1
|
Wang JX, Yu SJ, Huang G, Yu YB, Li YQ. Apolipoprotein A-I: Potential Protection Against Intestinal Injury Induced by Dietary Lipid. J Inflamm Res 2024; 17:5711-5721. [PMID: 39219814 PMCID: PMC11366247 DOI: 10.2147/jir.s468842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The intestinal barrier system protects the human body from harmful factors, by continuously renewing the intestinal epithelium, tight junctions and enteric microbes. However, dietary fat can harm the intestinal epithelial barrier enhancing gut permeability. In recent years, Apolipoprotein A-I has attracted much attention because of its anti-inflammatory properties. Numerous studies have demonstrated that Apolipoprotein A-I can regulate mucosal immune cells, inhibit the progression of inflammation, promote epithelial proliferation and repair, and maintain physical barrier function; it can also regulate angiogenesis, thereby improving local circulation. This article is intended to elucidate the mechanism by which Apolipoprotein A-I improves intestinal barrier damage caused by dietary fat and to review the role of Apolipoprotein A-I in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Weifang Medical College, Weifang People’s Hospital, Weifang, Shandong Province, People’s Republic of China
| | - Shi-Jia Yu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| |
Collapse
|
2
|
Abu-Alghayth MH, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Afifi M, Al-Farga A, Wahsh E, Batiha GES. Atheroprotective role of vinpocetine: an old drug with new indication. Inflammopharmacology 2024:10.1007/s10787-024-01529-5. [PMID: 39141151 DOI: 10.1007/s10787-024-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 08/15/2024]
Abstract
Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, 67714, Bisha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, 11741, Athens, Greece
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Afifi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Wahsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Campus, Arish, 45511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
4
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Alshehri AA, Al-Kuraishy HM, Al-Gareeb AI, Jawad SF, Khawagi WY, Alexiou A, Papadakis M, Assiri AA, Elhadad H, El-Saber Batiha G. The anti-inflammatory properties of vinpocetine mediates its therapeutic potential in management of atherosclerosis. J Inflamm (Lond) 2024; 21:19. [PMID: 38858751 PMCID: PMC11165849 DOI: 10.1186/s12950-024-00394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatments towards endothelial dysfunction and AS is Vinpocetine (VPN). VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE-1) and has anti-inflammatory and antioxidant effects through inhibition the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against the development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present review was to discuss the mechanistic role of VPN in the pathogenesis AS. Most of pro-inflammatory cytokines that released from macrophages are inhibited by action of VPN through NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by constraining the expression and action of pro-inflammatory cytokines. As well, VPN is effective in reducing of oxidative stress a cornerstone in the pathogenesis of AS through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevents the erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress, and improvement of plaque stability effects could be effective agent in the management of AS.
Collapse
Affiliation(s)
- Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, PO.Box13, Al-Ameer Qu./Najaf, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | - Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Universityof Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University Abha, Abha, Saudi Arabia
| | - Heba Elhadad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
6
|
Zhao F, Xie L, Weng Z, Huang Y, Zheng L, Yan S, Shen X. Combined with dynamic serum proteomics and clinical follow-up to screen the serum proteins to promote the healing of diabetic foot ulcer. Endocrine 2024; 84:365-379. [PMID: 37938414 DOI: 10.1007/s12020-023-03579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Non-healing diabetic foot ulcers are a leading cause of disability and death in diabetic patients, which often results in lower limb amputation. This study aimed to investigate the impact of biomarkers on the healing of diabetic foot ulcers by utilizing dynamic serum proteomics and skin proteomic analysis, combined with clinical case follow-up studies. METHODS To analyze dynamic serum proteomic changes in four groups, age-matched normal subjects, diabetic patients, pretreatment diabetic foot ulcer patients, and healed diabetic foot ulcer patients were selected. The differential proteins were screened in conjunction with normal and diabetic foot ulcer skin proteomics. In this study, a total of 80 patients with diabetic foot ulcers were enrolled and monitored for 3-6 months during treatment. To verify the significance of the differential proteins, age-matched diabetic patients (240 patients) and healthy controls (160 patients) were included as controls. RESULTS Dynamic serum proteomics trend showed that the level of negative regulatory proteins related to endothelial cell migration, angiogenesis, and vascular development was significantly decreased after treatment of diabetic foot ulcer. GO enrichment analysis suggested that differentially expressed proteins were mainly enriched in protein activation cascade, immunoglobulin production, and complement activation. The researchers identified the core proteins APOA1, LPA, and APOA2 through a convergence of serum and skin proteomics screening. Clinical cases further validated that APOA1 levels are decreased in diabetic foot ulcer patients and are correlated with disease severity. In addition, animal experiments showed that APOA1 could promote wound healing in diabetic mice. CONCLUSIONS Based on our dynamic proteomics and clinical case studies, our bioinformatic analysis suggests that APOA1 plays a critical role in linking coagulation, inflammation, angiogenesis, and wound repair, making it a key protein that promotes the healing of diabetic foot ulcers.
Collapse
Affiliation(s)
- Fengying Zhao
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Liangxiao Xie
- Department of Endocrinology and Metabolism, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Zhiyan Weng
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yihong Huang
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lifeng Zheng
- Orthopedics Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ximei Shen
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
7
|
Sun HJ, Ni ZR, Liu Y, Fu X, Liu SY, Hu JY, Sun QY, Li YC, Hou XH, Zhang JR, Zhu XX, Lu QB. Deficiency of neutral cholesterol ester hydrolase 1 (NCEH1) impairs endothelial function in diet-induced diabetic mice. Cardiovasc Diabetol 2024; 23:138. [PMID: 38664801 PMCID: PMC11046792 DOI: 10.1186/s12933-024-02239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Aorta/enzymology
- Aorta/physiopathology
- Aorta/metabolism
- Aorta/drug effects
- Aorta/pathology
- Caveolin 1/metabolism
- Caveolin 1/deficiency
- Caveolin 1/genetics
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diet, High-Fat
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/enzymology
- Obesity/physiopathology
- Obesity/metabolism
- Signal Transduction
- Sterol Esterase/metabolism
- Sterol Esterase/genetics
- Ubiquitination
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Zhang-Rong Ni
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Xiao Fu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Shi-Yi Liu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yu-Chao Li
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hui Hou
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ji-Ru Zhang
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xue-Xue Zhu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China.
| |
Collapse
|
8
|
Li Y, Xiong Z, Jiang WL, Tian D, Zhou H, Hou Q, Xiao L, Zhang M, Huang L, Zhong L, Zhou L, Zeng GG. An innovative viewpoint on the existing and prospectiveness of SR-B1. Curr Probl Cardiol 2024; 49:102226. [PMID: 38040207 DOI: 10.1016/j.cpcardiol.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.
Collapse
Affiliation(s)
- Yonggui Li
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijie Xiong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Tian
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haiyou Zhou
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liang Xiao
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mengjie Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liubin Huang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lianping Zhong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Guang-Gui Zeng
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
10
|
Effects of smoking cessation using varenicline on the serum concentrations of oxidized high-density lipoprotein: Comparison with high-density lipoprotein cholesterol. PLoS One 2022; 17:e0277766. [PMID: 36449474 PMCID: PMC9710765 DOI: 10.1371/journal.pone.0277766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The oxidized high-density lipoprotein (oxHDL) is a possible marker for cardiovascular diseases. This study investigated the effects of smoking cessation with varenicline (a partial agonist of nicotinic acetylcholine receptors) on the levels of oxHDL in the serum of subjects compared with those of high-density lipoprotein cholesterol (HDL-C). METHODS Data of 99 nicotine-dependent adult subjects who visited the smoking cessation outpatient services at International University of Health and Welfare Shioya Hospital were reviewed. Each subject was treated with varenicline titrated up to 1.0 mg twice daily for 12 weeks. Serum levels of oxHDL and HDL-C were repeatedly measured by enzyme-linked immunosorbent assay and enzymatic method, respectively. RESULTS The serum levels of oxHDL were significantly decreased from 163.2 ± 96.6 to 148.3 ± 80.7 U/mL (p = 0.034, n = 99). This effect was more prominent when the data of subjects in whom the treatment was objectively unsuccessful (exhaled carbon monoxide at 3 months ≥ 10 ppm) were omitted (from 166.6 ± 98.4 to 147.4 ± 80.6 U/mL; p = 0.0063, n = 93). In contrast, the serum levels of HDL-C were significantly increased (p = 0.0044, n = 99). There was a close relationship between the baseline levels of oxHDL and HDL-C (R = 0.45, p < 0.0001, n = 99). Changes in the levels of oxHDL were closely associated with changes in the levels of exhaled carbon monoxide in subjects in whom smoking cessation with varenicline was very effective (decrease in exhaled carbon monoxide by ≥ 15 ppm after treatment with varenicline; R = 0.42, p = 0.0052, n = 43). CONCLUSIONS Although there was a close relationship between the baseline serum concentrations of oxHDL and HDL-C, smoking cessation decreased oxHDL and increased HDL-C. This effect on oxHDL may be associated with the effectiveness of smoking cessation.
Collapse
|
11
|
Shin MD, Ortega-Rivera OA, Steinmetz NF. Multivalent Display of ApoAI Peptides on the Surface of Tobacco Mosaic Virus Nanotubes Improves Cholesterol Efflux. Bioconjug Chem 2022; 33:1922-1933. [PMID: 36191144 PMCID: PMC9772860 DOI: 10.1021/acs.bioconjchem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is a progressive cardiovascular disease in which cholesterol-rich plaques build up within arteries, increasing the risk of thrombosis, myocardial infarction, and stroke. One promising therapeutic approach is the use of high-density lipoprotein (HDL) biomimetic formulations based on ApoAI peptides that promote cholesterol efflux from plaques, ultimately leading to cholesterol excretion. Here, we describe the multivalent display of ApoAI peptides on the surface of protein nanotubes derived from the plant virus tobacco mosaic virus (TMV) and protein nanoparticles using virus-like particles from bacteriophage Qβ. Bioconjugation yielded ApoAI conjugates varying in size and morphology. We tested ABCA1-mediated cholesterol efflux using macrophage foam cells, the mitigation of reactive oxygen species in endothelial cells, and wound healing in endothelial cells. We found that the multivalent ApoAI platform, in particular the TMV-based nanotube, significantly improved the efficacy of cholesterol efflux compared to free peptides, Qβ nanoparticle formulations, and traditional HDL therapy. Finally, to better understand the mechanistic basis of enhanced cholesterol efflux, we used confocal microscopy to show that while native TMV was taken up by cells, TMV-ApoAI remained at the exterior of foam cell membranes and efflux was documented using fluorescent cholesterol. Together, these data highlight that high aspect ratio materials with multivalent display of ApoAI peptides offer unique capabilities promoting efficient cholesterol efflux and may find applications in cardiovascular therapy.
Collapse
Affiliation(s)
- Matthew D. Shin
- Department of NanoEngineering and, Center for Nano-ImmunoEngineering, University of, California San Diego, La Jolla, California 92039, United, States
| | - Oscar A. Ortega-Rivera
- Department of NanoEngineering and Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92039, United, States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, Center for Nano-ImmunoEngineering, Department of Bioengineering, Department of Radiology, Moores Cancer, Center, and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California, 92039, United States
| |
Collapse
|
12
|
Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, Cazzola R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022; 10:1344. [PMID: 35740366 PMCID: PMC9220412 DOI: 10.3390/biomedicines10061344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is an epidemic public health problem that has progressively worsened in recent decades and is associated with low-grade chronic inflammation (LGCI) in metabolic tissues and an increased risk of several diseases. In particular, LGCI alters metabolism and increases cardiovascular risk by impairing endothelial function and altering the functions of adiponectin and high-density lipoproteins (HDLs). Adiponectin is an adipokine involved in regulating energy metabolism and body composition. Serum adiponectin levels are reduced in obese individuals and negatively correlate with chronic sub-clinical inflammatory markers. HDLs are a heterogeneous and complex class of lipoproteins that can be dysfunctional in obesity. Adiponectin and HDLs are strictly interdependent, and the maintenance of their interplay is essential for vascular function. Since such a complex network of interactions is still overlooked in clinical settings, this review aims to highlight the mechanisms involved in the impairment of the HDLs/adiponectin axis in obese patients to predict the risk of cardiovascular diseases and activate preventive countermeasures. Here, we provide a narrative review of the role of LGCI in altering HDLs, adiponectin and endothelial functions in obesity to encourage new studies about their synergic effects on cardiovascular health and disease.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Federico Lombardoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
- Department of Pediatrics, Ospedale dei Bambini, 20154 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| |
Collapse
|
13
|
Understanding Myeloperoxidase-Induced Damage to HDL Structure and Function in the Vessel Wall: Implications for HDL-Based Therapies. Antioxidants (Basel) 2022; 11:antiox11030556. [PMID: 35326206 PMCID: PMC8944857 DOI: 10.3390/antiox11030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid modifications in the vessel wall. One important oxidative pathway involves reactive intermediates generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes. Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein (HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I), paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues. In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal, a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity. Here we provide a current update of the pathophysiological consequences of MPO-induced changes in the structure and function of HDL and discuss possible therapeutic implications and options. Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships between pathophysiological processes that affect the molecular composition and function of HDL and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately disease management.
Collapse
|
14
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
15
|
HDL Mimetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:141-151. [DOI: 10.1007/978-981-19-1592-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
HDL and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:171-187. [DOI: 10.1007/978-981-19-1592-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ji X, Li C, Lv Y, Miao Z, Wu L, Long W, Wang X, Ding H. A Novel Peptide Ameliorates TNFα- and LPS-Induced Endothelia Dysfunction in Preeclampsia. Am J Hypertens 2021; 34:1116-1124. [PMID: 34037692 DOI: 10.1093/ajh/hpab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/14/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To investigate the protective effects of the novel peptide antiendothelial dysfunction peptide in preeclampsia (AEDPPE) on tumor necrosis factor α (TNFα)- and lipopolysaccharide (LPS)-induced injury in the vascular endothelium in preeclampsia. METHODS The effects of AEDPPE on TNFα-induced vascular endothelial injury were assessed by enzyme-linked immunosorbent assay, quantitative real-time PCR, mitochondrial membrane potential assay, Cell Counting Kit-8 assay, THP-1 monocyte-human umbilical vein endothelial cell (HUVEC) adhesion assay, endothelial tube-forming assay, transcriptomic analysis, preeclamptic symptom analysis, and histological analysis in preeclampsia-like rat models induced by LPS. RESULTS AEDPPE alleviated the upregulation of antiangiogenic factors including soluble fms-like tyrosine kinase-1, endothelin-1, and tissue plasminogen activator and attenuated the reduction in mitochondrial potential induced by TNFα in HUVECs. In addition, AEDPPE treatment counteracted the decrease in tube formation and decreased the numbers of THP-1 monocytes attached to HUVECs caused by TNFα. Mechanistically, cytokine-cytokine receptor interactions enriched many genes and the TNF signaling pathway may be involved in this phenomenon. Moreover, cotreatment with LPS and AEDPPE significantly reversed the preeclampsia-like phenotype including hypertension and proteinuria and improved the functions of the kidney and placenta. CONCLUSIONS AEDPPE effectively ameliorated the vascular endothelial injury induced by TNFα and LPS in preeclampsia. We suggest that AEDPPE may be a novel therapeutic candidate for preeclampsia treatment. These findings demonstrate that AEDPPE may play an effective role in ameliorating vascular endothelial dysfunction and be a potential therapeutic agent for preeclampsia.
Collapse
Affiliation(s)
- Xiaohong Ji
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chanjuan Li
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yan Lv
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhijing Miao
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lan Wu
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xing Wang
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
19
|
Ning DS, Ma J, Peng YM, Li Y, Chen YT, Li SX, Liu Z, Li YQ, Zhang YX, Jian YP, Ou ZJ, Ou JS. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity. Atherosclerosis 2021; 328:83-91. [PMID: 34118596 DOI: 10.1016/j.atherosclerosis.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The apolipoprotein A-I mimetic peptide D-4F, among its anti-atherosclerotic effects, improves vasodilation through mechanisms not fully elucidated yet. METHODS Low-density lipoprotein (LDL) receptor null (LDLr-/-) mice were fed Western diet with or without D-4F. We then measured atherosclerotic lesion formation, endothelial nitric oxide synthase (eNOS) phosphorylation and its association with heat shock protein 90 (HSP90), nitric oxide (NO) and superoxide anion (O2•-) production, and tetrahydrobiopterin (BH4) and GTP-cyclohydrolase 1 (GCH-1) concentration in the aorta. Human umbilical vein endothelial cells (HUVECs) and aortas were treated with oxidized LDL (oxLDL) with or without D-4F; subsequently, BH4 and GCH-1 concentration, NO and O2•- production, eNOS association with HSP90, and endothelium-dependent vasodilation were measured. RESULTS Unexpectedly, eNOS phosphorylation, eNOS-HSP90 association, and O2•- production were increased, whereas BH4 and GCH-1 concentration and NO production were reduced in atherosclerosis. D-4F significantly inhibited atherosclerosis, eNOS phosphorylation, eNOS-HSP90 association, and O2•- generation but increased NO production and BH4 and GCH-1 concentration. OxLDL reduced NO production and BH4 and GCH-1 concentration but enhanced O2•- generation and eNOS association with HSP90, and impaired endothelium-dependent vasodilation. D-4F inhibited the overall effects of oxLDL. CONCLUSIONS Hypercholesterolemia enhanced uncoupled eNOS activity by decreasing GCH-1 concentration, thereby reducing BH4 levels. D-4F reduced uncoupled eNOS activity by increasing BH4 levels through GCH-1 expression and decreasing eNOS phosphorylation and eNOS-HSP90 association. Our findings elucidate a novel mechanism by which hypercholesterolemia induces atherosclerosis and D-4F inhibits it, providing a potential therapeutic approach.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yi-Xin Zhang
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease,Guangzhou, 510080, PR China.
| |
Collapse
|
20
|
Xia LZ, Tao J, Chen YJ, Liang LL, Luo GF, Cai ZM, Wang Z. Factors Affecting the Re-Endothelialization of Endothelial Progenitor Cell. DNA Cell Biol 2021; 40:1009-1025. [PMID: 34061680 DOI: 10.1089/dna.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vascular endothelium, which plays an essential role in maintaining the normal shape and function of blood vessels, is a natural barrier between the circulating blood and the vascular wall tissue. The endothelial damage can cause vascular lesions, such as atherosclerosis and restenosis. After the vascular intima injury, the body starts the endothelial repair (re-endothelialization) to inhibit the neointimal hyperplasia. Endothelial progenitor cell is the precursor of endothelial cells and plays an important role in the vascular re-endothelialization. However, re-endothelialization is inevitably affected in vivo and in vitro by factors, which can be divided into two types, namely, promotion and inhibition, and act on different links of the vascular re-endothelialization. This article reviews these factors and related mechanisms.
Collapse
Affiliation(s)
- Lin-Zhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Tao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yan-Jun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Ling-Li Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Gui-Fang Luo
- Department of Gynaecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Ze-Min Cai
- Pediatrics Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
21
|
Li J, Chen Y, Gao J, Chen Y, Zhou C, Lin X, Liu C, Zhao M, Xu Y, Ji L, Jiang Z, Pan B, Zheng L. Eva1a ameliorates atherosclerosis by promoting re-endothelialization of injured arteries via Rac1/Cdc42/Arpc1b. Cardiovasc Res 2021; 117:450-461. [PMID: 31977009 DOI: 10.1093/cvr/cvaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/23/2019] [Accepted: 01/17/2020] [Indexed: 02/03/2023] Open
Abstract
AIMS Eva-1 homologue 1 (Eva1a) is a novel protein involved in the regulation of cardiac remodelling and plaque stability, but little is known about its role in re-endothelialization and the development of atherosclerosis (AS). Thus, in the present study, we aimed to elucidate the function of Eva1a in re-endothelialization and AS. METHODS AND RESULTS Wire injuries of carotid and femoral arteries were established in Eva1a-/- mice. Eva1a-deficient mice were crossed with apolipoprotein E-/- (ApoE-/-) mice to evaluate AS development and re-endothelialization of carotid artery injuries. Denudation of the carotid artery at 3, 5, and 7 days was significantly aggravated in Eva1a-/- mice. The neointima of the femoral artery at 14 and 28 days was consequently exacerbated in Eva1a-/- mice. The area of atherosclerotic lesions was increased in Eva1a-/-ApoE-/- mice. To explore the underlying mechanisms, we performed transwell, scratch migration, cell counting kit-8, and bromodeoxyuridine assays using cultured human aorta endothelial cells (HAECs), which demonstrated that EVA1A promoted HAEC migration and proliferation. Proteomics revealed that the level of actin-related protein 2/3 complex subunit 1B (Arpc1b) was decreased, while Eva1a expression was absent. Arpc1b was found to be a downstream molecule of EVA1A by small interfering RNA transfection assay. Activation of Rac1 and Cdc42 GTPases was also regulated by EVA1A. CONCLUSION This study provides insights into anti-atherogenesis effects of Eva1a by promoting endothelium repair. Thus, Eva1a is a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Changping Zhou
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Zongzhe Jiang
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Taiping Road 25, Luzhou, Sichuan, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| |
Collapse
|
22
|
Zhang Y, Zhang P, Gao X, Chang L, Chen Z, Mei X. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111671. [DOI: 10.1016/j.msec.2020.111671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
|
23
|
Tang H, Xue S, Zhao G, Fang C, Cai L, Shi Z, Fu W, Qian R, Zhang P, Tang X, Guo D. CLOCK disruption aggravates carotid artery stenosis through endoplasmic reticulum stress-induced endothelial-mesenchymal transition. Am J Transl Res 2020; 12:7885-7898. [PMID: 33437367 PMCID: PMC7791501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Carotid artery stenosis is a leading cause of ischemic stroke, but the underlying mechanism remains unclear. We aimed to determine the molecular mechanisms of carotid plaque progression. We analyzed the molecular and morphometric characteristics of carotid plaque samples obtained from 30 patients who underwent carotid endarterectomy. Additionally, we established a mouse model of carotid atherosclerosis by partially ligating the left common carotid arteries of male ClockΔ19/Δ19 (Clk) and wild-type (WT) C57BL/6J mice fed a high-fat diet. Clk and WT primary mouse aortic endothelial cells (pMAECs) were exposed to disturbed flow (DF) or undisturbed flow (UF) with or without treatment with the IRE-1α inhibitor STF-083010 or the PERK inhibitor GSK2606414. In human carotid artery plaques, CLOCK expression was lower in the lipid-rich necrotic core than in transitional regions, especially in the endothelium. Decreased CLOCK mRNA levels were associated with more extensive stenosis, intraplaque hemorrhage, and complex plaque in human carotid plaques. In mice, the ClockΔ19/Δ19 mutation significantly increased neointima formation and neovascularization but decreased collagen content and lumen area in partially ligated carotid arteries. In addition, ClockΔ19/Δ19 mutants exhibited significantly decreased Cdh5 expression and increased expression of endothelial-mesenchymal transition (EndMT) and endoplasmic reticulum (ER) stress markers in mice with partially ligated carotid arteries and pMAECs exposed to DF. Notably, inhibition of the IRE1α-XBP1 axis abrogated the increased EndMT caused by ClockΔ19/Δ19 mutation and DF in pMAECs. In conclusion, the disruption of CLOCK function aggravates EndMT via the IRE1α-XBP1 axis, contributing to carotid artery stenosis.
Collapse
Affiliation(s)
- Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Song Xue
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Gefei Zhao
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Chao Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Liang Cai
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan UniversityShanghai, China
| | - Pengfei Zhang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
24
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
25
|
Chen J, Wang L, Liu WH, Shi J, Zhong Y, Liu SJ, Liu SM. Aspirin protects human coronary artery endothelial cells by inducing autophagy. Physiol Int 2020; 107:294-305. [PMID: 32750030 DOI: 10.1556/2060.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/13/2020] [Indexed: 11/19/2022]
Abstract
Although the use of aspirin has substantially reduced the risks of cardiovascular events and death, its potential mechanisms have not been fully elucidated. In a previous study, we found that aspirin triggers cellular autophagy. In the present study, we aimed to determine the protective effects of aspirin on human coronary artery endothelial cells (HCAECs) and explore its underlying mechanisms. HCAECs were treated with oxidized low-density lipoprotein (ox-LDL), angiotensin II (Ang-II), or high glucose (HG) with or without aspirin stimulation. The expression levels of endothelial nitric oxide (NO) synthase (eNOS), p-eNOS, LC3, p62, phosphor-nuclear factor kappa B (p-NF-κB), p-p38 mitogen-activated protein kinase (p-p38 MAPK), and Beclin-1 were detected via immunoblotting analysis. Concentrations of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured via ELISA. NO levels were determined using the Griess reagent. Autophagic flux was tracked by tandem mRFP-GFP-tagged LC3. Results showed that aspirin increased eNOS level and reduced injury to the endothelial cells (ECs) caused by ox-LDL, Ang-II, and HG treatment in a dose-dependent manner. Aspirin also increased the LC3II/LC3I ratio, decreased p62 expression, and enhanced autophagic flux (autophagosome and autolysosome puncta) in the HCAECs. p-NF-κB and p-p38 mitogen-activated protein kinase inhibition, sVCAM-1 and sICAM-1 secretion, and eNOS activity promotion by aspirin treatment were found to be dependent on Beclin-1. These results suggested that aspirin can protect ECs from ox-LDL-, Ang-II-, and HG-induced injury by activating autophagy in a Beclin-1-dependent manner.
Collapse
Affiliation(s)
- J Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - L Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - W H Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - J Shi
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Y Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - S J Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | | |
Collapse
|
26
|
Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biol 2020; 32:101493. [PMID: 32182574 PMCID: PMC7078438 DOI: 10.1016/j.redox.2020.101493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Nitroxyl (HNO), one-electron reduced and protonated sibling of nitric oxide (NO), is a potential regulator of cardiovascular functions. It produces positive inotropic, lusitropic, myocardial anti-hypertrophic and vasodilator properties. Despite of these favorable actions, the significance and the possible mechanisms of HNO in diabetic hearts have yet to be fully elucidated. H9c2 cells or primary neonatal mouse cardiomyocytes were incubated with normal glucose (NG) or high glucose (HG). Male C57BL/6 mice received intraperitoneal injection of streptozotocin (STZ) to induce diabetes. Here, we demonstrated that the baseline fluorescence signals of HNO in H9c2 cells were reinforced by both HNO donor Angeli's salt (AS), and the mixture of hydrogen sulfide (H2S) donor sodium hydrogen sulfide (NaHS) and NO donor sodium nitroprusside (SNP), but decreased by HG. Pretreatment with AS significantly reduced HG-induced cell vitality injury, apoptosis, reactive oxygen species (ROS) generation, and hypertrophy in H9c2 cells. This effect was mediated by induction of caveolin-3 (Cav-3)/endothelial nitric oxide (NO) synthase (eNOS) complex. Disruption of Cav-3/eNOS by pharmacological manipulation or small interfering RNA (siRNA) abolished the protective effects of AS in HG-incubated H9c2 cells. In STZ-induced diabetic mice, administration of AS ameliorated the development of diabetic cardiomyopathy, as evidenced by improved cardiac function and reduced cardiac hypertrophy, apoptosis, oxidative stress and myocardial fibrosis without affecting hyperglycemia. This study shed light on how interaction of NO and H2S regulates cardiac pathology and provide new route to treat diabetic cardiomyopathy with HNO.
Collapse
|
27
|
Umar S, Ruffenach G, Moazeni S, Vaillancourt M, Hong J, Cunningham C, Cao N, Navab S, Sarji S, Li M, Lee L, Fishbein G, Ardehali A, Navab M, Reddy ST, Eghbali M. Involvement of Low-Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e012063. [PMID: 31914876 PMCID: PMC7033825 DOI: 10.1161/jaha.119.012063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Recently, we and others have reported a causal role for oxidized lipids in the pathogenesis of pulmonary hypertension (PH). However, the role of low‐density lipoprotein receptor (LDL‐R) in PH is not known. Methods and Results We examined the role of LDL‐R in the development of PH and determined the efficacy of high‐density lipoprotein mimetic peptide 4F in mitigating PH. Explanted human lungs and plasma from patients with PH and control subjects were analyzed for gene expression, histological characteristics, and lipoprotein oxidation. Male LDL‐R null (LDL‐R knockout) mice (12–15 months old) were fed chow, Western diet (WD), WD with 4F, and WD with scramble peptide for 12 weeks. Serial echocardiography, cardiac catheterization, oxidized LDL assay, real‐time quantitative reverse transcription–polymerase chain reaction, and histological analysis were performed. The effect of LDL‐R knockdown and oxidized LDL on human pulmonary artery smooth muscle cell proliferation was assessed in vitro. LDL‐R and CD36 expression levels were significantly downregulated in the lungs of patients with PH. Patients with PH also had increased lung lipid deposits, oxidized LDL, E06 immunoreactivity, and plasma oxidized LDL/LDL ratio. LDL‐R knockout mice on WD developed PH, right ventricular hypertrophy, right ventricular dysfunction, pulmonary vascular remodeling, fibrosis, and lipid deposition in lungs, aortic atherosclerosis, and left ventricular dysfunction, which were prevented by 4F. Interestingly, PH in WD group preceded left ventricular dysfunction. Oxidized LDL or LDL‐R knockdown significantly increased proliferation of human pulmonary artery smooth muscle cells in vitro. Conclusions Human PH is associated with decreased LDL‐R in lungs and increased oxidized LDL in lungs and plasma. WD‐fed LDL‐R knockout mice develop PH and right ventricular dysfunction, implicating a role for LDL‐R and oxidized lipids in PH.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Gregoire Ruffenach
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Shayan Moazeni
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mylene Vaillancourt
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Jason Hong
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Christine Cunningham
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Nancy Cao
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Sara Navab
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Shervin Sarji
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Min Li
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Lisa Lee
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Greg Fishbein
- Department of Pathology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Abbas Ardehali
- Department of Surgery David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mohamad Navab
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Srinivasa T Reddy
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Mansoureh Eghbali
- Department of Anesthesiology David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
28
|
Lenahan C, Huang L, Travis ZD, Zhang JH. Scavenger Receptor Class B type 1 (SR-B1) and the modifiable risk factors of stroke. Chin Neurosurg J 2019; 5:30. [PMID: 32922929 PMCID: PMC7398188 DOI: 10.1186/s41016-019-0178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a devastating disease that occurs when a blood vessel in the brain is either blocked or ruptured, consequently leading to deficits in neurological function. Stroke consistently ranked as one of the top causes of mortality, and with the mean age of incidence decreasing, there is renewed interest to seek novel therapeutic treatments. The Scavenger Receptor Class B type 1 (SR-B1) is a multifunctional protein found on the surface of a variety of cells. Research has found that that SR-B1 primarily functions in an anti-inflammatory and anti-atherosclerotic capacity. In this review, we discuss the characteristics of SR-B1 and focus on its potential correlation with the modifiable risk factors of stroke. SR-B1 likely has an impact on stroke through its interaction with smoking, diabetes mellitus, diet, physical inactivity, obesity, hypercholesterolemia, atherosclerosis, coronary heart disease, hypertension, and sickle cell disease, all of which are critical risk factors in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003 USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| | - Lei Huang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - Zachary D. Travis
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - John H. Zhang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| |
Collapse
|
29
|
Liu J, Jiang C, Ma X, Feng L, Wang J. Notoginsenoside Fc Accelerates Reendothelialization following Vascular Injury in Diabetic Rats by Promoting Endothelial Cell Autophagy. J Diabetes Res 2019; 2019:9696521. [PMID: 31565658 PMCID: PMC6745117 DOI: 10.1155/2019/9696521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Interventional therapies, such as percutaneous transluminal angioplasty and endovascular stent implantation, are used widely for the treatment of diabetic peripheral vascular complications. Reendothelialization is an essential process in vascular injury following interventional therapy, and hyperglycemia in diabetes mellitus (DM) plays an important role in damaging endothelial layer integrity, leading to the retardance of reendothelialization and excessive neointimal formation. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax notoginseng, effectively counteracts platelet aggregation. Nevertheless, the potential effects and molecular mechanisms of Fc on reendothelialization have yet to be explored. In this study, we present novel findings that show the benefit of Fc in accelerating reendothelialization and alleviating excessive neointimal formation following carotid artery injury in diabetic Sprague-Dawley rats in vivo. Simultaneously, the decreased autophagy of the injured carotid artery in diabetic rats was restored by Fc treatment. Our in vitro results also demonstrated that Fc promoted endothelial cell proliferation and migration under high-glucose treatment by increasing autophagy. In summary, this study supported the notion that Fc could accelerate reendothelialization following vascular injury in diabetic rats by promoting autophagy, suggesting that Fc may exert therapeutic benefits for early endothelial injury and restenosis following intervention in diabetes-associated vascular diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Interventional Radiology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Chunyu Jiang
- Department of Interventional Radiology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Xu Ma
- Department of Interventional Radiology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Lishuai Feng
- Department of Interventional Radiology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Jianbo Wang
- Department of Interventional Radiology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| |
Collapse
|
30
|
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H, Chen Y. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 2018; 16:157-168. [PMID: 29502045 PMCID: PMC5952878 DOI: 10.1016/j.redox.2018.02.019] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein 3 (Ripk3)-mediated necroptosis contributes to cardiac ischaemia-reperfusion (IR) injury through poorly defined mechanisms. Our results demonstrated that Ripk3 was strongly upregulated in murine hearts subjected to IR injury and cardiomyocytes treated with LPS and H2O2. The higher level of Ripk3 was positively correlated to the infarction area expansion, cardiac dysfunction and augmented cardiomyocytes necroptosis. Function study further illustrated that upregulated Ripk3 evoked the endoplasmic reticulum (ER) stress, which was accompanied with an increase in intracellular Ca2+ level ([Ca2+]c) and xanthine oxidase (XO) expression. Activated XO raised cellular reactive oxygen species (ROS) that mediated the mitochondrial permeability transition pore (mPTP) opening and cardiomyocytes necroptosis. By comparison, genetic ablation of Ripk3 abrogated the ER stress and thus blocked the [Ca2+]c overload-XO-ROS-mPTP pathways, favouring a pro-survival state that ultimately resulted in the inhibition of cardiomyocytes necroptosis in the setting of cardiac IR injury. In summary, the present study helps to elucidate how necroptosis is mediated by ER stress, via the calcium overload /XO/ROS/mPTP opening axis. ER stress is activated by Ripk3 in cardiac IR injury. ER stress induces calcium overload which triggers XO-dependent ROS overproduction. ROS outburst promotes mPTP opening that accounts for the necroptosis. Inhibiting ER stress favors cardiomyocytes survival and protects cardiac function.
Collapse
Affiliation(s)
- Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinhua Jin
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521 USA
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA.
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|