1
|
Chen Y, Li Y, Luo G, Luo C, Xiao Z, Lu Y, Xiang Z, Hou Z, Xiao Q, Zhou Y, Tang Q. Gene identification, expression analysis, and molecular docking of SAT and OASTL in the metabolic pathway of selenium in Cardamine hupingshanensis. PLANT CELL REPORTS 2024; 43:148. [PMID: 38775862 PMCID: PMC11111505 DOI: 10.1007/s00299-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE Identification of selenium stress-responsive expression and molecular docking of serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) in Cardamine hupingshanensis. A complex coupled with serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) is the key enzyme that catalyzes selenocysteine (Sec) synthesis in plants. The functions of SAT and OASTL genes were identified in some plants, but it is still unclear whether SAT and OASTL are involved in the selenium metabolic pathway in Cardamine hupingshanensis. In this study, genome-wide identification and comparative analysis of ChSATs and ChOASTLs were performed. The eight ChSAT genes were divided into three branches, and the thirteen ChOASTL genes were divided into four branches by phylogenetic analysis and sequence alignment, indicating the evolutionary conservation of the gene structure and its association with other plant species. qRT-PCR analysis showed that the ChSAT and ChOASTL genes were differentially expressed in different tissues under various selenium levels, suggesting their important roles in Sec synthesis. The ChSAT1;2 and ChOASTLA1;2 were silenced by the VIGS system to investigate their involvement in selenium metabolites in C. hupingshanensis. The findings contribute to understanding the gene functions of ChSATs and ChOASTLs in the selenium stress and provide a reference for further exploration of the selenium metabolic pathway in plants.
Collapse
Affiliation(s)
- Yushan Chen
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Yao Li
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Guoqiang Luo
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Cihang Luo
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhijing Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Yanke Lu
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhixin Xiang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhi Hou
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China
- College of Forestry and Horticulture, Hubei Minzu University, Enshi, 44500, China
| | - Yifeng Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China.
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China.
| | - Qiaoyu Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China.
- College of Forestry and Horticulture, Hubei Minzu University, Enshi, 44500, China.
| |
Collapse
|
2
|
Bailey-Downs LC, Sherlock LG, Crossley MN, Rivera Negron A, Pierce PT, Wang S, Zhong H, Carter C, Burge K, Eckert JV, Rogers LK, Vitiello PF, Tipple TE. Selenium Deficiency Exacerbates Hyperoxia-Induced Lung Injury in Newborn C3H/HeN Mice. Antioxidants (Basel) 2024; 13:391. [PMID: 38671839 PMCID: PMC11047402 DOI: 10.3390/antiox13040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Extremely preterm infants are often treated with supraphysiological oxygen, which contributes to the development of bronchopulmonary dysplasia (BPD). These same infants exhibit compromised antioxidant capacities due in part to selenium (Se) deficiency. Se is essential for basal and inducible antioxidant responses. The present study utilized a perinatal Se deficiency (SeD) mouse model to identify the combined effects of newborn hyperoxia exposure and SeD on alveolarization and antioxidant responses, including the identification of affected developmental pathways. Se-sufficient (SeS) and SeD C3H/HeN breeding pairs were generated, and pups were exposed to room air or 85% O2 from birth to 14 d. Survival, antioxidant protein expression, and RNA seq analyses were performed. Greater than 40% mortality was observed in hyperoxia-exposed SeD pups. Surviving SeD pups had greater lung growth deficits than hyperoxia-exposed SeS pups. Gpx2 and 4 protein and Gpx activity were significantly decreased in SeD pups. Nrf2-regulated proteins, Nqo1 and Gclc were increased in SeD pups exposed to hyperoxia. RNA seq revealed significant decreases in the Wnt/β-catenin and Notch pathways. Se is a biologically relevant modulator of perinatal lung development and antioxidant responses, especially in the context of hyperoxia exposure. The RNA seq analyses suggest pathways essential for normal lung development are dysregulated by Se deficiency.
Collapse
Affiliation(s)
- Lora C. Bailey-Downs
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Laura G. Sherlock
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Michaela N. Crossley
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Aristides Rivera Negron
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Paul T. Pierce
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Shirley Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Hua Zhong
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Cynthia Carter
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Kathryn Burge
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Jeffrey V. Eckert
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Lynette K. Rogers
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Peter F. Vitiello
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
| | - Trent E. Tipple
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.C.B.-D.); (S.W.); (H.Z.); (C.C.); (K.B.); (L.K.R.); (P.F.V.)
- Oklahoma Children’s Hospital OU Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Oglio R, Rodriguez C, Salvarredi L, Rossich L, Perona M, Dagrosa A, Juvenal G, Thomasz L. Selenium bioavailability modulates the sensitivity of thyroid cells to iodide excess. Chem Biol Interact 2024; 387:110810. [PMID: 38013145 DOI: 10.1016/j.cbi.2023.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-β1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-β1 mRNA and TGF-β inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-β1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.
Collapse
Affiliation(s)
- Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Carla Rodriguez
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Leonardo Salvarredi
- FUESMEN, Mendoza, Argentina; Balseiro Institute, National University of Cuyo, Mendoza, Argentina
| | - Luciano Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Marina Perona
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Alejandra Dagrosa
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Al-Kharashi LA, Al-Harbi NO, Ahmad SF, Attia SM, Algahtani MM, Ibrahim KE, Bakheet SA, Alanazi MM, Alqarni SA, Alsanea S, Nadeem A. Auranofin Modulates Thioredoxin Reductase/Nrf2 Signaling in Peripheral Immune Cells and the CNS in a Mouse Model of Relapsing-Remitting EAE. Biomedicines 2023; 11:2502. [PMID: 37760943 PMCID: PMC10526216 DOI: 10.3390/biomedicines11092502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory autoimmune diseases. It causes the demyelination of neurons and the subsequent degeneration of the central nervous system (CNS). The infiltration of leukocytes of both myeloid and lymphoid origins from the systemic circulation into the CNS triggers autoimmune reactions through the release of multiple mediators. These mediators include oxidants, pro-inflammatory cytokines, and chemokines which ultimately cause the characteristic plaques observed in MS. Thioredoxin reductase (TrxR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a crucial role in the regulation of inflammation by modulating the transcription of antioxidants and the suppression of inflammatory cytokines. The gold compound auranofin (AFN) is known to activate Nrf2 through the inhibition of TrxR; however, the effects of this compound have not been explored in a mouse model of relapsing-remitting MS (RRMS). Therefore, this study explored the influence of AFN on clinical features, TrxR/Nrf2 signaling [heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD-1)] and oxidative/inflammatory mediators [IL-6, IL-17A, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), nitrotyrosine] in peripheral immune cells and the CNS of mice with the RR type of EAE. Our results showed an increase in TrxR activity and a decrease in Nrf2 signaling in SJL/J mice with RR-EAE. The treatment with AFN caused the amelioration of the clinical features of RR-EAE through the elevation of Nrf2 signaling and the subsequent upregulation of the levels of antioxidants as well as the downregulation of oxidative/pro-inflammatory mediators in peripheral immune cells and the CNS. These data suggest that AFN may be beneficial in the treatment of RRMS.
Collapse
Affiliation(s)
- Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Li G, Feng Y, Cui J, Hou Q, Li T, Jia M, Lv Z, Jiang Q, Wang Y, Zhang M, Wang L, Lv Z, Li J, Guo Y, Zhang B. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2020-2040. [PMID: 37526911 DOI: 10.1007/s11427-023-2413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023]
Abstract
The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Tanfang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Meiting Jia
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Ming Zhang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Lin Wang
- Sichuan Sundaily Farm Ecological Food Co., Ltd., Mianyang, 621010, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Mu J, Lei L, Zheng Y, Liu J, Li J, Li D, Wang G, Liu Y. Oxidative Stress Induced by Selenium Deficiency Contributes to Inflammation, Apoptosis and Necroptosis in the Lungs of Calves. Antioxidants (Basel) 2023; 12:antiox12040796. [PMID: 37107171 PMCID: PMC10135166 DOI: 10.3390/antiox12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.
Collapse
Affiliation(s)
- Jing Mu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Lei
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Liu
- Veterinary Medical Teaching Hospital, Northeast Agricultural University, Harbin 150038, China
| | - Jie Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ding Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yun Liu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Lin Z, Wang H, Song J, Xu G, Lu F, Ma X, Xia X, Jiang J, Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023; 31:158-166. [PMID: 36375758 DOI: 10.1016/j.joca.2022.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Z Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - H Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - G Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
9
|
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy. Int J Mol Sci 2023; 24:ijms24020902. [PMID: 36674417 PMCID: PMC9864911 DOI: 10.3390/ijms24020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.
Collapse
|
10
|
Chiu YC, Liang CM, Chung CH, Hong ZJ, Chien WC, Hsu SD. The influence of early selenium supplementation on trauma patients: A propensity-matched analysis. Front Nutr 2022; 9:1062667. [PMID: 36570123 PMCID: PMC9773250 DOI: 10.3389/fnut.2022.1062667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Oxidative stress is involved in numerous inflammatory diseases, including trauma. Micronutrients, such as selenium (Se), which contribute to antioxidant defense, exhibit low plasma levels during critical illness. This study aimed to investigate the impact of early Se supplementation on trauma patients. Materials and methods A total of 6,891 trauma patients were registered at a single medical center from January 2018 to December 2021. Twenty trauma patients with Se supplemented according to the protocol were included in the study group. Subsequently, 1:5 propensity score matching (PSM) analysis was introduced. These patients received 100 mcg three times a day for 5 days. The primary outcome was overall survival (OS); the secondary outcomes were hospital/intensive care unit (ICU) length of stay (LOS), serologic change, ventilator dependence days, and ventilation profile. Results The hospital LOS (20.0 ± 10.0 vs. 37.4 ± 42.0 days, p = 0.026) and ICU LOS (6.8 ± 3.6 vs. 13.1 ± 12.6 days, p < 0.006) were significantly shorter in the study group. In terms of serology, improvement in neutrophil, liver function, and C-reactive protein (CRP) level change percentile indicated better outcomes in the study group as well as a better OS rate (100 vs. 83.7%, p = 0.042). Longer ventilator dependence was found to be an independent risk factor for mortality and pulmonary complications in 6,891 trauma patients [odds ratio (OR) = 1.262, 95% confidence interval (CI) = 1.039-1.532, p < 0.019 and OR = 1.178, 95% CI = 1.033-1.344, p = 0.015, respectively]. Conclusion Early Se supplementation after trauma confers positive results in terms of decreasing overall ICU LOS/hospital LOS and mortality. Organ injury, particularly hepatic insults, and inflammatory status, also recovered better.
Collapse
Affiliation(s)
- Yu-Cheng Chiu
- Division of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ming Liang
- Division of Trauma Surgery and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Hong
- Division of Trauma Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Der Hsu
- Division of Trauma Surgery and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Sheng-Der Hsu,
| |
Collapse
|
11
|
Sherlock LG, McCarthy WC, Grayck MR, Solar M, Hernandez A, Zheng L, Delaney C, Tipple TE, Wright CJ, Nozik ES. Neonatal Selenium Deficiency Decreases Selenoproteins in the Lung and Impairs Pulmonary Alveolar Development. Antioxidants (Basel) 2022; 11:2417. [PMID: 36552625 PMCID: PMC9774937 DOI: 10.3390/antiox11122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Decreased selenium (Se) levels during childhood and infancy are associated with worse respiratory health. Se is biologically active after incorporation into Se-containing antioxidant enzymes (AOE) and proteins. It is unknown how decreased maternal Se during pregnancy and lactation impacts neonatal pulmonary selenoproteins, growth, and lung development. Using a model of neonatal Se deficiency that limits Se intake to the dam during pregnancy and lactation, we evaluated which neonatal pulmonary selenoproteins are decreased in both the saccular (postnatal day 0, P0) and early alveolar (postnatal day 7, P7) stages of lung development. We found that Se deficient (SeD) pups weigh less and exhibit impaired alveolar development compared to Se sufficient (SeS) pups at P7. The activity levels of glutathione peroxidase (GPx) and thioredoxin reductase (Txnrd) were decreased at P0 and P7 in SeD lungs compared to SeS lungs. Protein content of GPx1, GPx3 and Txnrd1 were decreased in SeD lungs at P0 and P7, whereas Txnrd2 content was unaltered compared to SeS controls. The expression of NRF-2 dependent genes and several non-Se containing AOE were similar between SeS and SeD lungs. SeD lungs exhibited a decrease in selenoprotein N, an endoplasmic reticulum protein implicated in alveolar development, at both time points. We conclude that exposure to Se deficiency during pregnancy and lactation impairs weight gain and lung growth in offspring. Our data identify multiple selenoproteins in the neonatal lung that are vulnerable to decreased Se intake, which may impact oxidative stress and cell signaling under physiologic conditions as well as after oxidative stressors.
Collapse
Affiliation(s)
- Laura G. Sherlock
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William C. McCarthy
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maya R. Grayck
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mack Solar
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andres Hernandez
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lijun Zheng
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cassidy Delaney
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trent E. Tipple
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Clyde J. Wright
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Jia W, Ding W, Chen X, Xu Z, Tang Y, Wang M, Zheng B, Zhang Y, Wei T, Zhu Z. Selenium-Containing Compound Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Regulating the MAPK/AP-1 Pathway. Inflammation 2021; 44:2518-2530. [PMID: 34487287 DOI: 10.1007/s10753-021-01521-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Abstract-Acute lung injury (ALI) is characterized by a series of inflammatory reactions and serves as the main cause of mortality in intensive care unit patients. Although great progress has been made in understanding the pathophysiology of ALI, there are no effective treatments in clinic. Recently, we have synthesized a selenium-containing compound, which possesses obvious anti-inflammatory activity. The aim of the present study is to evaluate the protective effects of the selenium-containing compound 34# in LPS-induced ALI in mice as well as its underlying mechanism. Compound 34# was found to inhibit LPS-induced macrophage inflammatory cytokine release. These effects were observed to be produced via suppression of the MAPK/AP-1 pathway. Compound 34# was also noted to attenuate the LPS-induced lung inflammation in mice with ALI. The corresponding results suggested that compound 34# possesses remarkable protective effects on LPS-induced ALI. Furthermore, the MAPK/AP-1 pathway may prove to be the underlying mechanism. Accordingly, compound 34# may serve as a potential candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Wenjing Jia
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xinmiao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhengwei Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bin Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yali Zhang
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Tao Wei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Zaisheng Zhu
- Medicine and Health Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
13
|
Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr 2021; 125:618-627. [PMID: 32758306 PMCID: PMC7503044 DOI: 10.1017/s0007114520003128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Se is a micronutrient essential for human health. Sub-optimal Se status is common, occurring in a significant proportion of the population across the world including parts of Europe and China. Human and animal studies have shown that Se status is a key determinant of the host response to viral infections. In this review, we address the question whether Se intake is a factor in determining the severity of response to coronavirus disease 2019 (COVID-19). Emphasis is placed on epidemiological and animal studies which suggest that Se affects host response to RNA viruses and on the molecular mechanisms by which Se and selenoproteins modulate the inter-linked redox homeostasis, stress response and inflammatory response. Together these studies indicate that Se status is an important factor in determining the host response to viral infections. Therefore, we conclude that Se status is likely to influence human response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and that Se status is one (of several) risk factors which may impact on the outcome of SARS-CoV-2 infection, particularly in populations where Se intake is sub-optimal or low. We suggest the use of appropriate markers to assess the Se status of COVID-19 patients and possible supplementation may be beneficial in limiting the severity of symptoms, especially in countries where Se status is regarded as sub-optimal.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - Catherine Méplan
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Derry K. Mercer
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - John E. Hesketh
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| |
Collapse
|
14
|
Chanda D, Dudefoi W, Anadu J, Minghetti M. Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111930. [PMID: 33472113 DOI: 10.1016/j.ecoenv.2021.111930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Emerging research in mammalian cells suggests that ionic (AgNO3) and nano silver (AgNP) can disrupt the metabolism of selenium which plays a vital role in oxidative stress control. However, the effect of silver (Ag) on selenoprotein function in fish is poorly understood. Here we evaluate the effects of AgNO3 and citrate coated AgNP (cit-AgNP) on selenoprotein function and oxidative stress using a fish cell line derived from the rainbow trout (Oncorhynchus mykiss) intestine (RTgutGC). Cell viability was evaluated using a cytotoxicity assay which measures simultaneously metabolic activity, membrane integrity and lysosome integrity. Cells exposed to equimolar amounts of AgNO3 and cit-AgNP accumulated the same amount of silver intracellularly, however AgNO3 was more toxic than cit-AgNP. Selenoenzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) mRNA levels and enzyme activity were measured. While mRNA levels remained unaffected by AgNO3 or cit-AgNP, the enzyme activity of GPx was inhibited by AgNO3 (1 µM) and cit-AgNP (5 µM) and TrxR activity was inhibited by AgNO3 (0.4 µM) and cit-AgNP (1, 5 µM). Moreover, cells exposed to 1 µM of AgNO3 and cit-AgNP showed an increase in metallothionein b (MTb) mRNA levels at 24 h of exposure, confirming the uptake of silver, but returned to control levels at 72 h suggesting silver scavenging by MTb. Oxidative stress was not observed at any of the doses of AgNO3 or cit-AgNP tested. Overall, this study shows that AgNO3 or cit-AgNP can inhibit the activity of selenoenzymes but do not induce oxidative stress in RTgutGC cells.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - William Dudefoi
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA
| | - Joshua Anadu
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
15
|
Tauber S, Sieckmann MK, Erler K, Stahl W, Klotz LO, Steinbrenner H. Activation of Nrf2 by Electrophiles Is Largely Independent of the Selenium Status of HepG2 Cells. Antioxidants (Basel) 2021; 10:antiox10020167. [PMID: 33498683 PMCID: PMC7911449 DOI: 10.3390/antiox10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoenzymes, whose activity depends on adequate selenium (Se) supply, and phase II enzymes, encoded by target genes of nuclear factor erythroid 2-related factor 2 (Nrf2), take part in governing cellular redox homeostasis. Their interplay is still not entirely understood. Here, we exposed HepG2 hepatoma cells cultured under Se-deficient, Se-adequate, or Se-supranutritional conditions to the Nrf2 activators sulforaphane, cardamonin, or diethyl maleate. Nrf2 protein levels and intracellular localization were determined by immunoblotting, and mRNA levels of Nrf2 target genes and selenoproteins were assessed by qRT-PCR. Exposure to electrophiles resulted in rapid induction of Nrf2 and its enrichment in the nucleus, independent of the cellular Se status. All three electrophilic compounds caused an enhanced expression of Nrf2 target genes, although with differences regarding extent and time course of their induction. Whereas Se status did not significantly affect mRNA levels of the Nrf2 target genes, gene expression of selenoproteins with a low position in the cellular "selenoprotein hierarchy", such as glutathione peroxidase 1 (GPX1) or selenoprotein W (SELENOW), was elevated under Se-supplemented conditions, as compared to cells held in Se-deficient media. In conclusion, no major effect of Se status on Nrf2 signalling was observed in HepG2 cells.
Collapse
Affiliation(s)
- Sarah Tauber
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Maria Katharina Sieckmann
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Katrin Erler
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, D-40001 Düsseldorf, Germany;
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
- Correspondence: ; Tel.: +49-3641-949757
| |
Collapse
|
16
|
Robbins ME, Cho HY, Hansen JM, Luchsinger JR, Locy ML, Velten M, Kleeberger SR, Rogers LK, Tipple TE. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol 2021; 38:101797. [PMID: 33254076 PMCID: PMC7708869 DOI: 10.1016/j.redox.2020.101797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular antioxidants protect against hyperoxic lung injury. The role of the glutathione (GSH) system in lung development and bronchopulmonary dysplasia (BPD) pathogenesis has not been systematically investigated. The current study utilized GSH reductase-deficient (Gsr-KO) neonatal mice to test the hypothesis that early disruption of the GSH system negatively impacts lung development and hyperoxic responses. Lungs from wild-type (Gsr-WT) and Gsr-KO mice were analyzed for histopathology, developmental markers, redox indices, and transcriptome profiling at different developmental stages following exposure to room air or hyperoxia (85% O2) for up to 14 d. Lungs from Gsr-KO mice exhibited alveolar epithelial dysplasia in the embryonic and neonatal periods with relatively normal lung architecture in adulthood. GSH and its oxidized form (GSSG) were 50-70% lower at E19-PND14 in Gsr-KO lungs than in age-matched Gsr-WT. Differential gene expression between Gsr-WT and Gsr-KO lungs was analyzed at discrete developmental stages. Gsr-KO lungs exhibited downregulated cell cycle and DNA damage checkpoint genes at E19, as well as lung lipid metabolism and surfactant genes at PND5. In addition to abnormal baseline lung morphometry, Gsr-KO mice displayed a blunted response to hyperoxia. Hyperoxia caused a more robust upregulation of the lung thioredoxin system in Gsr-KO compared to Gsr-WT. Gsr-dependent, hyperoxia-responsive genes were highly associated with abnormal cytoskeleton, skeletal-muscular function, and tissue morphology at PND5. Overall, our data in Gsr-KO mice implicate the GSH system as a key regulator of lung development, cellular differentiation, and hyperoxic responses in neonatal mice.
Collapse
Affiliation(s)
- Mary E Robbins
- Division of Neonatology, Department of Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jason M Hansen
- Physiology & Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Joseph R Luchsinger
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan L Locy
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich- Wilhelms University, University Medical Center, Bonn, Germany
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Trent E Tipple
- Center for Pregnancy and Newborn Research, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Sherlock LG, Sjostrom K, Sian L, Delaney C, Tipple TE, Krebs NF, Nozik-Grayck E, Wright CJ. Hepatic-Specific Decrease in the Expression of Selenoenzymes and Factors Essential for Selenium Processing After Endotoxemia. Front Immunol 2020; 11:595282. [PMID: 33224150 PMCID: PMC7674557 DOI: 10.3389/fimmu.2020.595282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Selenium (Se) levels decrease in the circulation during acute inflammatory states and sepsis, and are inversely associated with morbidity and mortality. A more specific understanding of where selenoproteins and Se processing are compromised during insult is needed. We investigated the acute signaling response in selenoenzymes and Se processing machinery in multiple organs after innate immune activation in response to systemic lipopolysaccharide (LPS). Methods Wild type (WT) adult male C57/B6 mice were exposed to LPS (5 mg/kg, intraperitoneal). Blood, liver, lung, kidney and spleen were collected from control mice as well as 2, 4, 8, and 24 h after LPS. Plasma Se concentration was determined by ICP-MS. Liver, lung, kidney and spleen were evaluated for mRNA and protein content of selenoenzymes and proteins required to process Se. Results After 8 h of endotoxemia, plasma levels of Se and the Se transporter protein, SELENOP were significantly decreased. Consistent with this timing, the transcription and protein content of several hepatic selenoenzymes, including SELENOP, glutathione peroxidase 1 and 4 were significantly decreased. Furthermore, hepatic transcription and protein content of factors required for the Se processing, including selenophosphate synthetase 2 (Sps2), phosphoseryl tRNA kinase (Pstk), selenocysteine synthase (SepsecS), and selenocysteine lyase (Scly) were significantly decreased. Significant LPS-induced downregulation of these key selenium processing enzymes was observed in isolated hepatocytes. In contrast to the acute and dynamic changes observed in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. Conclusion Hepatic selenoenzyme production and Se processing factors decreased after endotoxemia. This was temporally associated with decreased circulating Se. In contrast to these active changes in the regulation of Se processing in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. These findings highlight the need to further study the impact of innate immune challenges on Se processing in the liver and the impact of targeted therapeutic Se replacement strategies during innate immune challenge.
Collapse
Affiliation(s)
- Laura G Sherlock
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kara Sjostrom
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lei Sian
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Trent E Tipple
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Nancy F Krebs
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Clyde J Wright
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Zhu Z, Li Q, Xu C, Zhao J, Li S, Wang Y, Tian L. Sodium tanshinone IIA sulfonate attenuates silica-induced pulmonary fibrosis in rats via activation of the Nrf2 and thioredoxin system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103461. [PMID: 32738294 DOI: 10.1016/j.etap.2020.103461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Silicosis is characterized by pulmonary fibrosis due to long-term inhalation of silica particles. Although the cause of this serious disease is known, its pathogenesis remains unclear and there are currently no specific treatments. Recent studies have shown that the anti-oxidant transcription factor Nrf2 is expressed at reduced levels in fibrotic foci, which may be related to disease progression. However, the molecular mechanisms by which this might occur have yet to be elucidated. Sodium tanshinone IIA sulfonate (STS), an extract of Salvia miltiorrhiza, is used in traditional Chinese medicine in the treatment of coronary heart disease. STS has been shown to play a strong anti-oxidative role in various organs. Here, we employed a rat model to explore the effects of STS on oxidative stress and the progression of fibrosis in silicosis. STS significantly reduced collagen deposition in the lungs, thereby antagonising silicosis. Immunohistochemical and immunofluorescence staining showed that Nrf2 was differentially expressed in lung cells during silica induced fibrosis, and chromatin immunoprecipitation-sequencing experiments demonstrated that Nrf2 promoted the expression of the antioxidant proteins thioredoxin and thioredoxin reductase. Our results suggest that the anti-fibrotic effects of STS may be related to upregulation of Nrf2 nuclear expression, especially in fibrotic lesions, and the promotion of thioredoxin and thioredoxin reductase expression. Our findings may open up new avenues for the development of STS as a treatment for silicosis.
Collapse
Affiliation(s)
- Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Staples S, Wall SB, Li R, Tipple TE. Selenium-independent antioxidant and anti-inflammatory effects of thioredoxin reductase inhibition in alveolar macrophages. Life Sci 2020; 259:118285. [PMID: 32798556 DOI: 10.1016/j.lfs.2020.118285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
AIMS Interleukin-1β (IL-1β) contributes to the development of bronchopulmonary dysplasia (BPD). Thioredoxin reductase-1 (Txnrd1) inhibition activates nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent responses. Txnrd1 activity is selenium (Se) dependent and Se deficiency is common in prematurity. Auranofin (AFN), a Txnrd1 inhibitor, decreases IL-1β levels and increases Nrf2 activation in lipopolysaccharide (LPS) treated alveolar macrophages. In lung epithelia, AFN-induced Nrf2 activation is Se dependent. We tested the hypothesis that the effects of Txnrd1 inhibition in alveolar macrophages are Se dependent. MAIN METHODS To establish Se sufficient (Se+) and deficient (Se-) conditions, alveolar (MH-S) macrophages were cultured in 2.5% fetal bovine serum (FBS) ± 25 nM Na2SeO3. Se- (2.5% FBS) and Se+ (2.5% FBS + 25 nM Na2SeO3) cells were cultured in the presence or absence of 0.05 μg/mL LPS and/or 0.5 μM AFN. Nrf2 activation was determined by measuring NADPH quinone oxidoreductase-1 (Nqo1) and glutathione levels. IL-1β mRNA (Il1b) and protein levels were measured using qRT-PCR and ELISA. Data were analyzed by ANOVA followed by Tukey's post-hoc. KEY FINDINGS We detected an independent effect of AFN, but not LPS, on Nqo1 expression and GSH levels in Se+ and Se- cells. LPS significantly increased Il1b and IL-1β levels in both groups. AFN-mediated attenuation of this effect was not impacted by Se status. SIGNIFICANCE The beneficial effects of Txnrd1 inhibition in alveolar macrophages are Se-independent and therefore unlikely to be diminished by clinical Se deficiency.
Collapse
Affiliation(s)
- Sara Staples
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie B Wall
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Li
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trent E Tipple
- Center for Pregnancy and Newborn Research, Section of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Bartolini D, Tew KD, Marinelli R, Galli F, Wang GY. Nrf2-modulation by seleno-hormetic agents and its potential for radiation protection. Biofactors 2020; 46:239-245. [PMID: 31617634 DOI: 10.1002/biof.1578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
Abstract
The trace element selenium (Se) is an essential component of selenoproteins and plays a critical role in redox signaling via regulating the activity of selenoenzymes such as thioredoxin reductase-1 and glutathione peroxidases. Se compounds and its metabolites possess a wide range of biological functions including anticancer and cytoprotection effects, modulation of hormetic genes and antioxidant enzyme activities. Radiation-induced injury of normal tissues is a significant side effect for cancer patients who receive radiotherapy in the clinic and the development of new and effective radioprotectors is an important goal of research. Others and we have shown that seleno-compounds have the potential to protect ionizing radiation-induced toxicities in various tissues and cells both in in vitro and in vivo studies. In this review, we discuss the potential utilization of Se compounds with redox-dependent hormetic activity as novel radio-protective agents to alleviate radiation toxicity. The cellular and molecular mechanisms underlying the radioprotection effects of these seleno-hormetic agents are also discussed. These include Nrf2 transcription factor modulation and the consequent upregulation of the adaptive stress response to IR in bone marrow stem cells and hematopoietic precursors.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
The potential effect of methylseleninic acid (MSA) against γ-irradiation induced testicular damage in rats: Impact on JAK/STAT pathway. Arch Biochem Biophys 2019; 679:108205. [PMID: 31758927 DOI: 10.1016/j.abb.2019.108205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
This study suggested that methylseleninic acid (MSA) could respond to the inflammatory signaling associated with ionizing radiation-induced testicular damage. Mature male rats were divided into four groups: negative control, whole body γ-irradiated (IRR) (5 Gy), MSA (0.5 mg/kg, daily for nine consecutive days), and MSA+ IRR groups. MSA increased serum testosterone level and testicular glutathione peroxidase (GPx) as well as decreased the percentage of sperm abnormalities. Radiation prompted inflammatory signaling in the testes through increasing phospho-janus kinase1 (p-JAK1), phospho-signal transducers and activators of transcription 3 (p-STAT3) protein expressions. This induced increment in the inflammatory markers including nuclear factor- kappa B (NF-κB) and interleukin-1beta (IL-1β) levels. Also, radiation induced elevation of nitric oxide (NO) and malondialdhyde (MDA) levels with consequent reduction in testicular reduced glutathione level (GSH) and superoxide dismutase (SOD) activity. MSA significantly counteracted the radiation effect on testicular nuclear factor erythroid-2-related factor-2 (Nrf2) and suppressor of cytokine signaling (Socs3) protein expressions. In summary, this investigation proposed that MSA preserved spermatogenesis through increasing testosterone levels and GPx activity. Additionally, it diminished testicular inflammation by increasing of Nrf2 and Socs3 levels leading to reducing of p-JAK1, p-STAT3 and NF-κB levels. Histopathological examination results of testicular tissues showed a coincidence with the biochemical analysis.
Collapse
|
22
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Abstract
Fetal development occurs in a relatively hypoxemic environment, and birth represents significant oxidative stress. Premature infants are disadvantaged by a lack of maternal antioxidant transfer and impaired endogenous antioxidant responses. O2 metabolism is essential for life and its biochemical reactions are dynamic, compartmentalized, and difficult to characterize in vivo. There is a growing appreciation for the role of reactive oxygen species in nonpathologic processes, including regulation of cell signaling and mitochondrial function. There are several gaps in the knowledge about the role of reactive oxygen species in normal development and how oxidative stress alters normal signaling and subsequent development.
Collapse
Affiliation(s)
- Trent E Tipple
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA.
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA
| |
Collapse
|