1
|
Biswas J, Sanden S, Bhardwaj P, Siegmund D, Kumar P, Apfel UP. A terpyridine-based copper complex for electrochemical reduction of nitrite to nitric oxide. Dalton Trans 2024. [PMID: 39670725 DOI: 10.1039/d4dt02777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In biological systems, nitrite reductase enzymes (NIRs) are responsible for reduction of nitrite (NO2-) to nitric oxide (NO). These NIRs have mostly Cu- or Fe-containing active sites, surrounded by amine-containing ligands. Therefore, mononuclear Cu complexes with N-donor ligands are highly relevant in the development of NIR model systems and in the mechanistic investigation of the nitrite reduction reaction. Herein, we report on a terpyridine-based CuII complex with square planar geometry for H+-assisted electrochemical reduction of NO2-. Through electrochemical measurements, spectroscopic characterization and isotope-labelling experiments we propose a mechanistic reaction pathway involving an unstable HNO2 state. The CuI intermediate, formed electrochemically, was isolated and its molecular structure was deduced, showing linkage isomerism of the nitrite ligand. Moreover, qualitative and quantitative product analysis by GC-MS shows N2O formed as a side product along with the main product NO. Furthermore, by obtaining single crystals and conducting structural analysis we were able to determine the structural arrangement and redox state of the complex after electrochemical treatment.
Collapse
Affiliation(s)
- Jyotiprokash Biswas
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Sebastian Sanden
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Daniel Siegmund
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
2
|
Piknova B, Park JW, Tunau-Spencer KJ, Jenkins A, Hellinga DG, Walter PJ, Cai H, Schechter AN. Skeletal Muscle, Skin, and Bone as Three Major Nitrate Reservoirs in Mammals: Chemiluminescence and 15N-Tracer Studies in Yorkshire Pigs. Nutrients 2024; 16:2674. [PMID: 39203815 PMCID: PMC11357542 DOI: 10.3390/nu16162674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
In mammals, nitric oxide (NO) is generated either by the nitric oxide synthase (NOS) enzymes from arginine or by the reduction of nitrate to nitrite by tissue xanthine oxidoreductase (XOR) and the microbiome and further reducing nitrite to NO by XOR or several heme proteins. Previously, we reported that skeletal muscle acts as a large nitrate reservoir in mammals, and this nitrate reservoir is systemically, as well as locally, used to generate nitrite and NO. Here, we report identifying two additional nitrate storage organs-bone and skin. We used bolus of ingested 15N-labeled nitrate to trace its short-term fluxes and distribution among organs. At baseline conditions, the nitrate concentration in femur bone samples was 96 ± 63 nmol/g, scalp skin 56 ± 22 nmol/g, with gluteus muscle at 57 ± 39 nmol/g. In comparison, plasma and liver contained 34 ± 19 nmol/g and 15 ± 5 nmol/g of nitrate, respectively. Three hours after 15N-nitrate ingestion, its concentration significantly increased in all organs, exceeding the baseline levels in plasma, skin, bone, skeletal muscle, and in liver 5-, 2.4-, 2.4-, 2.1-, and 2-fold, respectively. As expected, nitrate reduction into nitrite was highest in liver but also substantial in skin and skeletal muscle, followed by the distribution of 15N-labeled nitrite. We believe that these results underline the major roles played by skeletal muscle, skin, and bone, the three largest organs in mammals, in maintaining NO homeostasis, especially via the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Barbora Piknova
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji Won Park
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Khalid J. Tunau-Spencer
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Audrey Jenkins
- MedStar Health Research Institute, Washington, DC 20010, USA
| | | | - Peter J. Walter
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alan N. Schechter
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Britto-Júnior J, Furlaneto R, Lima AT, de Oliveira MG, Severino B, Frecentese F, Fiorino F, Caliendo G, Muscará MN, De Nucci G. GKT137831 and hydrogen peroxide increase the release of 6-nitrodopamine from the human umbilical artery, rat-isolated right atrium, and rat-isolated vas deferens. Front Pharmacol 2024; 15:1348876. [PMID: 38645555 PMCID: PMC11026650 DOI: 10.3389/fphar.2024.1348876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/01/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: The human umbilical artery (HUA), rat-isolated right atrium, and rat-isolated vas deferens present a basal release of 6-nitrodopamine (6-ND). The basal release of 6-ND from these tissues was significantly decreased (but not abolished) when the tissues were pre-incubated with Nω-nitro-L-arginine methyl ester (L-NAME). Methods: In this study, the effect of the pharmacological modulation of the redox environment on the basal release of 6-ND was investigated. The basal release of 6-ND was measured using Liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results and Discussion: Pre-incubation (30 min) of the tissues with GKT137831 (1 μM) caused a significant increase in the basal release of 6-ND from all tissues. In the HUA, pre-incubation with diphenyleneiodonium (DPI) (100 μM) also caused significant increases in the basal release of 6-ND. Preincubation of the HUA with hydrogen peroxide (H2O2) (100 μM) increased 6-ND basal release, whereas pre-incubation with catalase (1,000 U/mL) significantly decreased it. Pre-incubation of the HUA with superoxide dismutase (SOD) (250 U/mL; 30 min) also significantly increased the basal release of 6-ND. Preincubation of the HUA with either allopurinol (100 μM) or uric acid (1 mM) had no effect on the basal release of 6-ND. Pre-treatment of the HUA with L-NAME (100 μM) prevented the increase in the basal release of 6-ND induced by GKT137831, diphenyleneiodonium, and H2O2. The results obtained indicate a major role of endogenous H2O2 and peroxidases as modulators of 6- ND biosynthesis/release and a lack of peroxynitrite contribution.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Furlaneto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Pharmacology, Faculty of Medicine, Sao Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Sāo Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Sāo Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, Sao Leopoldo Mandic, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Gonçalves JS, Marçal AL, Marques BS, Costa FD, Laranjinha J, Rocha BS, Lourenço CF. Dietary nitrate supplementation and cognitive health: the nitric oxide-dependent neurovascular coupling hypothesis. Biochem Soc Trans 2024; 52:279-289. [PMID: 38385536 DOI: 10.1042/bst20230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.
Collapse
Affiliation(s)
- João S Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana L Marçal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Marques
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa D Costa
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Rocha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
7
|
Piknova B, Park JW, Thomas SM, Tunau-Spencer KJ, Schechter AN. Nitrate and Nitrite Metabolism in Aging Rats: A Comparative Study. Nutrients 2023; 15:nu15112490. [PMID: 37299453 DOI: 10.3390/nu15112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Nitric oxide (NO) (co)regulates many physiological processes in the body. Its short-lived free radicals force synthesis in situ and on-demand, without storage possibility. Local oxygen availability determines the origin of NO-either by synthesis by nitric oxide synthases (NOS) or by the reduction of nitrate to nitrite to NO by nitrate/nitrite reductases. The existence of nitrate reservoirs, mainly in skeletal muscle, assures the local and systemic availability of NO. Aging is accompanied by changes in metabolic pathways, leading to a decrease in NO availability. We explored age-related changes in various rat organs and tissues. We found differences in nitrate and nitrite contents in tissues of old and young rats at baseline levels, with nitrate levels being generally higher and nitrite levels being generally lower in old rats. However, there were no differences in the levels of nitrate-transporting proteins and nitrate reductase between old and young rats, with the exception of in the eye. Increased dietary nitrate led to significantly higher nitrate enrichment in the majority of old rat organs compared to young rats, suggesting that the nitrate reduction pathway is not affected by aging. We hypothesize that age-related NO accessibility changes originate either from the NOS pathway or from changes in NO downstream signaling (sGC/PDE5). Both possibilities need further investigation.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha M Thomas
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Khalid J Tunau-Spencer
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Moura JJG. The History of Desulfovibrio gigas Aldehyde Oxidoreductase-A Personal View. Molecules 2023; 28:4229. [PMID: 37241969 PMCID: PMC10223205 DOI: 10.3390/molecules28104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
A story going back almost 40 years is presented in this manuscript. This is a different and more challenging way of reporting my research and I hope it will be useful to and target a wide-ranging audience. When preparing the manuscript and collecting references on the subject of this paper-aldehyde oxidoreductase from Desulfovibrio gigas-I felt like I was travelling back in time (and space), bringing together the people that have contributed most to this area of research. I sincerely hope that I can give my collaborators the credit they deserve. This study is not presented as a chronologic narrative but as a grouping of topics, the development of which occurred over many years.
Collapse
Affiliation(s)
- José J G Moura
- LAQV, NOVA School of Science and Technology|FCT NOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Kadach S, Park JW, Stoyanov Z, Black MI, Vanhatalo A, Burnley M, Walter PJ, Cai H, Schechter AN, Piknova B, Jones AM. 15 N-labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiol (Oxf) 2023; 237:e13924. [PMID: 36606507 DOI: 10.1111/apha.13924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Dietary nitrate (NO3 - ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO3 - at rest and during exercise with a focus on skeletal muscle. METHODS In a randomized, crossover study, 10 healthy volunteers consumed 12.8 mmol 15 N-labeled potassium nitrate (K15 NO3 ; NIT) or potassium chloride placebo (PLA). Muscle biopsies were taken at baseline, at 1- and 3-h post-supplement ingestion, and immediately following the completion of 60 maximal intermittent contractions of the knee extensors. Muscle, plasma, saliva, and urine samples were analyzed using chemiluminescence to determine absolute [NO3 - ] and [NO2 - ], and by mass spectrometry to determine the proportion of NO3 - and NO2 - that was 15 N-labeled. RESULTS Neither muscle [NO3 - ] nor [NO2 - ] were altered by PLA. Following NIT, muscle [NO3 - ] (but not [NO2 - ]) was elevated at 1-h (from ~35 to 147 nmol/g, p < 0.001) and 3-h, with almost all of the increase being 15 N-labeled. There was a significant reduction in 15 N-labeled muscle [NO3 - ] from pre- to post-exercise. Relative to PLA, mean muscle torque production was ~7% greater during the first 18 contractions following NIT. This improvement in torque was correlated with the pre-exercise 15 N-labeled muscle [NO3 - ] and the magnitude of decline in 15 N-labeled muscle [NO3 - ] during exercise (r = 0.66 and r = 0.62, respectively; p < 0.01). CONCLUSION This study shows, for the first time, that skeletal muscle rapidly takes up dietary NO3 - , the elevated muscle [NO3 - ] following NO3 - ingestion declines during exercise, and muscle NO3 - dynamics are associated with enhanced torque production during maximal intermittent muscle contractions.
Collapse
Affiliation(s)
- Stefan Kadach
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Zdravko Stoyanov
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Matthew I Black
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
10
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
11
|
Peixoto J, Vizzotto C, Ramos A, Alves G, Steindorff A, Krüger R. The role of nitrogen metabolism on polyethylene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128682. [PMID: 35306413 DOI: 10.1016/j.jhazmat.2022.128682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene (PE) is the most widely used plastic and its accumulation on natural environments has reached alarming levels causing severe damage to wildlife and human health. Despite the significance of this global issue, little is known about specific metabolic mechanisms behind PE biodegradation-a promising and sustainable remediation method. Herein, we describe a novel role of nitrogen metabolism in the fragmentation and oxidation of PE mediated by biological production of NOx in three PE-degrading strains of Comamonas, Delftia, and Stenotrophomonas. Resultant nitrated PE fragments are assimilated and then metabolized by these bacteria in a process assisted by nitronate monooxygenases and nitroreductases to support microbial growth. Due to the conservation of nitrogen metabolism genes, we anticipate that this oxidative mechanism is potentially shared by other nitrifier and denitrifier microbes.
Collapse
Affiliation(s)
- Julianna Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil.
| | - Carla Vizzotto
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Alexandre Ramos
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gabriel Alves
- Laboratory of Microbiology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Andrei Steindorff
- Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ricardo Krüger
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil.
| |
Collapse
|
12
|
Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment. J Bacteriol 2022; 204:e0008622. [PMID: 35467391 PMCID: PMC9112911 DOI: 10.1128/jb.00086-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic biofilm infections by Pseudomonas aeruginosa are a major contributor to the morbidity and mortality of patients. The formation of multicellular bacterial aggregates, called biofilms, is associated with increased resistance to antimicrobials and immune clearance and the persistence of infections. Biofilm formation is dependent on bacterial cell attachment to surfaces, and therefore, attachment plays a key role in chronic infections. We hypothesized that bacteria sense various surfaces and initiate a rapid, specific response to increase adhesion and establish biofilms. RNA sequencing (RNA-Seq) analysis identified transcriptional changes of adherent cells during initial attachment, identifying the bacterial response to an abiotic surface over a 1-h period. Subsequent screens investigating the most highly regulated genes in surface attachment identified 4 genes, pfpI, phnA, leuD, and moaE, all of which have roles in both metabolism and biofilm formation. In addition, the transcriptional responses to several different medically relevant abiotic surfaces were compared after initial attachment. Surprisingly, there was a specific transcriptional response to each surface, with very few genes being regulated in response to surfaces in general. We identified a set of 20 genes that were differentially expressed across all three surfaces, many of which have metabolic functions, including molybdopterin cofactor biosynthesis and nitrogen metabolism. This study has advanced the understanding of the kinetics and specificity of bacterial transcriptional responses to surfaces and suggests that metabolic cues are important signals during the transition from a planktonic to a biofilm lifestyle. IMPORTANCE Bacterial biofilms are a significant concern in many aspects of life, including chronic infections of airways, wounds, and indwelling medical devices; biofouling of industrial surfaces relevant for food production and marine surfaces; and nosocomial infections. The effects of understanding surface adhesion could impact many areas of life. This study utilized emerging technology in a novel approach to address a key step in bacterial biofilm development. These findings have elucidated both conserved and surface-specific responses to several disease-relevant abiotic surfaces. Future work will expand on this report to identify mechanisms of biofilm initiation with the aim of identifying bacterial factors that could be targeted to prevent biofilms.
Collapse
|
13
|
Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants (Basel) 2022; 11:812. [PMID: 35624676 PMCID: PMC9137466 DOI: 10.3390/antiox11050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human pregnancy can be affected by numerous pathologies, from those which are mild and reversible to others which are life-threatening. Among these, gestational diabetes mellitus and hypertensive disorders of pregnancy with subsequent consequences stand out. Health problems experienced by women during pregnancy and postpartum are associated with significant costs to health systems worldwide and contribute largely to maternal mortality and morbidity. Major risk factors for mothers include obesity, advanced maternal age, cardiovascular dysfunction, and endothelial damage; in these scenarios, oxidative stress plays a major role. Markers of oxidative stress can be measured in patients with preeclampsia, foetal growth restriction, and gestational diabetes mellitus, even before their clinical onset. In consequence, antioxidant supplements have been proposed as a possible therapy; however, results derived from large scale randomised clinical trials have been disappointing as no positive effects were demonstrated. This review focuses on the latest evidence on oxidative stress in pregnancy complications, their early diagnosis, and possible therapies to prevent or treat these pathologies.
Collapse
Affiliation(s)
- Carolina Di Fabrizio
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Veronica Giorgione
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
| | - Asma Khalil
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
14
|
Stamm P, Kalinovic S, Oelze M, Steven S, Czarnowski A, Kvandova M, Bayer F, Reinhardt C, Münzel T, Daiber A. Mechanistic Insights into Inorganic Nitrite-Mediated Vasodilation of Isolated Aortic Rings under Oxidative/Hypertensive Conditions and S-Nitros(yl)ation of Proteins in Germ-Free Mice. Biomedicines 2022; 10:biomedicines10030730. [PMID: 35327532 PMCID: PMC8945819 DOI: 10.3390/biomedicines10030730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence and clinical importance of arterial hypertension are still growing. Inorganic nitrite (NO2-) represents an attractive dietary antihypertensive agent, but its metabolism and mode of action, which we aimed to investigate with the present study, are not completely understood. Isolated aortic rings from rats were treated ex vivo with oxidants, and rats were infused in vivo with angiotensin-II. Vascular responses to acetylcholine (ACh) and nitrite were assessed by isometric tension recording. The loss of vasodilatory potency in response to oxidants was much more pronounced for ACh as compared to nitrite ex vivo (but not in vivo with angiotensin-II). This effect may be caused by the redox regulation of conversion to xanthine oxidase (XO). Conventionally raised and germ-free mice were treated with nitrite by gavage, which did not improve ACh-mediated vasodilation, but did increase the plasma levels of S-nitros(yl)ated proteins in the conventionally-raised, but not in the germ-free mice. In conclusion, inorganic nitrite represents a dietary drug option to treat arterial hypertension in addition to already established pharmacological treatment. Short-term oxidative stress did not impair the vasodilatory properties of nitrite, which may be beneficial in cardiovascular disease patients. The gastrointestinal microbiome appears to play a key role in nitrite metabolism and bioactivation.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| |
Collapse
|
15
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
16
|
Association of Mutations Identified in Xanthinuria with the Function and Inhibition Mechanism of Xanthine Oxidoreductase. Biomedicines 2021; 9:biomedicines9111723. [PMID: 34829959 PMCID: PMC8615798 DOI: 10.3390/biomedicines9111723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the two-step reaction from hypoxanthine to xanthine and from xanthine to uric acid in purine metabolism. XOR generally carries dehydrogenase activity (XDH) but is converted into an oxidase (XO) under various pathophysiologic conditions. The complex structure and enzymatic function of XOR have been well investigated by mutagenesis studies of mammalian XOR and structural analysis of XOR-inhibitor interactions. Three XOR inhibitors are currently used as hyperuricemia and gout therapeutics but are also expected to have potential effects other than uric acid reduction, such as suppressing XO-generating reactive oxygen species. Isolated XOR deficiency, xanthinuria type I, is a good model of the metabolic effects of XOR inhibitors. It is characterized by hypouricemia, markedly decreased uric acid excretion, and increased serum and urinary xanthine concentrations, with no clinically significant symptoms. The pathogenesis and relationship between mutations and XOR activity in xanthinuria are useful for elucidating the biological role of XOR and the details of the XOR reaction process. In this review, we aim to contribute to the basic science and clinical aspects of XOR by linking the mutations in xanthinuria to structural studies, in order to understand the function and reaction mechanism of XOR in vivo.
Collapse
|
17
|
Soltani S, Hallaj-Nezhadi S, Rashidi MR. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur J Med Chem 2021; 222:113559. [PMID: 34119831 DOI: 10.1016/j.ejmech.2021.113559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
The importance of aldehyde oxidase (AOX) in drug metabolism necessitates the development and application of the in silico rational drug design methods as an integral part of drug discovery projects for the early prediction and modulation of AOX-mediated metabolism. The current study represents an up-to-date and thorough review of in silico studies of AOX-mediated metabolism and modulation methods. In addition, the challenges and the knowledge gap that should be covered have been discussed. The importance of aldehyde oxidase (AOX) in drug metabolism is a hot topic in drug discovery. Different strategies are available for the modulation of the AOX-mediated metabolism of drugs. Application of the rational drug design methods as an integral part of drug discovery projects is necessary for the early prediction of AOX-mediated metabolism. The current study represents a comprehensive review of AOX molecular structure, AOX-mediated reactions, AOX substrates, AOX inhibition, approaches to modify AOX-mediated metabolism, prediction of AOX metabolism/substrates/inhibitors, and the AOX related structure-activity relationship (SAR) studies. Furthermore, an up-to-date and thorough review of in silico studies of AOX metabolism has been carried out. In addition, the challenges and the knowledge gap that should be covered in the scientific literature have been discussed in the current review.
Collapse
Affiliation(s)
- Somaieh Soltani
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Stem Cell and Regenerative Medicine Institute and Pharmacy faculty, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
18
|
Noureldeen A, Asif M, Ansari T, Khan F, Shariq M, Ahmad F, Mfarrej MFB, Khan A, Tariq M, Siddiqui MA, Al-Barty A, Darwish H. Effect of Individual, Simultaneous and Sequential Inoculation of Pseudomonas fluorescens and Meloidogyne incognita on Growth, Biochemical, Enzymatic and Nonenzymatic Antioxidants of Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1145. [PMID: 34199744 PMCID: PMC8228199 DOI: 10.3390/plants10061145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/01/2022]
Abstract
This study was conducted on tomato (Solanum lycopersicum cv. K-21) to investigate the bioprotective nature of Pseudomonas fluorescens and its interactive effects with Meloidogyne incognita in terms of growth biomarkers, changes in biochemical attributes and modulation in antioxidant enzymes of the tomato plant. In this study, we grew tomato plants with M. incognita and P. fluorescens in separate pots, simultaneously and sequentially (15 days prior or post) after 15 days of seed sowing. The sequential inoculation of Mi15→Pf maximally increased the root-knot index and decreased the nematode population. It was also noted that inoculation suppressed the plant growth biomarkers in comparison to control. However, maximum suppression in nematode reproduction and increment in growth and physiological attributes were observed when P. fluorescens was applied 15 days prior to the nematode (Pf15→Mi) as compared to control. All the treatments showed an increase in antioxidant enzymes. Expression of phenol content and defensive enzymes such as peroxidase (POX) and superoxide dismutase (SOD) increased, in contrast to a significant reduction in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents when compared with the untreated inoculated plants. However, the highest levels of POX and SOD, and a lowest of phenol, MDA and H2O2 were displayed in the treatment Pf15→Mi, followed by Mi+Pf and Mi15→Pf.
Collapse
Affiliation(s)
- Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif 21944, Saudi Arabia; (A.N.); (A.A.-B.)
| | - Mohd Asif
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
- Pharmacopoeia Commission for Indian Medicine and Homeopathy, Ghaziabad 201002, India
| | - Taruba Ansari
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Faryad Khan
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Mohammad Shariq
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Faheem Ahmad
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Amir Khan
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India;
| | - Mansoor Ahmad Siddiqui
- Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (T.A.); (F.K.); (M.S.); (F.A.); (A.K.); (M.A.S.)
| | - Amal Al-Barty
- Department of Biology, College of Sciences, Taif University, Taif 21944, Saudi Arabia; (A.N.); (A.A.-B.)
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
19
|
Park JW, Thomas SM, Schechter AN, Piknova B. Control of rat muscle nitrate levels after perturbation of steady state dietary nitrate intake. Nitric Oxide 2021; 109-110:42-49. [PMID: 33713800 PMCID: PMC8020733 DOI: 10.1016/j.niox.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
The roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR). We now further investigate the dynamics of nitrate/nitrite fluxes in rat skeletal muscle after first increasing nitrate levels in drinking water and then returning to the original intake level. Nitrate/nitrite levels were analyzed in liver, blood and several skeletal muscle samples, and expression of proteins involved in nitrate metabolism and transport were also measured. Increased nitrate supply elevated nitrate and nitrite levels in all measured tissues. Surprisingly, after high nitrate diet termination, levels of both ions in liver and all muscle samples first declined to lower levels than the original baseline. During the course of the overall experiment there was a gradual increase of XOR expression in muscle tissue, which likely led to enhanced nitrate to nitrite reduction. We also noted differences in basal levels of nitrate in the different types of muscles. These findings suggest complex control of muscle nitrate levels, perhaps with multiple processes to preserve its intracellular levels.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samantha M Thomas
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc 2021; 53:280-294. [PMID: 32735111 DOI: 10.1249/mss.0000000000002470] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
21
|
Ribeiro PMG, Fernandes HS, Maia LB, Sousa SF, Moura JJG, Cerqueira NMFSA. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, quantum mechanical/molecular mechanical (QM/MM) methods were used to study the full catalytic mechanism of xanthine oxidase (XO).
Collapse
Affiliation(s)
- Pedro M. G. Ribeiro
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Henrique S. Fernandes
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Luísa B. Maia
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - José J. G. Moura
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| |
Collapse
|
22
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
23
|
Wang KK, Tian Y, Li PF, Liu CY, Yang GP. Sources of nitric oxide during the outbreak of Ulva prolifera in coastal waters of the Yellow Sea off Qingdao. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105177. [PMID: 33080558 DOI: 10.1016/j.marenvres.2020.105177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) has been identified as a key physiological modulator and signaling molecule in animals and plants. However, due to its high reactivity, our knowledge of its production and consumption pathways in the ocean remain limited. Laboratory experiments showed that Ulva prolifera can produce NO, producing as much as 0.44 ± 0.04 nmol h-1 g-1. During the growth period, U. prolifera released NO, but during the decay period NO was absorbed by U. prolifera and bacteria. Furthermore, field investigations examined NO concentrations in the coastal waters of the Yellow Sea off Qingdao, where the U. prolifera green tide occurred in summer 2018. The average concentrations of NO in the surface seawater were 70.2 ± 38.2 pmol L-1 and 18.9 ± 10.3 pmol L-1 in the late- and after-bloom periods, respectively. NO release by U. prolifera was the primary contributor to the high NO concentrations during the late-bloom period. The study area was a net source of NO to the atmosphere during the study period, with average NO sea-air fluxes from the Qingdao coastal waters being 1.5 × 10-12 mol m-2 s-1 and 0.4 × 10-12 mol m-2 s-1 in the late- and after-bloom periods, respectively. This study concluded that the coastal waters of the Yellow Sea off Qingdao contributed more NO to the atmosphere during the bloom of U. prolifera than afterward.
Collapse
Affiliation(s)
- Ke-Ke Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ye Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pei-Feng Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
24
|
Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC. The Role of Oxidative Stress, Adhesion Molecules and Antioxidants in Preeclampsia. Curr Hypertens Rev 2020; 15:105-112. [PMID: 30663572 DOI: 10.2174/1573402115666190119163942] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a consequence of reduction in the antioxidant capacity and excessive production of reactive oxygen and nitrogen species (ROS). Oxidative agents, which are overproduced due to ischemic-reperfusion injury in the placenta, may overwhelm the normal antioxidant activity. This imbalance is a key feature in the pathogenesis of preeclampsia. A decrease in glutathione peroxidase (GPX) activity is associated with the synthesis of vasoconstrictive eicosanoids such as F2-isoprostanes and thromboxane, which are known to be upregulated in preeclampsia. Biochemical markers of lipid peroxidation, such as malondialdehyde and F2-isoprostane in the placenta, are also increased. Adhesion molecules participate in the pathophysiology of preeclampsia by contributing to a reduced invasion by the trophoblast and increased vascular endothelial damage. Superoxide dismutase (SOD), catalase (CAT) and GPX play important roles counteracting oxidative stress. Other antioxidant factors participate in the etiology of preeclampsia. Levels of antioxidants such as Lycopene, Coenzyme 10, as well as some vitamins, are reduced in preeclamptic gestations.
Collapse
Affiliation(s)
- Kjell Haram
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Jan Helge Mortensen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - Ole Myking
- Department of Internal Medicine, Section of Endocrinology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Everett F Magann
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John C Morrison
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi, MS, United States
| |
Collapse
|
25
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
26
|
Srihirun S, Park JW, Teng R, Sawaengdee W, Piknova B, Schechter AN. Nitrate uptake and metabolism in human skeletal muscle cell cultures. Nitric Oxide 2020; 94:1-8. [PMID: 31604144 PMCID: PMC7341890 DOI: 10.1016/j.niox.2019.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Several studies show that dietary nitrate enhances exercise performance, presumably by increasing muscle blood flow and improving oxygen utilization. These effects are likely mediated by nitrate metabolites, including nitrite and nitric oxide (NO). However, the mechanisms of nitrate production, storage, and metabolism to nitrite and NO in skeletal muscle cells are still unclear. We hypothesized that exogenous nitrate can be taken up and metabolized to nitrite/NO inside the skeletal muscle. We found rapid uptake of exogeneous nitrate in both myoblasts and myotubes, increasing nitrite levels in myotubes, but not myoblasts. During differentiation we found increased expression of molybdenum containing proteins, such as xanthine oxidoreductase (XOR) and the mitochondrial amidoxime-reducing component (MARC); nitrate and nitrite reductases. Sialin, a known nitrate transporter, was detected in myoblasts; nitrate uptake decreased after sialin knockdown. Inhibition of chloride channel 1 (CLC1) also led to significantly decreased uptake of nitrate. Addition of exogenous nitrite, which resulted in higher intracellular nitrite levels, increased intracellular cGMP levels in myotubes. In summary, our results demonstrate for the first time the presence of the nitrate/nitrite/NO pathway in skeletal muscle cells, namely the existence of strong uptake of exogenous nitrate into cells and conversion of intracellular nitrate to nitrite and NO. Our results further support our previously formulated hypothesis about the importance of the nitrate to nitrite to NO intrinsic reduction pathways in skeletal muscles, which likely contributes to improved exercise tolerance after nitrate ingestion.
Collapse
Affiliation(s)
- Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand; Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Rujia Teng
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Waritta Sawaengdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Formation and degradation of lipid droplets in human adipocytes and the expression of aldehyde oxidase (AOX). Cell Tissue Res 2019; 379:45-62. [DOI: 10.1007/s00441-019-03152-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractLipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as “novel regulator of adipogenesis”. This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved—together with perilipins—in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.
Collapse
|
28
|
Malik N, Khatkar A, Dhiman P. Computational Analysis and Synthesis of Syringic Acid Derivatives as Xanthine Oxidase Inhibitors. Med Chem 2019; 16:643-653. [PMID: 31584375 DOI: 10.2174/1573406415666191004134346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Xanthine oxidase (XO; EC 1.17.3.2) has been considered as a potent drug target for the cure and management of pathological conditions prevailing due to high levels of uric acid in the bloodstream. The role of xanthine oxidase has been well established in the generation of hyperuricemia and gout due to its important role in catalytic oxidative hydroxylation of hypoxanthine to xanthine and further catalyses of xanthine to generate uric acid. In this research, syringic acid, a bioactive phenolic acid was explored to determine the capability of itself and its derivatives to inhibit xanthine oxidase. OBJECTIVE The study aimed to develop new xanthine oxidase inhibitors from natural constituents along with the antioxidant potential. METHODS In this report, we designed and synthesized syringic acid derivatives hybridized with alcohol and amines to form ester and amide linkage with the help of molecular docking. The synthesized compounds were evaluated for their antioxidant and xanthine oxidase inhibitory potential. RESULTS Results of the study revealed that SY3 produces very good xanthine oxidase inhibitory activity. All the compounds showed very good antioxidant activity. The enzyme kinetic studies performed on syringic acid derivatives showed a potential inhibitory effect on XO ability in a competitive manner with IC50 value ranging from 07.18μM-15.60μM and SY3 was revealed as the most active derivative. Molecular simulation revealed that new syringic acid derivatives interacted with the amino acid residues SER1080, PHE798, GLN1194, ARG912, GLN 767, ALA1078 and MET1038 positioned inside the binding site of XO. Results of antioxidant activity revealed that all the derivatives showed very good antioxidant potential. CONCLUSION Molecular docking proved to be an effective and selective tool in the design of new syringic acid derivatives .This hybridization of two natural constituents could lead to desirable xanthine oxidase inhibitors with improved activity.
Collapse
Affiliation(s)
- Neelam Malik
- Department of Pharmaceutical Sciences, M.D. University Rohtak, Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, India
| | - Priyanka Dhiman
- Department of Pharmaceutical Sciences, M.D. University Rohtak, Rohtak, Haryana, India
| |
Collapse
|
29
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
30
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
31
|
Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur J Med Chem 2019; 176:68-91. [PMID: 31096120 DOI: 10.1016/j.ejmech.2019.04.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
The term varicose vein refers to the twisted and swollen vein visible under the skin surface which occurs most commonly in the leg. Epidemiological studies report a varying percentage of incidences from 2 to 56% in men and <1-60% in women. Venous insufficiency is most often caused by the damage to the valves and walls of the veins. The mechanism of varicose vein formation is complex. It is, however, based on hypotensive blood vessels, hypoxia, and other mechanisms associated with inflammation. This work describes mechanisms related to the formation and development of the varicose vein. It discusses risk factors, pathogenesis of chronic venous disease, markers of the epithelial and leukocyte activation, state of hypoxia and inflammation, reactive oxygen species (ROS) generation, and oxidative stress. Additionally, this paper describes substances of plant origin used in the treatment of venous insufficiency. It also considers the structure of the molecules, their properties, and their mechanisms of action, the structure-activity relationship and chemical properties of flavonoids and other substances. The flavonoids include quercetin derivatives, micronized purified flavonoid fraction (Daflon), natural pine bark extract (Pycnogenol), and others such as triterpene saponine, extracts from Ruscus aculeatus and Centella asiatica, Ginkgo biloba extract, coumarin dereivatives that are used in chronic venous insufficiency. Flavonoids are natural substances found in plants, including fruits, vegetables, flowers, and others. They are important to the circulatory system and critical to blood vessels and the blood flow. Additionally, they have antioxidant, antiinflammatory properties.
Collapse
|
32
|
Malik N, Dhiman P, Khatkar A. In Silico and 3D QSAR Studies of Natural Based Derivatives as Xanthine Oxidase Inhibitors. Curr Top Med Chem 2019; 19:123-138. [PMID: 30727896 DOI: 10.2174/1568026619666190206122640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/23/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large number of disorders and their symptoms emerge from deficiency or overproduction of specific metabolites has drawn the attention for the discovery of new therapeutic agents for the treatment of disorders. Various approaches such as computational drug design have provided the new methodology for the selection and evaluation of target protein and the lead compound mechanistically. For instance, the overproduction of xanthine oxidase causes the accumulation of uric acid which can prompt gout. OBJECTIVE In the present study we critically discussed the various techniques such as 3-D QSAR and molecular docking for the study of the natural based xanthine oxidase inhibitors with their mechanistic insight into the interaction of xanthine oxidase and various natural leads. CONCLUSION The computational studies of deferent natural compounds were discussed as a result the flavonoids, anthraquinones, xanthones shown the remarkable inhibitory potential for xanthine oxidase inhibition moreover the flavonoids such as hesperidin and rutin were found as promising candidates for further exploration.
Collapse
Affiliation(s)
- Neelam Malik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Priyanka Dhiman
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
33
|
Tejada-Jimenez M, Llamas A, Galván A, Fernández E. Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. PLANTS 2019; 8:plants8030056. [PMID: 30845759 PMCID: PMC6473468 DOI: 10.3390/plants8030056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a gaseous secondary messenger that is critical for proper cell signaling and plant survival when exposed to stress. Nitric oxide (NO) synthesis in plants, under standard phototrophic oxygenic conditions, has long been a very controversial issue. A few algal strains contain NO synthase (NOS), which appears to be absent in all other algae and land plants. The experimental data have led to the hypothesis that molybdoenzyme nitrate reductase (NR) is the main enzyme responsible for NO production in most plants. Recently, NR was found to be a necessary partner in a dual system that also includes another molybdoenzyme, which was renamed NO-forming nitrite reductase (NOFNiR). This enzyme produces NO independently of the molybdenum center of NR and depends on the NR electron transport chain from NAD(P)H to heme. Under the circumstances in which NR is not present or active, the existence of another NO-forming system that is similar to the NOS system would account for NO production and NO effects. PII protein, which senses and integrates the signals of the C–N balance in the cell, likely has an important role in organizing cell responses. Here, we critically analyze these topics.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|