1
|
Verma AK, Sharma P, Islam Z, Biswal AK, Tak Y, Sahi C. Arabidopsis Dph4 is an Hsp70 Cochaperone with Iron-Binding Properties. ACS OMEGA 2024; 9:37650-37661. [PMID: 39281955 PMCID: PMC11391554 DOI: 10.1021/acsomega.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
J-domain proteins (JDPs) are obligate cochaperones of Hsp70s with a wide range of functions in protein homeostasis. Although the J-domain is required for the stimulation of Hsp70s ATPase activity, the functional specificity of JDPs is governed by domains or regions other than the J-domain. Jjj3/Dph4, a class III JDP, is required for diphthamide (DPH) biosynthesis in eukaryotes, including yeast and mammals. Dph4 has a conserved N-terminal J-domain and an uncharacterized C-terminal domain containing a signature CSL zinc finger motif. Previously, we showed that the Dph4 ortholog in Arabidopsis thaliana (atDjC13/AtJjj3/AtDph4) could restore DPH biosynthesis in yeast jjj3Δ mutant in a J-domain-dependent manner. Here, we characterize the C-terminal CSL motif of AtDph4 using yeast genetic and biochemical approaches. The CSL motif of AtDph4 is essential for DPH biosynthesis, and like human Dph4, AtDph4 showed distinct iron-binding activity, which is not present in its yeast counterpart. ScDph4 and AtDph4 proteins exhibit distinct iron-binding capabilities, as evidenced by UV-vis spectrophotometry, SEM-EDS (energy-dispersive spectroscopy function on the scanning electron microscope) and electron paramagnetic resonance (EPR) spectra analyses. Collectively, our data suggests that beyond their role as an Hsp70 cochaperone, Dph4 homologues in complex eukaryotes may have iron-binding abilities, indicating a potential role in iron-sulfur cluster assembly and iron homeostasis.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390-9096, United States
| | - Priya Sharma
- Department of Botany, Faculty of Science, University of Delhi, Delhi 110007, India
| | - Zeyaul Islam
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110 Doha, Qatar
| | - Anup Kumar Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Yogesh Tak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brian Institute, UT Southwestern Medical Center, Dallas, Texas 75390-9096, United States
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
3
|
Shah R, Shah VK, Emin M, Gao S, Sampogna RV, Aggarwal B, Chang A, St-Onge MP, Malik V, Wang J, Wei Y, Jelic S. Mild sleep restriction increases endothelial oxidative stress in female persons. Sci Rep 2023; 13:15360. [PMID: 37717072 PMCID: PMC10505226 DOI: 10.1038/s41598-023-42758-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
Sleep restriction is associated with increased cardiovascular risk, which is more pronounced in female than male persons. We reported recently first causal evidence that mild, prolonged sleep restriction mimicking "real-life" conditions impairs endothelial function, a key step in the development and progression of cardiovascular disease, in healthy female persons. However, the underlying mechanisms are unclear. In model organisms, sleep restriction increases oxidative stress and upregulates antioxidant response via induction of the antioxidant regulator nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Here, we assessed directly endothelial cell oxidative stress and antioxidant responses in healthy female persons (n = 35) after 6 weeks of mild sleep restriction (1.5 h less than habitual sleep) using randomized crossover design. Sleep restriction markedly increased endothelial oxidative stress without upregulating antioxidant response. Using RNA-seq and a predicted protein-protein interaction database, we identified reduced expression of endothelial Defective in Cullin Neddylation-1 Domain Containing 3 (DCUN1D3), a protein that licenses Nrf2 antioxidant responses, as a mediator of impaired endothelial antioxidant response in sleep restriction. Thus, sleep restriction impairs clearance of endothelial oxidative stress that over time increases cardiovascular risk.Trial Registration: NCT02835261 .
Collapse
Affiliation(s)
- Riddhi Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Vikash Kumar Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Su Gao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rosemary V Sampogna
- Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brooke Aggarwal
- Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Audrey Chang
- NewYork-Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marie-Pierre St-Onge
- Division of General Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Vikas Malik
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Human Development and Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jianlong Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Human Development and Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ying Wei
- Division of Biostatistics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Ütkür K, Mayer K, Khan M, Manivannan T, Schaffrath R, Brinkmann U. DPH1 and DPH2 variants that confer susceptibility to diphthamide deficiency syndrome in human cells and yeast models. Dis Model Mech 2023; 16:dmm050207. [PMID: 37675463 PMCID: PMC10538292 DOI: 10.1242/dmm.050207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
The autosomal-recessive diphthamide deficiency syndrome presents as intellectual disability with developmental abnormalities, seizures, craniofacial and additional morphological phenotypes. It is caused by reduced activity of proteins that synthesize diphthamide on human translation elongation factor 2. Diphthamide synthesis requires seven proteins (DPH1-DPH7), with clinical deficiency described for DPH1, DPH2 and DPH5. A limited set of variant alleles from syndromic patients has been functionally analyzed, but databases (gnomAD) list additional so far uncharacterized variants in human DPH1 and DPH2. Because DPH enzymes are conserved among eukaryotes, their functionality can be assessed in yeast and mammalian cells. Our experimental assessment of known and uncharacterized DPH1 and DPH2 missense alleles showed that six variants are tolerated despite inter-species conservation. Ten additional human DPH1 (G113R, A114T, H132P, H132R, S136R, C137F, L138P, Y152C, S221P, H240R) and two DPH2 (H105P, C341Y) variants showed reduced functionality and hence are deficiency-susceptibility alleles. Some variants locate close to the active enzyme center and may affect catalysis, while others may impact on enzyme activation. In sum, our study has identified functionally compromised alleles of DPH1 and DPH2 genes that likely cause diphthamide deficiency syndrome.
Collapse
Affiliation(s)
- Koray Ütkür
- Institut für Biologie,Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Maliha Khan
- Institut für Biologie,Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany
| | - Thirishika Manivannan
- Institut für Biologie,Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie,Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany
| |
Collapse
|
5
|
Tu WL, Chih YC, Shih YT, Yu YR, You LR, Chen CM. Context-specific roles of diphthamide deficiency in hepatocellular carcinogenesis. J Pathol 2022; 258:149-163. [PMID: 35781884 DOI: 10.1002/path.5986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Diphthamide biosynthesis protein 1 (DPH1) is biochemically involved in the first step of diphthamide biosynthesis, a post-translational modification of eukaryotic elongation factor 2 (EEF2). Earlier studies showed that DPH1, also known as ovarian cancer-associated gene 1 (OVCA1), is involved in ovarian carcinogenesis. However, the role of DPH1 in hepatocellular carcinoma (HCC) remains unclear. To investigate the impact of DPH1 in hepatocellular carcinogenesis, we have performed data mining from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. We found that reduced DPH1 levels were associated with advanced stages and poor survival of patients with HCC. Also, we generated hepatocyte-specific Dph1 deficient mice and showed that diphthamide deficient EEF2 resulted in a reduced translation elongation rate in the hepatocytes and let to mild liver damage with fatty accumulation. After N-diethylnitrosamine (DEN) -induced acute liver injury, p53-mediated pericentral hepatocyte death was increased, and compensatory proliferation was reduced in Dph1-deficient mice. Consistent with these effects, Dph1 deficiency decreased the incidence of DEN-induced pericentral-derived HCC and revealed a protective effect against p53 loss. In contrast, Dph1 deficiency combined with Trp53- or Trp53/Pten-deficient hepatocytes led to increased tumor loads associated with KRT19 (K19)-positive periportal-like cell expansion in mice. Further gene set enrichment analysis also revealed that HCC patients with lower levels of DPH1 and TP53 expression had enriched gene-sets related to the cell cycle and K19-upregulated HCC. Additionally, liver tumor organoids obtained from 6-month-old Pten/Trp53/Dph1-triple-mutant mice had a higher frequency of organoid re-initiation cells and higher proliferative index compared with those of the Pten/Trp53-double-mutant. Pten/Trp53/Dph1-triple-mutant liver tumor organoids showed expression of genes associated with stem/progenitor phenotypes, including Krt19 and Prominin-1 (Cd133) progenitor markers, combined with low hepatocyte-expressed fibrinogen genes. These findings indicate that diphthamide deficiency differentially regulates hepatocellular carcinogenesis, which inhibits pericentral hepatocytes-derived tumor and promotes periportal progenitors-associated liver tumors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Ling Tu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Ya-Tung Shih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Dailey GP, Premadasa LS, Ruzicka JA, Taylor EW. Inhibition of selenoprotein synthesis by Zika virus may contribute to congenital Zika syndrome and microcephaly by mimicking SELENOP knockout and the genetic disease PCCA. BBA ADVANCES 2022; 1. [PMID: 34988542 DOI: 10.1016/j.bbadva.2021.100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selenium status plays a major role in health impacts of various RNA viruses. We previously reported potential antisense interactions between viral mRNAs and host mRNAs encoding isoforms of the antioxidant selenoprotein thioredoxin reductase (TXNRD). Here, we examine possible targeting of selenoprotein mRNAs by Zika virus (ZIKV), because one of the most devastating outcomes of ZIKV infection in neonates, microcephaly, is a key manifestation of Progressive Cerebello-Cerebral Atrophy (PCCA), a genetic disease of impaired selenoprotein synthesis. Potential antisense matches between ZIKV and human selenoprotein mRNAs were identified computationally, the strongest being against human TXNRD1 and selenoprotein P (SELENOP), a selenium carrier protein essential for delivery of selenium to the brain. Computationally, ZIKV has regions of extensive (~30bp) and stable (ΔE < -50kcal/mol) antisense interactions with both TXNRD1 and SELENOP mRNAs. The core ZIKV/SELENOP hybridization was experimentally confirmed at the DNA level by gel shift assay using synthetic oligonucleotides. In HEK293T cells, using Western blot probes for SELENOP and TXNRD1, ZIKV infection knocked down SELENOP protein expression almost completely, by 99% (p<0.005), and TXNRD1 by ~90% (p<0.05). In contrast, by RT-qPCR, there was no evidence of significant changes in SELENOP and TXNRD1 mRNA levels after ZIKV infection, suggesting that their knockdown at the protein level is not primarily a result of mRNA degradation. These results suggest that knockdown of SELENOP and TXNRD1 by ZIKV in fetal brain, possibly antisense-mediated, could mimic SELENOP knockout, thereby contributing to neuronal cell death and symptoms similar to the genetic disease PCCA, including brain atrophy and microcephaly.
Collapse
Affiliation(s)
- Gabrielle P Dailey
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| | - Lakmini S Premadasa
- Texas Biomedical Research Institute, Southwest National Primate Research Center, P.O. Box 760549, San Antonio, Texas 78245-0549, United States of America
| | - Jan A Ruzicka
- Dept. of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, NC 27268, United States of America
| | - Ethan Will Taylor
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| |
Collapse
|
7
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
8
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
9
|
Hawer H, Mendelsohn BA, Mayer K, Kung A, Malhotra A, Tuupanen S, Schleit J, Brinkmann U, Schaffrath R. Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. Eur J Hum Genet 2020; 28:1497-1508. [PMID: 32576952 PMCID: PMC7575589 DOI: 10.1038/s41431-020-0668-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
We describe a novel type of ribosomopathy that is defined by deficiency in diphthamidylation of translation elongation factor 2. The ribosomopathy was identified by correlating phenotypes and biochemical properties of previously described patients with diphthamide biosynthesis gene 1 (DPH1) deficiencies with a new patient that carried inactivating mutations in both alleles of the human diphthamide biosynthesis gene 2 (DPH2). The human DPH1 syndrome is an autosomal recessive disorder associated with developmental delay, abnormal head circumference (microcephaly or macrocephaly), short stature, and congenital heart disease. It is defined by variants with reduced functionality of the DPH1 gene observed so far predominantly in consanguineous homozygous patients carrying identical mutant alleles of DPH1. Here we report a child with a very similar phenotype carrying biallelic variants of the human DPH2. The gene products DPH1 and DPH2 are components of a heterodimeric enzyme complex that mediates the first step of the posttranslational diphthamide modification on the nonredundant eukaryotic translation elongation factor 2 (eEF2). Diphthamide deficiency was shown to reduce the accuracy of ribosomal protein biosynthesis. Both DPH2 variants described here severely impair diphthamide biosynthesis as demonstrated in human and yeast cells. This is the first report of a patient carrying compound heterozygous DPH2 loss-of-function variants with a DPH1 syndrome-like phenotype and implicates diphthamide deficiency as the root cause of this patient's clinical phenotype as well as of DPH1-syndrome. These findings define "diphthamide-deficiency syndrome" as a special ribosomopathy due to reduced functionality of components of the cellular machinery for eEF2-diphthamide synthesis.
Collapse
Affiliation(s)
- Harmen Hawer
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| | | | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany
| | - Ann Kung
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Amit Malhotra
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Sari Tuupanen
- Blueprint Genetics Oy, Keilaranta 16 A-B, 02150, Espoo, Finland
| | | | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany.
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| |
Collapse
|
10
|
Liu J, Zuo Z, Zou M, Finkel T, Liu S. Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen. PLoS Genet 2020; 16:e1009068. [PMID: 33057331 PMCID: PMC7591051 DOI: 10.1371/journal.pgen.1009068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diphthamide is a unique post-translationally modified histidine residue (His715 in all mammals) found only in eukaryotic elongation factor-2 (eEF-2). The biosynthesis of diphthamide represents one of the most complex modifications, executed by protein factors conserved from yeast to humans. Diphthamide is not only essential for normal physiology (such as ensuring fidelity of mRNA translation), but is also exploited by bacterial ADP-ribosylating toxins (e.g., diphtheria toxin) as their molecular target in pathogenesis. Taking advantage of the observation that cells defective in diphthamide biosynthesis are resistant to ADP-ribosylating toxins, in the past four decades, seven essential genes (Dph1 to Dph7) have been identified for diphthamide biosynthesis. These technically unsaturated screens raise the question as to whether additional genes are required for diphthamide biosynthesis. In this study, we performed two independent, saturating, genome-wide CRISPR knockout screens in human cells. These screens identified all previously known Dph genes, as well as further identifying the BTB/POZ domain-containing transcription factor Miz1. We found that Miz1 is absolutely required for diphthamide biosynthesis via its role in the transcriptional regulation of Dph1 expression. Mechanistically, Miz1 binds to the Dph1 proximal promoter via an evolutionarily conserved consensus binding site to activate Dph1 transcription. Therefore, this work demonstrates that Dph1-7, along with the newly identified Miz1 transcription factor, are likely to represent the essential protein factors required for diphthamide modification on eEF2. Diphthamide is a unique post-translationally modified histidine residue (His699 in yeast, His715 in all mammals) found only in eukaryotic elongation factor-2 (eEF-2). Mice that are deficient in diphthamide biosynthesis are embryonic lethal, attesting to the importance of diphthamide in normal physiology. It has taken four decades to identify the seven non-redundant genes in diphthamide biosynthesis, but whether additional factors are required and how the pathway is regulated remained elusive. To address these issues, we performed two saturating, independent, and unbiased genome-wide CRISPR knockout screens. The screens concluded independently that Dph1-Dph7 and additionally transcription factor Miz1 are the key factors required for diphthamide biosynthesis. Mechanistically, Miz1 binds to the Dph1 proximal promoter via an evolutionarily conserved consensus binding site to activate Dph1 transcription. While diphthamide biosynthesis machinery (Dph1-Dph7) exists across eukaryotes, Miz1 orthologues do not exist in lower species such as yeast, C. elegans, and Drosophila, indicating that the regulation of diphthamide modification by Miz1 emerged much later in evolution. The work opens a new avenue for understanding the role that diphthamide modification plays in normal physiology and bacterial toxin pathogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Zehua Zuo
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Meijuan Zou
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Toren Finkel
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Shihui Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zou H, Liu G. Inhibition of endoplasmic reticulum stress through activation of MAPK/ERK signaling pathway attenuates hypoxia-mediated cardiomyocyte damage. J Recept Signal Transduct Res 2020; 41:532-537. [PMID: 33023351 DOI: 10.1080/10799893.2020.1831534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huanxue Zou
- Department of Cardiology, Yuyao People’s Hospital, Yuyao, China
| | - Gang Liu
- Department of Cardiology, Yuyao People’s Hospital, Yuyao, China
| |
Collapse
|
12
|
Dieffenbach M, Pastan I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules 2020; 10:E979. [PMID: 32630017 PMCID: PMC7408526 DOI: 10.3390/biom10070979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotoxins are a class of targeted cancer therapeutics in which a toxin such as Pseudomonas exotoxin A (PE) is linked to an antibody or cytokine to direct the toxin to a target on cancer cells. While a variety of PE-based immunotoxins have been developed and a few have demonstrated promising clinical and preclinical results, cancer cells frequently have or develop resistance to these immunotoxins. This review presents our current understanding of the mechanism of action of PE-based immunotoxins and discusses cellular mechanisms of resistance that interfere with various steps of the pathway. These steps include binding of the immunotoxin to the target antigen, internalization, intracellular processing and trafficking to reach the cytosol, inhibition of protein synthesis through ADP-ribosylation of elongation factor 2 (EF2), and induction of apoptosis. Combination therapies that increase immunotoxin action and overcome specific mechanisms of resistance are also reviewed.
Collapse
Affiliation(s)
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA;
| |
Collapse
|
13
|
Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res 2020; 41:1-5. [PMID: 32583708 DOI: 10.1080/10799893.2020.1784938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main therapeutic strategy currently used for acute myocardial infarction (AMI) is to open occluded coronary arteries, a process defined as blood reperfusion. However, blood reperfusion will increase cardiac mortality, tissue damage and cardiac dysfunction in patients with AMI, which is mechanically defined as "ischemia/reperfusion (I/R) injury". It is currently believed that mitochondrial dynamics plays a key role in myocardial I/R, especially excessive mitochondrial fission, which is the main cause of cardiac dysfunction. Therefore, in the process of I/R injury, effective drug intervention and correct treatment strategies can be used to regulate mitochondrial dynamic balance to combat ischemia-reperfusion injury, which can play a huge role in improving the prognosis of patients. This review summarized the effects of mitochondrial fission and mitochondrial fusion balance on myocardial and mitochondrial functional changes during myocardial I/R injury. Finally, combined with the previous injury mechanisms, this review also briefly described some drug intervention that may be beneficial to clinical practice to improve the postoperative quality of life of patients with AMI.
Collapse
Affiliation(s)
- David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Cinà DP, Ketela T, Brown KR, Chandrashekhar M, Mero P, Li C, Onay T, Fu Y, Han Z, Saleem M, Moffat J, Quaggin SE. Forward genetic screen in human podocytes identifies diphthamide biosynthesis genes as regulators of adhesion. Am J Physiol Renal Physiol 2019; 317:F1593-F1604. [PMID: 31566424 PMCID: PMC6962514 DOI: 10.1152/ajprenal.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Podocyte function is tightly linked to the complex organization of its cytoskeleton and adhesion to the underlying glomerular basement membrane. Adhesion of cultured podocytes to a variety of substrates is reported to correlate with podocyte health. To identify novel genes that are important for podocyte function, we designed an in vitro genetic screen based on podocyte adhesion to plates coated with either fibronectin or soluble Fms-like tyrosine kinase-1 (sFLT1)/Fc. A genome-scale pooled RNA interference screen on immortalized human podocytes identified 77 genes that increased adhesion to fibronectin, 101 genes that increased adhesion to sFLT1/Fc, and 44 genes that increased adhesion to both substrates when knocked down. Multiple shRNAs against diphthamide biosynthesis protein 1-4 (DPH1-DPH4) were top hits for increased adhesion. Immortalized human podocyte cells stably expressing these hairpins displayed increased adhesion to both substrates. We then used CRISPR-Cas9 to generate podocyte knockout cells for DPH1, DPH2, or DPH3, which also displayed increased adhesion to both fibronectin and sFLT1/Fc, as well as a spreading defect. Finally, we showed that Drosophila nephrocyte-specific knockdown of Dph1, Dph2, and Dph4 resulted in altered nephrocyte function. In summary, we report here a novel high-throughput method to identify genes important for podocyte function. Given the central role of podocyte adhesion as a marker of podocyte health, these data are a rich source of candidate regulators of glomerular disease.
Collapse
Affiliation(s)
- Davide P Cinà
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Troy Ketela
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Megha Chandrashekhar
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Mero
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Chengjin Li
- Tanenbaum-Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Moin Saleem
- School of Clinical Sciences, Children's Renal Unit and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Jason Moffat
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
15
|
Fenwick MK, Dong M, Lin H, Ealick SE. The Crystal Structure of Dph2 in Complex with Elongation Factor 2 Reveals the Structural Basis for the First Step of Diphthamide Biosynthesis. Biochemistry 2019; 58:4343-4351. [PMID: 31566354 PMCID: PMC7857147 DOI: 10.1021/acs.biochem.9b00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elongation factor 2 (EF-2), a five-domain, GTP-dependent ribosomal translocase of archaebacteria and eukaryotes, undergoes post-translational modification to form diphthamide on a specific histidine residue in domain IV prior to binding the ribosome. The first step of diphthamide biosynthesis in archaebacteria is catalyzed by Dph2, a homodimeric radical S-adenosylmethionine (SAM) enzyme having a noncanonical architecture. Here, we describe a 3.5 Å resolution crystal structure of the Methanobrevibacter smithii (Ms) Dph2 homodimer bound to two molecules of MsEF-2, one of which is ordered and the other largely disordered. MsEF-2 is bound to both protomers of MsDph2, with domain IV bound to the active site of one protomer and domain III bound to a surface α-helix of an adjacent protomer. The histidine substrate of domain IV is inserted into the active site, which reveals for the first time the architecture of the Dph2 active site in complex with its target substrate. We also determined a high-resolution crystal structure of isolated MsDph2 bound to 5'-methylthioadenosine that shows a conserved arginine residue preoriented by conserved phenylalanine and aspartate residues for binding the carboxylate group of SAM. Mutagenesis experiments suggest that the arginine plays an important role in the first step of diphthamide biosynthesis.
Collapse
|
16
|
Li Z, Gu Y, Wen R, Shen F, Tian HL, Yang GY, Zhang Z. Lysosome exocytosis is involved in astrocyte ATP release after oxidative stress induced by H 2O 2. Neurosci Lett 2019; 705:251-258. [PMID: 30928480 DOI: 10.1016/j.neulet.2019.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Studies demonstrated that oxidative damage decreased intracellular ATP level in astrocytes. However, the pathway mediated ATP level decrease is obscure. Our previous study found intracellular ATP could be released via lysosome exocytosis in astrocytes. Here, we explored whether lysosome exocytosis was involved in ATP release during oxidative stress induced by H2O2 in astrocytes. METHODS Astrocytes were isolated from the cortex of neonatal rats. Intracellular lysosomes and calcium signals were stained in astrocytes before and after H2O2 stimulation. ATP molecules location and ATP level were detected by immunostaining and bioluminescence method, respectively. Extracellular β-Hexosaminidase and LDH were examined by colorimetric method. RESULTS We found that ATP located in lysosome of astrocytes. H2O2 stimulation resulted in the decrease of lysosomes staining and the increase of extracellular ATP, compared to the control (p < 0.05). At the same time, intracellular Fluo4 signals and β-Hexosaminidase level were also increased (p < 0.05). Extracellular LDH level did not show an increase, suggesting that there is no cell membrane damage after H2O2 stimulation. Glycyl-phenylalanine 2-naphthylamide blocked lysosome exocytosis and inhibited ATP release in astrocytes after H2O2-treatment (p < 0.05). CONCLUSION Our results indicated that H2O2 induced ATP release from intracellular to extracellular via lysosome exocytosis. The increase of intracellular Ca2+ was necessary for lysosome release under oxidative stress induced by H2O2.
Collapse
Affiliation(s)
- Zongwei Li
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yong Gu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Ruoxue Wen
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fanxia Shen
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guo-Yuan Yang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Zhijun Zhang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|