioprotective signaling pathways. Melatonin-mediated inhibition of Ripk3 improved mitochondrial bioenergetics, reduced mitochondria-initiated oxidative damage, sustained mitochondrial dynamics, ameliorated ER stress, normalized calcium recycling, and activated cardioprotective signaling pathways (including AKT, ERK and AMPK) in cardiomyocytes. Interestingly, Ripk3 overexpression mediated resistance to melatonin therapy following the infection of LPS-treated hearts with an adenovirus expressing Ripk3. Altogether, our findings identify Ripk3 upregulation as a novel risk factor for the development of sepsis-related myocardial injury, and melatonin restores the physiological functions of the mitochondria, ER, contractile cytoskeleton and cardioprotective signaling pathways. Additionally, our data also reveal a new, potentially therapeutic mechanism by which melatonin protects the heart from sepsis-mediated dysfunction, possibly by targeting Ripk3.
Collapse
Affiliation(s)
- Jiankai Zhong
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Jichen Liu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinji Zhu
- Medical School of Chinese PLA, PLA General Hospital, Beijing, 100853, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Yuying Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. Int J Biol Macromol 2019; 140:709-718. [PMID: 31445155 DOI: 10.1016/j.ijbiomac.2019.08.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) have attracted considerable attention for controlled drug delivery. However, the interaction between nanoparticles and the biological macromolecules of physiological system must be valued because the formed protein corona will endow NMOFs with new biorecognition properties. In this study, we carried out detailed protein adsorption studies in vitro and cell uptake tests of HeLa cells for nanospherical Uio66 and nanooctahedral Uio67. Uio67 with higher binding constants to human serum albumin needed to combine more protein molecules to achieve colloidal stability state than that needed by Uio66, and this phenomenon led Uio67 to aggregate under the same incubation condition due to the formation of a single-layer protein. Uio67 also induced an evident conformation change in protein to stabilize the combination. In particular, the cell uptake efficiencies of the two systems showed a significant thickness dependence on the protein corona. When samples incubated in 10% fetal bovine serum (FBS), the intracellular rate was the highest for both systems, but the rate was not proportional to the FBS concentration. Results of this work are important to the development of the considerable potential NMOFs-based medicals and also provide additional insight into protein corona.
Collapse
|
22
|
Chen YM, Li C, Zhang WJ, Shi Y, Wen ZJ, Chen QX, Wang Q. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents. J Enzyme Inhib Med Chem 2019; 34:990-998. [PMID: 31072148 PMCID: PMC6522964 DOI: 10.1080/14756366.2019.1609467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The novel kojic acid derivatives KAD1 and KAD2 have been demonstrated that they exhibited potent anti-melanogenesis activity in our previous report. In this study, we further study the inhibitory mechanism on mushroom tyrosinase. The inhibitory types of both KADs on diphenolase were classified as mixed type based on the results of the kinetic model. The interaction between KADs and tyrosinase was illustrated by fluorescence quenching, molecular docking and copper chelate activity. The KADs were also evaluated with respect to their antioxidant activities by DPPH and ABTS+ assays. The results showed that KADs have more potent antioxidant activities than kojic acid. Our study could provide new ideas for the development of new anti-tyrosinase and antioxidant agents.
Collapse
Affiliation(s)
- Yan-Mei Chen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Chen Li
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Wen-Jing Zhang
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Yan Shi
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Zi-Jie Wen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Qing-Xi Chen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Qin Wang
- a School of Life Sciences , Xiamen University , Xiamen , China
| |
Collapse
|
23
|
Xu M, Hua Y, Qi Y, Meng G, Yang S. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 2019; 28:776-785. [PMID: 30927279 DOI: 10.1111/exd.13930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Hydrogen sulphide (H2 S) is an important gasotransmitter with several physiological functions. However, the roles and the detailed mechanisms of H2 S on skin wound healing are not known well. In the present study, 129S1/SvImJ mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for 2 weeks. Then, a round wound of 6 mm diameter with depth into the dermis was made. The skin wound area, blood perfusion, superoxide production, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), expression of vascular endothelial growth factor (VEGF), dynamin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) were measured. After NaHS (50 μmol/L) pre-administration for 4 hours, cell migration rate, DRP1, OPA1 and α-smooth muscle actin (α-SMA) expression, superoxide production and mitochondrial membrane potential in primary skin fibroblasts were measured. Tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in human keratinocytes were also measured. The results showed that NaHS pretreatment significantly accelerated wound healing and improved blood flow in the wound after operation. NaHS increased VEGF expression in the wound and promoted tube formation in HUVECs. Meanwhile, NaHS attenuated reactive oxygen species (ROS) production, suppressed MDA level but restored T-AOC in the wound. NaHS also promoted skin fibroblasts migration and α-SMA expression after scratch. Moreover, NaHS alleviated ROS, increased mitochondrial membrane potential, decreased DRP1 but enhanced OPA1 expression in skin fibroblasts after scratch. NaHS also accelerated human keratinocytes migration after scratch. Taken together, exogenous H2 S supplementary accelerated the skin wound healing, which might be related to oxidative stress inhibition and VEGF enhancement.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
24
|
Liu J, Xu X, Jiang R, Sun L, Zhao D. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway. Biosci Biotechnol Biochem 2019; 83:1205-1215. [PMID: 30999826 DOI: 10.1080/09168451.2019.1606694] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Panax ginseng C. A. Meyer has been widely used in skin care. Our previous study showed that the phenolic acids in ginseng root extract (GRE) impart inhibitory effects on melanogenesis. In this study, we found that as the most abundant component of phenolic acids in GRE, vanillic acid decreased tyrosinase activity and melanin levels with or without α-MSH stimulation and suppressed the expression of microphthalmia-associated transcription factor (MITF) and melanogenic enzymes in B16F10 cells. Furthermore, vanillic acid downregulated NOS activity, nitric oxide (NO) content, cGMP level, guanylate cyclase (GC) and protein kinase G (PKG) activity, and the phosphorylation of cAMP-response element-binding protein (CREB), whereas arbutin had no effect on the NO/PKG pathway. These findings indicate that vanillic acid in GRE suppressed melanogenesis by inhibiting the NO/PKG signaling pathways. This study provides a potential mechanism underlying the inhibitory effect of ginseng on melanogenesis.
Collapse
Affiliation(s)
- Jianzeng Liu
- a Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , PR China
| | - Xiaohao Xu
- b Research Center of Traditional Chinese Medicine , the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China
| | - Rui Jiang
- c Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Science , Beihua University , Jilin , PR China
| | - Liwei Sun
- b Research Center of Traditional Chinese Medicine , the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China.,c Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Science , Beihua University , Jilin , PR China
| | - Daqing Zhao
- a Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , PR China
| |
Collapse
|
25
|
Bátai IZ, Horváth Á, Pintér E, Helyes Z, Pozsgai G. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide. Front Endocrinol (Lausanne) 2018; 9:55. [PMID: 29535682 PMCID: PMC5835328 DOI: 10.3389/fendo.2018.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs) are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM) liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS). In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline). Animals were treated intraperitoneally with POLY (17 µmol/kg) or DMTS (250 µmol/kg) or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO) activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron-SOM axis. While antinociceptive effects of POLY are transmitted by activation of peptidergic nerves via TRPA1, release of SOM and its effect on sst4 receptors, those of DMTS partially rely on SOM release triggered by other routes. SOM is responsible for the inhibition of paw swelling by DMTS, but TRPA1 does not contribute to its release. Modulation of MPO activity by DMTS is independent of TRPA1 and sst4.
Collapse
Affiliation(s)
- István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Gábor Pozsgai,
| |
Collapse
|