1
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
2
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
3
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
4
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Li XQ, Cheng XJ, Wu J, Wu KF, Liu T. Targeted inhibition of the PI3K/AKT/mTOR pathway by (+)-anthrabenzoxocinone induces cell cycle arrest, apoptosis, and autophagy in non-small cell lung cancer. Cell Mol Biol Lett 2024; 29:58. [PMID: 38649803 PMCID: PMC11036658 DOI: 10.1186/s11658-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), characterized by low survival rates and a high recurrence rate, is a major cause of cancer-related mortality. Aberrant activation of the PI3K/AKT/mTOR signaling pathway is a common driver of NSCLC. Within this study, the inhibitory activity of (+)-anthrabenzoxocinone ((+)-ABX), an oxygenated anthrabenzoxocinone compound derived from Streptomyces, against NSCLC is demonstrated for the first time both in vitro and in vivo. Mechanistically, it is confirmed that the PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells. Additionally, the augmentation of intracellular ROS levels by (+)-ABX is revealed, further contributing to the inhibition of the signaling pathway and exerting inhibitory effects on tumor growth. The findings presented in this study suggest that (+)-ABX possesses the potential to serve as a lead compound for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Xiao-Ju Cheng
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Jie Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Kai-Feng Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
| | - Tie Liu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
6
|
Banerjee C, Barman R, Darshani P, Pillai M, Ahuja S, Mondal R, Pragadheesh VS, Chakraborty J, Kumar D. α-Viniferin, a dietary phytochemical, inhibits Monoamine oxidase and alleviates Parkinson's disease associated behavioral deficits in a mice model. Neurochem Int 2024; 174:105698. [PMID: 38364939 DOI: 10.1016/j.neuint.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. Behavioral complexities worsen over time due to progressive dopaminergic (DArgic) neuronal loss at substantia nigra region of brain. Available treatments typically aim to increase dopamine (DA) levels at striatum. DA is degraded by Monoamine oxidase (MAO), thus dietary phytochemicals with MAO inhibitory properties can contribute to elevate DA levels and reduce the ailment. Characterization of naturally occurring dietary MAO inhibitors is inadequate. Based on available knowledge, we selected different classes of molecules and conducted a screening process to assess their potential as MAO inhibitors. The compounds mostly derived from food sources, broadly belonging to triterpenoids (ursane, oleanane and hopane), alkaloid, polyphenolics, monoterpenoids, alkylbenzene, phenylpropanoid and aromatic alcohol classes. Among all the molecules, highest level of MAO inhibition is offered by α-viniferin, a resveratrol trimer. Cell viability, mitochondrial morphology and reactive oxygen species (ROS) generation remained unaltered by 50 μM α-viniferin treatment in-vitro. Toxicity studies in Drosophila showed unchanged gross neuronal morphology, ROS level, motor activity or long-term survival. α-Viniferin inhibited MAO in mice brain and elevated striatal DA levels. PD-related akinesia and cataleptic behavior were attenuated by α-viniferin due to increase in striatal DA. Our study implies that α-viniferin can be used as an adjunct phytotherapeutic agent for mitigating PD-related behavioral deterioration.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raju Barman
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Meghana Pillai
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Sanchi Ahuja
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Rupsha Mondal
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - V S Pragadheesh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru- 560065, India
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India.
| |
Collapse
|
7
|
Kaludercic N, Arusei RJ, Di Lisa F. Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol 2023; 118:41. [PMID: 37792081 PMCID: PMC10550854 DOI: 10.1007/s00395-023-01012-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.
Collapse
Affiliation(s)
- Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| | - Ruth Jepchirchir Arusei
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padua, Italy.
| |
Collapse
|
8
|
Mondal R, Banerjee C, Nandy S, Roy M, Chakraborty J. Calcineurin inhibition protects against dopamine toxicity and attenuates behavioral decline in a Parkinson's disease model. Cell Biosci 2023; 13:140. [PMID: 37528492 PMCID: PMC10394860 DOI: 10.1186/s13578-023-01068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), a highly prevalent neuro-motor disorder is caused due to progressive loss of dopaminergic (DAergic) neurons at substantia nigra region of brain. This leads to depleted dopamine (DA) content at striatum, thus affecting the fine tuning of basal ganglia. In patients, this imbalance is manifested by akinesia, catalepsy and tremor. PD associated behavioral dysfunctions are frequently mitigated by l-DOPA (LD) therapy, a precursor for DA synthesis. Due to progressive neurodegeneration, LD eventually loses applicability in PD. Although DA is cytotoxic, it is unclear whether LD therapy can accelerate PD progression or not. LD itself does not lead to neurodegeneration in vivo, but previous reports demonstrate that LD treatment mediated excess DA can potentiate neurotoxicity when PD associated genetic or epigenetic aberrations are involved. So, minimizing DA toxicity during the therapy is an absolute necessity to halt or slowdown PD progression. The two major contributing factors associated with DA toxicity are: degradation by Monoamine oxidase and DAquinone (DAQ) formation. RESULTS Here, we report that apoptotic mitochondrial fragmentation via Calcineurin (CaN)-DRP1 axis is a common downstream event for both these initial cues, inhibiting which can protect cells from DA toxicity comprehensively. No protective effect is observed, in terms of cell survival when only PxIxIT domain of CaN is obstructed, demonstrating the importance to block DRP1-CaN axis specifically. Further, evaluation of the impact of DA exposure on PD progression in a mice model reveal that LD mediated behavioral recovery diminishes with time, mostly because of continued DAergic cell death and dendritic spine loss at striatum. CaN inhibition, alone or in combination with LD, offer long term behavioral protection. This protective effect is mediated specifically by hindering CaN-DRP1 axis, whereas inhibiting interaction between CaN and other substrates, including proteins involved in neuro-inflammation, remained ineffective when LD is co-administered. CONCLUSIONS In this study, we conclude that DA toxicity can be circumvented by CaN inhibition and it can mitigate PD related behavioral aberrations by protecting neuronal architecture at striatum. We propose that CaN inhibitors might extend the therapeutic efficacy of LD treatment.
Collapse
Affiliation(s)
- Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Biswas P, Swaroop S, Dutta N, Arya A, Ghosh S, Dhabal S, Das P, Majumder C, Pal M, Bhattacharjee A. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis. Free Radic Biol Med 2023; 195:309-328. [PMID: 36592660 DOI: 10.1016/j.freeradbiomed.2022.12.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study depicted the effect of IL-13 and 13(S)HpODE (the endogenous product during IL-13 activation) in the process of cancer cell apoptosis. We examined the role of both IL-13 and 13(S)HpODE in mediating apoptotic pathway in three different in vitro cellular models namely A549 lung cancer, HCT116 colorectal cancer and CCF52 GBM cells. Our data showed that IL-13 promotes apoptosis of A549 lung carcinoma cells through the involvement of 15-LO, PPARγ and MAO-A. Our observations demonstrated that IL-13/13(S)HpODE stimulate MAO-A-mediated intracellular ROS production and p53 as well as p21 induction which play a crucial role in IL-13-stimulated A549 cell apoptosis. We further showed that 13(S)HpODE promotes apoptosis of HCT116 and CCF52 cells through the up-regulation of p53 and p21 expression. Our data delineated that IL-13 stimulates p53 and p21 induction which is mediated through 15-LO and MAO-A in A549 cells. In addition, we observed that PPARγ plays a vital role in apoptosis as well as in p53 and p21 expression in A549 cells in the presence of IL-13. We validated our observations in case of an in vivo colon cancer tumorigenic study using syngeneic mice model and demonstrated that 13(S)HpODE significantly reduces solid tumor growth through the activation of apoptosis. These data thus confirmed that IL-13 > 15-LO>13(S)HpODE > PPARγ>MAO-A > ROS > p53>p21 axis has a major contribution in regulating cancer cell apoptosis and further identified 13(S)HpODE as a potential chemo-preventive agent which can improve the efficacy of cancer treatment as a combination compound.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Surbhi Swaroop
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Aditi Arya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India.
| |
Collapse
|
10
|
Kamauchi H, Hirata M, Takao K, Sugita Y. Total Synthesis and Monoamine Oxidase Inhibitory Activities of (±)-Entonalactam A and Its Derivatives. ACS OMEGA 2022; 7:41804-41814. [PMID: 36406553 PMCID: PMC9670909 DOI: 10.1021/acsomega.2c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The first total synthesis of isoindolinone (±)-entonalactam A (6), originally obtained from the fungus Entonaema sp., was achieved in 14 steps from commercially available 5-bromovanillin via benzophenone intermediates. Isoindolinone, phthalide, and benzophenone analogues of natural products were also synthesized. The monoamine oxidase (MAO) A and B inhibitory activities were tested. The isoindolinone derivative 30 exhibited inhibition of both MAO-A and -B (IC50 = 17.8 and 15.8 μM, respectively).
Collapse
|
11
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
12
|
Cagnin S, Brugnaro M, Millino C, Pacchioni B, Troiano C, Di Sante M, Kaludercic N. Monoamine Oxidase-Dependent Pro-Survival Signaling in Diabetic Hearts Is Mediated by miRNAs. Cells 2022; 11:2697. [PMID: 36078109 PMCID: PMC9454570 DOI: 10.3390/cells11172697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/05/2023] Open
Abstract
Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO) inhibition in diabetic cardiomyopathy prevents oxidative stress, mitochondrial and endoplasmic reticulum stress and the development of diastolic dysfunction. However, it is unclear whether, in addition to the direct effects exerted on the mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from streptozotocin-treated mice (model of type 1 diabetes (T1D)), administered with either vehicle or MAOs inhibitor pargyline for 12 weeks. We found that inhibition of MAO activity in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts increased miR-133a-3p, -193a-3p and -27a-3p expression. These miRNAs target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the IGF1R/PI3K/AKT signaling pathway. Indeed, AKT activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Marco Brugnaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Carmen Troiano
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), 35131 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy
| |
Collapse
|
13
|
Banerjee C, Nandy S, Chakraborty J, Kumar D. Myricitrin - a flavonoid isolated from the Indian olive tree ( Elaeocarpus floribundus) - inhibits Monoamine oxidase in the brain and elevates striatal dopamine levels: therapeutic implications against Parkinson's disease. Food Funct 2022; 13:6545-6559. [PMID: 35647619 DOI: 10.1039/d2fo00734g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavonoids exhibit several biological activities including inhibition of Monoamine oxidase (MAO), an enzyme that metabolizes several neurotransmitters. Thus, MAO inhibitors are well included in traditional therapeutic practices to fine-tune neuromotor behavior. This study aims to isolate flavonoids from a less explored plant of northeast India, named Indian olive (Elaeocarpus floribundus; Ef, family Elaeocarpaceae), and evaluate their MAO inhibitory properties. Four flavonoids from Ef leaf extract, namely, myricitrin, mearnsitrin, myricetin, and mearnsetin, are taken into consideration. Spectrofluorimetric assay is carried out to determine the MAO inhibitory properties. Next, in vitro and in vivo toxicity studies are performed in neuronal cell line and Drosophila, respectively. Furthermore, MAO inhibition by the selected compounds and their effect on dopamine levels are examined in the mouse brain. We evaluated the therapeutic potential in a mouse model of Parkinson's disease (PD) in terms of behavior, neurotransmitter levels, and dopaminergic neuronal loss. In an in vitro setup, all four compounds inhibited total MAO, whereas myricitrin exhibited some selectivity against MAO-B at 100 μM. Myricitrin and mearnsitrin exhibited no toxicity, in vitro or in vivo. However, only myricitrin inhibited MAO in the mouse brain and elevated dopamine levels. Myricitrin was able to attenuate motor incoordination in the mouse model of PD and improved dopamine levels in the striatum.
Collapse
Affiliation(s)
- Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE campus, Kolkata, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India
| | - Sumangal Nandy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE campus, Kolkata, India.
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE campus, Kolkata, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India
| |
Collapse
|
14
|
Zhou J, Peng C, Li Q, Yan X, Yang L, Li M, Cao X, Xie X, Chen D, Rao C, Huang S, Peng F, Pan X. Dopamine Homeostasis Imbalance and Dopamine Receptors-Mediated AC/cAMP/PKA Pathway Activation are Involved in Aconitine-Induced Neurological Impairment in Zebrafish and SH-SY5Y Cells. Front Pharmacol 2022; 13:837810. [PMID: 35370746 PMCID: PMC8971779 DOI: 10.3389/fphar.2022.837810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Aconitine is one of the main bioactive and toxic ingredients of Aconitum species. Increasingly, aconitine has been reported to induce neurotoxicity. However, whether aconitine has effects on the dopaminergic nervous system remains unclear. In this study, zebrafish embryos at 6-days postfertilization were exposed to aconitine at doses of 0.5, 1, and 2 μM for 24 h, and SH-SY5Y cells were treated with 50, 100, and 200 μM of aconitine for 24 h. Results demonstrated that aconitine treatment induced deformities and enhanced the swimming behavior of zebrafish larvaes. Aconitine exposure suppressed cell proliferation and increased the number of reactive oxygen species and apoptosis in zebrafish larvaes and SH-SY5Y cells. Aconitine altered the levels of dopamine and its metabolites by regulating the expression of genes and proteins related to dopamine synthesis, storage, degradation, and reuptake in vivo and in vitro. Moreover, aconitine activated the AC/cAMP/PKA pathway by activating the dopamine D1 receptor (D1R) and inhibiting the dopamine D2 receptor (D2R) to disturb intracellular calcium homeostasis, eventually leading to the damage of nerve cells. Furthermore, the D1R antagonist SCH23390 and D2R agonist sumanirole pretreatment effectively attenuated the excitatory state of larvaes. Sumanirole and PKA antagonist H-89 pretreatment effectively decreased intracellular Ca2+ accumulation induced by aconitine in vivo. SCH23390 and sumanirole also reduced aconitine-induced cytotoxicity by inhibiting the AC/cAMP/PKA pathway in vitro. These results suggested that dopamine homeostasis imbalance and dopamine receptors (DRs)-mediated AC/cAMP/PKA pathway activation might be vital mechanisms underlying aconitine-induced neurological injury.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuju Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaoqi Pan,
| | - Xiaoqi Pan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaoqi Pan,
| |
Collapse
|
15
|
Wyse RK, Stott SRW, Mursaleen L, Matthews H, Dawson VL, Dawson TM. Waiting for PARIS-A Biological Target in Search of a Drug. JOURNAL OF PARKINSONS DISEASE 2021; 12:95-103. [PMID: 34744054 PMCID: PMC8842778 DOI: 10.3233/jpd-212945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent breakthrough paper published in Science Translational Medicine has provided compelling evidence that inhibition of Parkin Interacting Substrate (PARIS) may offer clinical researchers an important new therapeutic approach since it shows considerable promise as an important biological target potentially capable of pharmaceutical intervention to slow long term neurodegeneration in patients with Parkinson’s disease (PD). We present several PD-relevant perspectives on this paper that were not discussed in that otherwise entirely scientific narrative. We also outline the some of the work leading up to it, including the massive drug screen that proved necessary to discover a clinically suitable inhibitor of PARIS (Farnesol), as well as relevant PD research within the wider drug class, issues surrounding its future formulation, and next steps in translating this new knowledge into the clinic to evaluate possible long-term PD patient benefits.
Collapse
Affiliation(s)
| | | | | | | | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Albillos SM, Montero O, Calvo S, Solano-Vila B, Trejo JM, Cubo E. Plasma acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol in Parkinson's disease and essential tremor. A case control biomarker study. Parkinsonism Relat Disord 2021; 91:167-172. [PMID: 34649109 DOI: 10.1016/j.parkreldis.2021.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Given the overlapping clinical manifestations and pathology, the differentiation between essential tremor (ET) and Parkinson's disease (PD) is difficult. Our aims were to examine the plasma metabolomics profiling and their association with motor and non-motor symptoms (NMS) in patients with PD, and to determine differences between de novo PD compared to moderate-advanced PD vs. controls and patients with ET. METHODS Plasma samples were collected from 137 subjects including 35 age matched controls, 29 NOVO-PD, 35 PD and 38 ET patients. PD severity, motor and NMS including cognitive function were assessed using the UPDRS, NMS and PD cognitive rating scales, respectively. Metabolomics analysis was performed by UPLC-ESI-QToF-MS followed by unsupervised multivariate statistics. The area under the curve of the biomarkers according to distribution of their concentrations and the diagnosis of PD (NOVO-PD, advanced PD) vs ET and healthy controls was used as a measurement of diagnostic ability. RESULTS Several acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol (THS) presented good predictive accuracy (AUC higher than 0.8) for differentiating de novo PD and advanced PD from controls and ET, suggesting an alteration in the lipid oxidation pathway. In multivariate regression analysis, metabolite levels were not significantly associated with motor and NMS severity in PD. CONCLUSIONS Diverse acyl-carnitines, bilirubin, tyramine and some adrenal gland derived metabolites are suggested as potential biomarkers able to distinguish between PD from controls and ET.
Collapse
Affiliation(s)
- Silvia M Albillos
- University of Burgos, Area of Biochemistry and Molecular Biology, Spain
| | - Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Sara Calvo
- University Hospital of Burgos, Research Unit, Spain
| | | | - José M Trejo
- University Hospital of Burgos, Department of Neurology, Spain
| | - Esther Cubo
- University Hospital of Burgos, Department of Neurology, Spain.
| |
Collapse
|
17
|
Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla‐López E, Saez B, Gómez‐Ollés S, Ancochea J, Valenzuela C, Alonso T, Ussetti P, Laporta R, Xaubet A, Rodríguez‐Portal JA, Montes‐Worboys A, Machahua C, Bordas J, Menendez JA, Cruzado JM, Guiteras R, Bontoux C, La Motta C, Noguera‐Castells A, Mancino M, Lastra E, Rigo‐Bonnin R, Perales JC, Viñals F, Lahiguera A, Zhang X, Cuadras D, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Filippakis H, Hakem R, Gorrini C, Ferrer M, Ugun‐Klusek A, Billett E, Radzikowska E, Casanova Á, Molina‐Molina M, Roman A, Yanes O, Pujana MA. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med 2021; 13:e13929. [PMID: 34378323 PMCID: PMC8422079 DOI: 10.15252/emmm.202113929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022] Open
Abstract
Inhibition of mTOR is the standard of care for lymphangioleiomyomatosis (LAM). However, this therapy has variable tolerability and some patients show progressive decline of lung function despite treatment. LAM diagnosis and monitoring can also be challenging due to the heterogeneity of symptoms and insufficiency of non-invasive tests. Here, we propose monoamine-derived biomarkers that provide preclinical evidence for novel therapeutic approaches. The major histamine-derived metabolite methylimidazoleacetic acid (MIAA) is relatively more abundant in LAM plasma, and MIAA values are independent of VEGF-D. Higher levels of histamine are associated with poorer lung function and greater disease burden. Molecular and cellular analyses, and metabolic profiling confirmed active histamine signaling and metabolism. LAM tumorigenesis is reduced using approved drugs targeting monoamine oxidases A/B (clorgyline and rasagiline) or histamine H1 receptor (loratadine), and loratadine synergizes with rapamycin. Depletion of Maoa or Hrh1 expression, and administration of an L-histidine analog, or a low L-histidine diet, also reduce LAM tumorigenesis. These findings extend our knowledge of LAM biology and suggest possible ways of improving disease management.
Collapse
Affiliation(s)
- Carmen Herranz
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Francesca Mateo
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Baiges
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Gorka Ruiz de Garibay
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Junza
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Simon R Johnson
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Suzanne Miller
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Nadia García
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Jordi Capellades
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Gómez
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Present address:
Rheumatology Department and Rheumatology Research GroupVall d'Hebron Hospital Research Institute (VHIR)BarcelonaSpain
| | - August Vidal
- Department of PathologyUniversity Hospital of BellvitgeOncobellIDIBELL, L’Hospitalet del LlobregatBarcelonaSpain
- CIBER on Cancer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Luis Palomero
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Roderic Espín
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Ana I Extremera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eline Blommaert
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eva Revilla‐López
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Berta Saez
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Susana Gómez‐Ollés
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Julio Ancochea
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Claudia Valenzuela
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Tamara Alonso
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Piedad Ussetti
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Rosalía Laporta
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Antoni Xaubet
- Pneumology ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - José A Rodríguez‐Portal
- Medical‐Surgical Unit of Respiratory DiseasesInstitute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocíoSevilleSpain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
| | - Ana Montes‐Worboys
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Carlos Machahua
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Jaume Bordas
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Javier A Menendez
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Josep M Cruzado
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Roser Guiteras
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Christophe Bontoux
- Department of PathologyUniversity Hospital Pitié‐SalpêtrièreFaculty of MedicineUniversity of SorbonneParisFrance
| | | | - Aleix Noguera‐Castells
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Mario Mancino
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Enrique Lastra
- Genetic Counseling UnitDepartment of Medical OncologyUniversity Hospital of BurgosBurgosSpain
| | - Raúl Rigo‐Bonnin
- Clinical LaboratoryUniversity Hospital of BellvitgeIDIBELLL'Hospitalet de LlobregatBarcelonaSpain
| | - Jose C Perales
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Francesc Viñals
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Alvaro Lahiguera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Daniel Cuadras
- Statistics DepartmentFoundation Sant Joan de DéuEspluguesSpain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Harilaos Filippakis
- Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Razq Hakem
- Princess Margaret Cancer CentreUniversity Health NetworkDepartment of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Chiara Gorrini
- Princess Margaret HospitalThe Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstituteUniversity Health NetworkTorontoONCanada
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Aslihan Ugun‐Klusek
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Ellen Billett
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Elżbieta Radzikowska
- Department of Lung Diseases IIINational Tuberculosis and Lung Disease Research InstituteWarsawPoland
| | - Álvaro Casanova
- Pneumology ServiceUniversity Hospital of HenaresUniversity Francisco de Vitoria, CosladaMadridSpain
| | - María Molina‐Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Oscar Yanes
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Miquel A Pujana
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| |
Collapse
|
18
|
Ghosh S, Dutta N, Banerjee P, Gajbhiye RL, Sareng HR, Kapse P, Pal S, Burdelya L, Mandal NC, Ravichandiran V, Bhattacharjee A, Kundu GC, Gudkov AV, Pal M. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radic Biol Med 2021; 172:136-151. [PMID: 34097996 DOI: 10.1016/j.freeradbiomed.2021.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3β activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of β-TrCP-GSK-3β axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Rahul L Gajbhiye
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | | | - Prachi Kapse
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lyudmila Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Velyutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India; National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
19
|
Multiomic analysis of stretched osteocytes reveals processes and signalling linked to bone regeneration and cancer. NPJ Regen Med 2021; 6:32. [PMID: 34099736 PMCID: PMC8184808 DOI: 10.1038/s41536-021-00141-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Exercise is a non-pharmacological intervention that can enhance bone regeneration and improve the management of bone conditions like osteoporosis or metastatic bone cancer. Therefore, it is gaining increasing importance in an emerging area of regenerative medicine-regenerative rehabilitation (RR). Osteocytes are mechanosensitive and secretory bone cells that orchestrate bone anabolism and hence postulated to be an attractive target of regenerative exercise interventions. However, the human osteocyte signalling pathways and processes evoked upon exercise remain to be fully identified. Making use of a computer-controlled bioreactor that mimics exercise and the latest omics approaches, RNA sequencing (RNA-seq) and tandem liquid chromatography-mass spectrometry (LC-MS), we mapped the transcriptome and secretome of mechanically stretched human osteocytic cells. We discovered that a single bout of cyclic stretch activated network processes and signalling pathways likely to modulate bone regeneration and cancer. Furthermore, a comparison between the transcriptome and secretome of stretched human and mouse osteocytic cells revealed dissimilar results, despite both species sharing evolutionarily conserved signalling pathways. These findings suggest that osteocytes can be targeted by exercise-driven RR protocols aiming to modulate bone regeneration or metastatic bone cancer.
Collapse
|
20
|
Jia C, Cheng C, Li T, Chen X, Yang Y, Liu X, Li S, Le W. α-Synuclein Up-regulates Monoamine Oxidase A Expression and Activity via Trans-Acting Transcription Factor 1. Front Aging Neurosci 2021; 13:653379. [PMID: 33815093 PMCID: PMC8010665 DOI: 10.3389/fnagi.2021.653379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal α-Synuclein (α-SYN) aggregates are the pathological hallmarks of Parkinson’s disease (PD), which may affect dopamine (DA) neuron function and DA metabolism. Monoamine oxidase A (MAOA) is an enzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of DA. Both α-SYN and MAOA are associated with PD pathogenesis, suggesting possible crosstalk between these two molecules. In the present study, we aimed to investigate the potential impacts of α-SYN on MAOA function and further explore the underlying mechanisms. Our study showed that overexpression of α-SYN [both wild-type (WT) and A53T] increased MAOA function via upregulating its expression without impacting MAOA stability. Overexpression of α-SYNWT or α-SYNA53T enhanced the transcription activity of the MAOA promoter region containing the binding sites of cell division cycle associated 7 like (R1, a transcriptional repressor of MAOA) and trans-acting transcription factor 1 (Sp1, a transcription factor of MAOA). Interestingly, α-SYN selectively increased Sp1 expression, thereby enhancing the binding capacity of Sp1 with MAOA promoter to increase MAOA expression. Taken together, our findings demonstrate that α-SYN can upregulate MAOA expression via modulation of Sp1 and may shed light on future studies of α-SYN associated PD pathogenesis.
Collapse
Affiliation(s)
- Congcong Jia
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianbai Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xi Chen
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuting Yang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department and Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
21
|
Almammadov T, Atakan G, Leylek O, Ozcan G, Gunbas G, Kolemen S. Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Med Chem Lett 2020; 11:2491-2496. [PMID: 33335672 DOI: 10.1021/acsmedchemlett.0c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
A red-absorbing, water-soluble, and iodinated resorufin derivative (R1) that can be selectively activated with a monoamine oxidase (MAO) enzyme was synthesized, and its potential as a photodynamic therapy (PDT) agent was evaluated. R1 showed high 1O2 generation yields in aqueous solutions upon addition of MAO isoforms, and it was further tested in cell culture studies. R1 induced photocytotoxicity after being triggered by endogenous MAO enzyme in cancer cells with a much higher efficiency in SH-SY5Y neuroblastoma cells with high MAO-A expression. Additionally, R1 displayed differential cytotoxicity between cancer and normal cells, without any considerable dark toxicity. To the best of our knowledge, R1 marks the first example of a resorufin-based photosensitizer (PS) as well as the first anticancer drug that is activated by a MAO enzyme. Remarkably, the target PDT agent was obtained only in three steps as a result of versatile resorufin chemistry.
Collapse
Affiliation(s)
| | - Gizem Atakan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Ozen Leylek
- Graduate School of Health Sciences, Koc University, 34450 Istanbul, Turkey
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, Sariyer, 34450 Istanbul Turkey
- Surface Science and Technology Center (KUYTAM), Koc University, Sariyer, 34450 Istanbul, Turkey
- Boron and Advanced Materials Application and Research Center, Koc University, Sariyer, 34450 Istanbul, Turkey
- TUPRAS Energy Center (KUTEM), Koc University, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
22
|
Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson's disease treatment. Mol Divers 2020; 25:1775-1794. [PMID: 33237524 DOI: 10.1007/s11030-020-10155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
The main study's purpose is to detect novel natural products (NPs) that are potentially selective MAO-B inhibitors and, additionally, to computationally reposition the marketed drugs with a new therapeutic role for Parkinson's disease. To reach the goals, 3D similarity search, docking, ADMETox, and drug repurposing approaches were employed. Thus, an unbiased benchmarking dataset was built including selective and nonselective inhibitors for MAO-B compliant with both ligand- and structure-based virtual screening approaches. A retrospective and prospective mining scenario was applied to SPECS NP and DrugBank databases to detect novel scaffolds with potential benefits for Parkinson's disease patients. Out of the three best selected natural products, cardamomin showed excellently predicted drug-like properties, superior pharmacological profile, and specific interactions with MAO-B active site, indicating a potential selectivity over MAO-B. Two marketed drugs, fenamisal and monobenzone, were proposed as promising candidates repurposed for Parkinson's disease. The application of shape, physicochemical, and electrostatic similarity searches protocol emerged as a plausible solution to explore MAO-B inhibitors selectivity. This protocol might serve as a rewarding tool in early drug discovery and can be extended to other protein targets.
Collapse
|
23
|
Chen L, Guo L, Sun Z, Yang G, Guo J, Chen K, Xiao R, Yang X, Sheng L. Monoamine Oxidase A is a Major Mediator of Mitochondrial Homeostasis and Glycolysis in Gastric Cancer Progression. Cancer Manag Res 2020; 12:8023-8035. [PMID: 32943935 PMCID: PMC7481281 DOI: 10.2147/cmar.s257848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/02/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Monoamine oxidase A (MAO-A) is a mitochondrial protein involved in tumourigenesis in different types of cancer. However, the biological function of MAO-A in gastric cancer development remains unknown. Methods We examined MAO-A expression in gastric cancer tissues and in gastric cancer cell lines by immunohistochemistry and Western blot analyses. CCK8, FACS and bromodeoxyuridine incorporation assays were performed to assess the effects of MAO-A on gastric cancer cell proliferation. The role of MAO-A in mitochondrial function was determined through MitoSOX Red staining, ATP generation and glycolysis assays. Results In the present study, we observed that MAO-A was significantly upregulated in gastric cancer tissues and in AGS and MGC803 cells. The observed MAO-A inhibition indicated decreased cell cycle progression and proliferation. Silencing MAO-A expression was associated with suppressed migration and invasion of gastric cancer cells in vitro. Moreover, alleviated mitochondrial damage in these cells was demonstrated by decreased levels of mitochondrial reactive oxygen species and increased ATP generation. MAO-A knockdown also regulated the expression of the glycolysis rate-limiting enzymes hexokinase 2 and pyruvate dehydrogenase. Finally, we observed that the glycolysis-mediated effect was weakened in AGS and MGC803 cells when MAO-A was blocked. Conclusion The findings of the present study indicate that MAO-A is responsible for mitochondrial dysfunction and aerobic glycolysis, which in turn leads to the proliferation and metastasis of human gastric tumour cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Li Guo
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ziwen Sun
- Department of Scientific Research and Education, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Guochun Yang
- Department of Emergency Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xigui Yang
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Lijun Sheng
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Calvani M, Subbiani A, Bruno G, Favre C. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7534693. [PMID: 32855766 PMCID: PMC7443044 DOI: 10.1155/2020/7534693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of β-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with β-blockers in neuroblastoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gennaro Bruno
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
25
|
|
26
|
Yang ZM, Mo QY, He JM, Mo DL, Li J, Chen H, Zhao SL, Qin JK. Mitochondrial-Targeted and Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Monoamine Oxidase A Activity in Hepatic Fibrosis. ACS Sens 2020; 5:943-951. [PMID: 32223138 DOI: 10.1021/acssensors.9b02116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monoamine oxidase A (MAO-A) is a promising diagnostic marker for cancer, depression, Parkinson's disease, and liver disease. The fluorescence detection of MAO-A in living animals is of extreme importance for the early diagnosis of related diseases. However, the development of specific and mitochondrial-targeted and near-infrared (NIR) fluorescence MAO-A probes is still inadequate. Here, we designed and synthesized four NIR fluorescence probes containing a dihydroxanthene (DH) skeleton to detect MAO-A in complex biological systems. The specificity of our representative probe DHMP2 displays a 31-fold fluorescence turn-on in vitro, and it can effectively accumulate in the mitochondria and specifically detect the endogenous MAO-A concentrations in PC-3 and SH-SY5Y cell lines. Furthermore, the probe DHMP2 can be used to visualize the endogenous MAO-A activity in zebrafish and tumor-bearing mice. More importantly, it is the first time that the MAO-A activity of hepatic fibrosis tissues is detected through the probe DHMP2. The present study shows that the synthesized DHMP2 might serve as a potential tool for monitoring MAO-A activity in vivo and diagnosing related diseases.
Collapse
Affiliation(s)
- Zheng-Min Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Qiannan Medical College for Nationalities, Duyun 558000, P. R. China
| | - Qing-Yuan Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ji-Man He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dong-Liang Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Lin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiang-Ke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
27
|
Silva D, Mendes E, Summers EJ, Neca A, Jacinto AC, Reis T, Agostinho P, Bolea I, Jimeno ML, Mateus ML, Oliveira‐Campos AMF, Unzeta M, Marco‐Contelles J, Majekova M, Ramsay RR, Carreiras MC. Synthesis, biological evaluation, and molecular modeling of nitrile‐containing compounds: Exploring multiple activities as anti‐Alzheimer agents. Drug Dev Res 2020; 81:215-231. [DOI: 10.1002/ddr.21594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Eduarda Mendes
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Eleanor J. Summers
- Biomedical Sciences Research ComplexUniversity of St. Andrews St. Andrews UK
| | - Ana Neca
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Ana C. Jacinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Telma Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | - Paula Agostinho
- Faculty of Medicine and Center for Neuroscience and Cell BiologyUniversity of Coimbra Coimbra Portugal
| | - Irene Bolea
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de MedicinaUniversitat Autònoma de Barcelona (UAB) Bellaterra (Barcelona) Spain
| | - M. Luisa Jimeno
- Centro de Química Orgánica “Lora Tamayo” (CSIC) Madrid Spain
| | - M. Luisa Mateus
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| | | | - Mercedes Unzeta
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de MedicinaUniversitat Autònoma de Barcelona (UAB) Bellaterra (Barcelona) Spain
| | - José Marco‐Contelles
- Laboratory of Medicinal ChemistryInstitute of Organic Chemistry (CSIC) Madrid Spain
| | - Magdalena Majekova
- Center of Experimental MedicineInstitute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences Bratislava Slovakia
| | - Rona R. Ramsay
- Biomedical Sciences Research ComplexUniversity of St. Andrews St. Andrews UK
| | - M. Carmo Carreiras
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de Lisboa Lisbon Portugal
| |
Collapse
|
28
|
Zhang J, Wang Q, Quan Z. Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-β expression. Biochem Biophys Res Commun 2019; 515:644-650. [PMID: 31178137 DOI: 10.1016/j.bbrc.2019.05.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
Accumulating study has indicated that long non-coding RNAs (lncRNAs) could serve as critical modulators to meditate tumor metastasis. In the study, the crucial role of lncRNA cancer susceptibility candidate 9 (CASC9) in regulating cervical cancer metastasis and progression was investigated. CASC9 expression was markedly increased in cervical cancer tissues and cell lines. Cervical cancer patients with low CASC9 expression showed better overall survival rate. Moreover, cancer-associated fibroblasts (CAFs)-derived transforming growth factor β (TGF-β) could increase CASC9 expression. The crosslink between CAFs and cervical cancer cells led to CASC9 to elevate the metastasis of cervical cancer cells. CASC9 dysregulation could function as a miRNA sponge to competitively protect twist homolog 2 (TWIST2) mRNA 3'UTR from miR-215. Results in this study indicated the effects of CASC9 on cervical cancer and suggested a novel axis by which CASC9 meditated cervical cancer cell metastasis and proliferation both in vivo and in vitro. Together, CASC9 could be a prognostic marker for cervical cancer to develop effective therapeutic treatment against cervical cancer growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Imaging Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China; Department of Imaging Center, The First Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi, 710061, China
| | - Qi Wang
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao, Shandong, 266000, China
| | - Zhicheng Quan
- Department of Imaging Department, Central Hospital of Hanzhong City, Shaanxi Province, Hanzhong, Shaanxi, 723000, China.
| |
Collapse
|
29
|
Al-Juboori SI, Vadakekolathu J, Idri S, Wagner S, Zafeiris D, Pearson JR, Almshayakhchi R, Caraglia M, Desiderio V, Miles AK, Boocock DJ, Ball GR, Regad T. PYK2 promotes HER2-positive breast cancer invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:210. [PMID: 31118051 PMCID: PMC6532260 DOI: 10.1186/s13046-019-1221-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metformin, a biguanide, is one of the most commonly prescribed treatments for type 2 diabetes and has recently been recommended as a potential drug candidate for advanced cancer therapy. Although Metformin has antiproliferative and proapoptotic effects on breast cancer, the heterogenous nature of this disease affects the response to metformin leading to the activation of pro-invasive signalling pathways that are mediated by the focal adhesion kinase PYK2 in pure HER2 phenotype breast cancer. METHODS The effect of metformin on different breast cancer cell lines, representing the molecular heterogenicity of the disease was investigated using in vitro proliferation and apoptosis assays. The activation of PYK2 by metformin in pure HER2 phenotype (HER2+/ER-/PR-) cell lines was investigated by microarrays, quantitative real time PCR and immunoblotting. Cell migration and invasion PYK2-mediated and in response to metformin were determined by wound healing and invasion assays using HER2+/ER-/PR- PYK2 knockdown cell lines. Proteomic analyses were used to determine the role of PYK2 in HER2+/ER-/PR- proliferative, migratory and invasive cellular pathways and in response to metformin. The association between PYK2 expression and HER2+/ER-/PR- patients' cancer-specific survival was investigated using bioinformatic analysis of PYK2 expression from patient gene expression profiles generated by the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study. The effect of PYK2 and metformin on tumour initiation and invasion of HER2+/ER-/PR- breast cancer stem-like cells was performed using the in vitro stem cell proliferation and invasion assays. RESULTS Our study showed for the first time that pure HER2 breast cancer cells are more resistant to metformin treatment when compared with the other breast cancer phenotypes. This drug resistance was associated with the activation of PTK2B/PYK2, a well-known mediator of signalling pathways involved in cell proliferation, migration and invasion. The role of PYK2 in promoting invasion of metformin resistant HER2 breast cancer cells was confirmed through investigating the effect of PYK2 knockdown and metformin on cell invasion and by proteomic analysis of associated cellular pathways. We also reveal a correlation between high level of expression of PYK2 and reduced survival in pure HER2 breast cancer patients. Moreover, we also report a role of PYK2 in tumour initiation and invasion-mediated by pure HER2 breast cancer stem-like cells. This was further confirmed by demonstrating a correlation between reduced survival in pure HER2 breast cancer patients and expression of PYK2 and the stem cell marker CD44. CONCLUSIONS We provide evidence of a PYK2-driven pro-invasive potential of metformin in pure HER2 cancer therapy and propose that metformin-based therapy should consider the molecular heterogeneity of breast cancer to prevent complications associated with cancer chemoresistance, invasion and recurrence in treated patients.
Collapse
Affiliation(s)
- Shaymaa Ik Al-Juboori
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.,Department of Biology, College of science for women, University of Baghdad, Baghdad, Iraq
| | - Jayakumar Vadakekolathu
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Sarra Idri
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Sarah Wagner
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Dimitrios Zafeiris
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Joshua Rd Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Rukaia Almshayakhchi
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Amanda K Miles
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David J Boocock
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Graham R Ball
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|