1
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
2
|
Dobashi S, Yoshihara T, Ogura Y, Naito H. Normobaric hypoxia accelerates high-intensity intermittent training-induced mitochondrial biogenesis (PGC-1α)- and dynamics (OPA1)-related protein expressions in rat gastrocnemius muscle. J Physiol Biochem 2024:10.1007/s13105-024-01052-9. [PMID: 39422861 DOI: 10.1007/s13105-024-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
High-intensity intermittent training (HIIT) in a normobaric hypoxic environment enhances exercise capacity, possibly by increasing the mitochondrial content in skeletal muscle; however, the molecular mechanisms underlying these adaptations are not well understood. Therefore, we investigated whether HIIT under normobaric hypoxia can enhance the expression of proteins involved in mitochondrial biogenesis and dynamics in rat gastrocnemius muscle. Five-week-old male Wistar rats (n = 24) were randomly assigned to the following four groups: (1) sedentary under normoxia (20.9% O2) (NS), (2) training under normoxia (NT), (3) sedentary under normobaric hypoxia (14.5% O2) (HS), and (4) training under normobaric hypoxia (HT). The training groups in both conditions were engaged in HIIT on a treadmill five to six days per week for nine weeks. From the fourth week of the training period, the group assigned to hypoxic conditions was exposed to normobaric hypoxia. Forty-eight hours after completing the final training session, gastrocnemius muscles were surgically removed, and mitochondrial enzyme activity and mitochondrial biogenesis and dynamics regulatory protein levels were determined. Citrate synthase (CS) activity and mitochondrial oxygen phosphorylation (OXPHOS) subunits in the gastrocnemius muscle in the HT significantly exceeded those in the other three groups. Moreover, the levels of a master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and a mitochondrial fusion-related protein, optic atrophy 1 (OPA1), were significantly increased by HIIT under normobaric hypoxia. Our data indicates that HIIT and normobaric hypoxia increase the expression of mitochondrial biogenesis- and dynamics-related proteins in skeletal muscles.
Collapse
Affiliation(s)
- Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Yuji Ogura
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
3
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Meneses-Valdés R, Gallero S, Henríquez-Olguín C, Jensen TE. Exploring NADPH oxidases 2 and 4 in cardiac and skeletal muscle adaptations - A cross-tissue comparison. Free Radic Biol Med 2024; 223:296-305. [PMID: 39069268 DOI: 10.1016/j.freeradbiomed.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) isoforms 2 and 4 have emerged as signaling molecules that regulate exercise adaptations. This review systematically compares NOX2 and NOX4 expression, regulation, and roles in cardiac and skeletal muscle responses across exercise modalities. We highlight the many gaps in our knowledge and opportunities to let future skeletal muscle research into NOX-dependent mechanisms be inspired by cardiac muscle studies and vice versa. Understanding these processes could enhance the development of exercise routines to optimize human performance and health strategies that capitalize on the advantages of physical activity.
Collapse
Affiliation(s)
- Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Advanced Center for Chronic Diseases (ACCDiS) and Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark.
| |
Collapse
|
5
|
McGee SL, Hargreaves M. Exercise performance and health: Role of GLUT4. Free Radic Biol Med 2024; 224:479-483. [PMID: 39243828 DOI: 10.1016/j.freeradbiomed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The glucose transporter GLUT4 is integral for optimal skeletal muscle performance during exercise, as well as for metabolic health. Physiological regulation of GLUT4 translocation during exercise and increased GLUT4 expression following exercise involves multiple, redundant signalling pathways. These include effects of reactive oxygen species (ROS). ROS contribute to GLUT4 translocation that increases skeletal muscle glucose uptake during exercise and stimulate signalling pathways that increase GLUT4 expression. Conversely, ROS can also inhibit GLUT4 translocation and expression in metabolic disease states. The opposing roles of ROS in GLUT4 regulation are ultimately linked to the metabolic state of skeletal muscle and the intricate mechanisms involved give insights into pathways critical for exercise performance and implicated in metabolic health and disease.
Collapse
Affiliation(s)
- Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, 3217, Australia.
| | - Mark Hargreaves
- Department of Anatomy & Physiology, University of Melbourne, 3010, Australia.
| |
Collapse
|
6
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
7
|
Gonzalo-Skok O, Casuso RA. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:77. [PMID: 38981985 PMCID: PMC11233485 DOI: 10.1186/s40798-024-00741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation. METHODS In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI). RESULTS We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance. CONCLUSION While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
Collapse
Affiliation(s)
- Oliver Gonzalo-Skok
- Department of Communication and Education, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Sevilla, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
8
|
Kleis-Olsen AS, Farlov JE, Petersen EA, Schmücker M, Flensted-Jensen M, Blom I, Ingersen A, Hansen M, Helge JW, Dela F, Larsen S. Metabolic flexibility in postmenopausal women: Hormone replacement therapy is associated with higher mitochondrial content, respiratory capacity, and lower total fat mass. Acta Physiol (Oxf) 2024; 240:e14117. [PMID: 38404156 DOI: 10.1111/apha.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission. METHODS 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed. RESULTS HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT. CONCLUSION Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.
Collapse
Affiliation(s)
- A S Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J E Farlov
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E A Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Schmücker
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - I Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Hansen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus N, Denmark
| | - J W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - S Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
9
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
10
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
11
|
Henriquez-Olguin C, Meneses-Valdes R, Raun SH, Gallero S, Knudsen JR, Li Z, Li J, Sylow L, Jaimovich E, Jensen TE. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle. Redox Biol 2023; 65:102842. [PMID: 37572454 PMCID: PMC10440567 DOI: 10.1016/j.redox.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023] Open
Abstract
The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Steffen H Raun
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Jonas R Knudsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- College of Physical Education, Chongqing University, Chongqing, 400044, CN, China
| | - Jingwen Li
- School of Medicine and Nursing, Huzhou University, Huzhou, 313000, CN, China
| | - Lykke Sylow
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Yu T, Wang L, Zhang L, Deuster PA. Mitochondrial Fission as a Therapeutic Target for Metabolic Diseases: Insights into Antioxidant Strategies. Antioxidants (Basel) 2023; 12:1163. [PMID: 37371893 DOI: 10.3390/antiox12061163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial fission is a crucial process in maintaining metabolic homeostasis in normal physiology and under conditions of stress. Its dysregulation has been associated with several metabolic diseases, including, but not limited to, obesity, type 2 diabetes (T2DM), and cardiovascular diseases. Reactive oxygen species (ROS) serve a vital role in the genesis of these conditions, and mitochondria are both the main sites of ROS production and the primary targets of ROS. In this review, we explore the physiological and pathological roles of mitochondrial fission, its regulation by dynamin-related protein 1 (Drp1), and the interplay between ROS and mitochondria in health and metabolic diseases. We also discuss the potential therapeutic strategies of targeting mitochondrial fission through antioxidant treatments for ROS-induced conditions, including the effects of lifestyle interventions, dietary supplements, and chemicals, such as mitochondrial division inhibitor-1 (Mdivi-1) and other mitochondrial fission inhibitors, as well as certain commonly used drugs for metabolic diseases. This review highlights the importance of understanding the role of mitochondrial fission in health and metabolic diseases, and the potential of targeting mitochondrial fission as a therapeutic approach to protecting against these conditions.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Li Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
14
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
16
|
Chaillou T, Treigyte V, Mosely S, Brazaitis M, Venckunas T, Cheng AJ. Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise. SPORTS MEDICINE - OPEN 2022; 8:37. [PMID: 35254558 PMCID: PMC8901468 DOI: 10.1186/s40798-022-00428-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
The application of post-exercise cooling (e.g., cold water immersion) and post-exercise heating has become a popular intervention which is assumed to increase functional recovery and may improve chronic training adaptations. However, the effectiveness of such post-exercise temperature manipulations remains uncertain. The aim of this comprehensive review was to analyze the effects of post-exercise cooling and post-exercise heating on neuromuscular function (maximal strength and power), fatigue resistance, exercise performance, and training adaptations. We focused on three exercise types (resistance, endurance and sprint exercises) and included studies investigating (1) the early recovery phase, (2) the late recovery phase, and (3) repeated application of the treatment. We identified that the primary benefit of cooling was in the early recovery phase (< 1 h post-exercise) in improving fatigue resistance in hot ambient conditions following endurance exercise and possibly enhancing the recovery of maximal strength following resistance exercise. The primary negative impact of cooling was with chronic exposure which impaired strength adaptations and decreased fatigue resistance following resistance training intervention (12 weeks and 4–12 weeks, respectively). In the early recovery phase, cooling could also impair sprint performance following sprint exercise and could possibly reduce neuromuscular function immediately after endurance exercise. Generally, no benefits of acute cooling were observed during the 24–72-h recovery period following resistance and endurance exercises, while it could have some benefits on the recovery of neuromuscular function during the 24–48-h recovery period following sprint exercise. Most studies indicated that chronic cooling does not affect endurance training adaptations following 4–6 week training intervention. We identified limited data employing heating as a recovery intervention, but some indications suggest promise in its application to endurance and sprint exercise.
Collapse
|
17
|
Yin P, Björnsson BT, Fjelldal PG, Saito T, Remø SC, Edvardsen RB, Hansen T, Sharma S, Olsen RE, Hamre K. Impact of Antioxidant Feed and Growth Manipulation on the Redox Regulation of Atlantic Salmon Smolts. Antioxidants (Basel) 2022; 11:antiox11091708. [PMID: 36139780 PMCID: PMC9495322 DOI: 10.3390/antiox11091708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 μL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW−1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 411 24 Gothenburg, Sweden
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway
| | | | | | - Tom Hansen
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | | | - Rolf Erik Olsen
- Institutt for Biologi Fakultet for Naturvitenskap, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway
- Correspondence:
| |
Collapse
|
18
|
Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11164833. [PMID: 36013072 PMCID: PMC9410476 DOI: 10.3390/jcm11164833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases constitute the most important public health problem in the world. They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity is recognized as one of the best ways to prevent these diseases, and it has already been applied in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox equilibrium in the human organism in the course of cardiovascular diseases to systemize updated knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also an important issue since antioxidant supplements still have great potential regarding their use as drugs in these diseases.
Collapse
|
19
|
Brait VH, Jackman KA, Pang TY. Effects of wheel-running on anxiety and depression-relevant behaviours in the MCAO mouse model of stroke: moderation of brain-derived neurotrophic factor and serotonin receptor gene expression. Behav Brain Res 2022; 432:113983. [PMID: 35777551 DOI: 10.1016/j.bbr.2022.113983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Stroke continues to be a major cause of mortality globally. Post-stroke treatment is complicated by the heterogenous nature of pathology and the emergence of secondary psychological symptoms are an additional challenge to the recovery process. Poststroke depression (PSD) is a common co-morbidity and is a major impediment to recovery. While selective serotonin reuptake inhibitors (SSRIs) have proven to be clinically efficacious in treating PSD, the pathogenic processes that underlie the manifestation of depressive mood post-stroke remains unclear. Furthermore, the use of SSRIs is associated with risks of intracerebral haemorrhage, so alternative treatment options need to be continuously explored. Exercise has been demonstrated to be beneficial for improving mood in humans and preclinical models of neurological conditions. Little is known of the mood-related benefits of physical exercise post-stroke. Using the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischaemia, we investigated whether behavioural deficits emerge post-MCAO and could be rescued by voluntary wheel-running. We report that MCAO induced hypo-locomotion and anhedonia-related behaviours, with some improvements conferred by wheel-running. Serotonin transporter gene expression was increased in the MCAO hippocampus and frontal cortex, but this increase remained despite wheel-running. Wheel-running associated up-regulation of BDNF gene expression was unaffected in MCAO mice, reflecting conservation of key neuroplasticity molecular pathways. Taken together, our results highlight the need for further research into serotonergic modulation of the affective symptoms of stroke.
Collapse
Affiliation(s)
- Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy and Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
20
|
Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022; 11:cells11101698. [PMID: 35626735 PMCID: PMC9139227 DOI: 10.3390/cells11101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Research over almost 40 years has established that reactive oxygen species are generated at different sites in skeletal muscle and that the generation of these species is increased by various forms of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues, but more recent data have identified key roles of these species in muscle adaptations to exercise. The aim of this review is to summarise our current understanding of these redox signalling roles of reactive oxygen species in mediating responses of muscle to contractile activity, with a particular focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres may be an important factor leading to an attenuation of some muscle responses to contractile activity, and we speculate on potential mechanisms involved.
Collapse
|
21
|
McClean C, Davison GW. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants (Basel) 2022; 11:antiox11020256. [PMID: 35204138 PMCID: PMC8868136 DOI: 10.3390/antiox11020256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Compelling research has documented how the circadian system is essential for the maintenance of several key biological processes including homeostasis, cardiovascular control, and glucose metabolism. Circadian clock disruptions, or losses of rhythmicity, have been implicated in the development of several diseases, premature ageing, and are regarded as health risks. Redox reactions involving reactive oxygen and nitrogen species (RONS) regulate several physiological functions such as cell signalling and the immune response. However, oxidative stress is associated with the pathological effects of RONS, resulting in a loss of cell signalling and damaging modifications to important molecules such as DNA. Direct connections have been established between circadian rhythms and oxidative stress on the basis that disruptions to circadian rhythms can affect redox biology, and vice versa, in a bi-directional relationship. For instance, the expression and activity of several key antioxidant enzymes (SOD, GPx, and CAT) appear to follow circadian patterns. Consequently, the ability to unravel these interactions has opened an exciting area of redox biology. Exercise exerts numerous benefits to health and, as a potent environmental cue, has the capacity to adjust disrupted circadian systems. In fact, the response to a given exercise stimulus may also exhibit circadian variation. At the same time, the relationship between exercise, RONS, and oxidative stress has also been scrutinised, whereby it is clear that exercise-induced RONS can elicit both helpful and potentially harmful health effects that are dependent on the type, intensity, and duration of exercise. To date, it appears that the emerging interface between circadian rhythmicity and oxidative stress/redox metabolism has not been explored in relation to exercise. This review aims to summarise the evidence supporting the conceptual link between the circadian clock, oxidative stress/redox homeostasis, and exercise stimuli. We believe carefully designed investigations of this nexus are required, which could be harnessed to tackle theories concerned with, for example, the existence of an optimal time to exercise to accrue physiological benefits.
Collapse
|
22
|
Lack of Endothelial α1AMPK Reverses the Vascular Protective Effects of Exercise by Causing eNOS Uncoupling. Antioxidants (Basel) 2021; 10:antiox10121974. [PMID: 34943078 PMCID: PMC8750041 DOI: 10.3390/antiox10121974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Voluntary exercise training is an effective way to prevent cardiovascular disease, since it results in increased NO bioavailability and decreased reactive oxygen species (ROS) production. AMP-activated protein kinase (AMPK), especially its α1AMPK subunit, modulates ROS-dependent vascular homeostasis. Since endothelial cells play an important role in exercise-induced changes of vascular signaling, we examined the consequences of endothelial-specific α1AMPK deletion during voluntary exercise training. We generated a mouse strain with specific deletion of α1AMPK in endothelial cells (α1AMPKflox/flox x TekCre+). While voluntary exercise training improved endothelial function in wild-type mice, it had deleterious effects in mice lacking endothelial α1AMPK indicated by elevated reactive oxygen species production (measured by dihydroethidum fluorescence and 3-nitrotyrosine staining), eNOS uncoupling and endothelial dysfunction. Importantly, the expression of the phagocytic NADPH oxidase isoform (NOX-2) was down-regulated by exercise in control mice, whereas it was up-regulated in exercising α1AMPKflox/flox x TekCre+ animals. In addition, nitric oxide bioavailability was decreased and the antioxidant/protective nuclear factor erythroid 2-related factor 2 (Nrf-2) response via heme oxygenase 1 and uncoupling protein-2 (UCP-2) was impaired in exercising α1AMPKflox/flox x TekCre+ mice. Our results demonstrate that endothelial α1AMPK is a critical component of the signaling events that enable vascular protection in response to exercise. Moreover, they identify endothelial α1AMPK as a master switch that determines whether the effects of exercise on the vasculature are protective or detrimental.
Collapse
|
23
|
de Sousa MV, Lundsgaard AM, Christensen PM, Christensen L, Randers MB, Mohr M, Nybo L, Kiens B, Fritzen AM. Nutritional optimization for female elite football players-topical review. Scand J Med Sci Sports 2021; 32 Suppl 1:81-104. [PMID: 34865242 DOI: 10.1111/sms.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.
Collapse
Affiliation(s)
- Maysa V de Sousa
- Laboratory of Medical Investigation, LIM-18, Endocrinology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Marie Lundsgaard
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Section of Obesity Research, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Furtado RL, Martins JER, Oliveira MAF, Guerreiro DD, de Sá NAR, Ferraz ASM, Ceccatto VM, Rodrigues APR, Araújo VR. Acute effect of high-intensity interval training exercise on redox status in the ovaries of rats fed a high-fat diet. Reprod Fertil Dev 2021; 33:713-724. [PMID: 34437833 DOI: 10.1071/rd20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
This study demonstrates the effect of a single high-intensity interval training (HIIT) session on the redox status of rat ovaries with excess adiposity. Forty Wistar female rats (mean (±s.e.m.) weight 94.40 ± 13.40 g) were divided into two groups and fed either a standard diet (SD) or a high-fat diet (HFD) for 62 days. At the end of this period, the rats were subjected to a single HIIT session and were killed 24 h after exercise. Both groups subjected to exercise (SDex and HFDex) generated a significantly higher antioxidant environment by presenting a higher thiol content, which represents a lower oxidation rate of GSH than their respective controls (SD and HFD). The percentage of morphologically normal primary follicles decreased, whereas that of antral follicles increased, in the SDex group. In addition, the HFD group had a higher percentage of degenerated antral follicles than the SD and SDex groups. Cells immunoreactive for α-smooth muscle actin were seen in the cortical stroma and thecal layer enclosing late secondary and tertiary follicles in all groups. Moreover, heme oxygenase and cytochrome P450 family 19 subfamily A member 1 (Cyp19A1) labelling was seen in all antral follicles. Progesterone concentrations were significantly higher in the HFDex than SDex group. In conclusion, this study indicates that a single session of HIIT may result in an improvement in ovary redox status because of metabolic muscle activity by inducing physiological adaptation after exercise in a paracrine manner.
Collapse
Affiliation(s)
- Rodrigo L Furtado
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Jonathan Elias R Martins
- Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, CE, 60455760, Brazil
| | - Maria Alice F Oliveira
- Microscopy Laboratory of Health Sciences Center, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Veterinary Faculty, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Naiza A R de Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Veterinary Faculty, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Alex S M Ferraz
- Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, CE, 60455760, Brazil
| | - Vânia M Ceccatto
- Laboratory of Biochemistry and Gene Expression, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Veterinary Faculty, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Valdevane R Araújo
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil; and Microscopy Laboratory of Health Sciences Center, State University of Ceará, Fortaleza, CE, 60714-903, Brazil; and Corresponding author.
| |
Collapse
|
25
|
Rothschild JA, Kilding AE, Broome SC, Stewart T, Cronin JB, Plews DJ. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021; 13:nu13041291. [PMID: 33919779 PMCID: PMC8070691 DOI: 10.3390/nu13041291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Jeffrey A. Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Correspondence:
| | - Andrew E. Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland 1010, New Zealand
| | - John B. Cronin
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| |
Collapse
|
26
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
27
|
Creatine Supplementation, Physical Exercise and Oxidative Stress Markers: A Review of the Mechanisms and Effectiveness. Nutrients 2021; 13:nu13030869. [PMID: 33800880 PMCID: PMC8000194 DOI: 10.3390/nu13030869] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is the result of an imbalance between the generation of reactive oxygen species (ROS) and their elimination by antioxidant mechanisms. ROS degrade biogenic substances such as deoxyribonucleic acid, lipids, and proteins, which in turn may lead to oxidative tissue damage. One of the physiological conditions currently associated with enhanced oxidative stress is exercise. Although a period of intense training may cause oxidative damage to muscle fibers, regular exercise helps increase the cells' ability to reduce the ROS over-accumulation. Regular moderate-intensity exercise has been shown to increase antioxidant defense. Endogenous antioxidants cannot completely prevent oxidative damage under the physiological and pathological conditions (intense exercise and exercise at altitude). These conditions may disturb the endogenous antioxidant balance and increase oxidative stress. In this case, the use of antioxidant supplements such as creatine can have positive effects on the antioxidant system. Creatine is made up of two essential amino acids, arginine and methionine, and one non-essential amino acid, glycine. The exact action mechanism of creatine as an antioxidant is not known. However, it has been shown to increase the activity of antioxidant enzymes and the capability to eliminate ROS and reactive nitrogen species (RNS). It seems that the antioxidant effects of creatine may be due to various mechanisms such as its indirect (i.e., increased or normalized cell energy status) and direct (i.e., maintaining mitochondrial integrity) mechanisms. Creatine supplement consumption may have a synergistic effect with training, but the intensity and duration of training can play an important role in the antioxidant activity. In this study, the researchers attempted to review the literature on the effects of creatine supplementation and physical exercise on oxidative stress.
Collapse
|
28
|
Ramos C, Cheng AJ, Kamandulis S, Subocius A, Brazaitis M, Venckunas T, Chaillou T. Carbohydrate restriction following strenuous glycogen-depleting exercise does not potentiate the acute molecular response associated with mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol 2021; 121:1219-1232. [PMID: 33564963 PMCID: PMC7966224 DOI: 10.1007/s00421-021-04594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
Purpose Carbohydrate (CHO) restriction could be a potent metabolic regulator of endurance exercise-induced muscle adaptations. Here, we determined whether post-exercise CHO restriction following strenuous exercise combining continuous cycling exercise (CCE) and sprint interval exercise could affect the gene expression related to mitochondrial biogenesis and oxidative metabolism in human skeletal muscle. Methods In a randomized cross-over design, 8 recreationally active males performed two cycling exercise sessions separated by 4 weeks. Each session consisted of 60-min CCE and six 30-s all-out sprints, which was followed by ingestion of either a CHO or placebo beverage in the post-exercise recovery period. Muscle glycogen concentration and the mRNA levels of several genes related to mitochondrial biogenesis and oxidative metabolism were determined before, immediately after, and at 3 h after exercise. Results Compared to pre-exercise, strenuous cycling led to a severe muscle glycogen depletion (> 90%) and induced a large increase in PGC1A and PDK4 mRNA levels (~ 20-fold and ~ 10-fold, respectively) during the acute recovery period in both trials. The abundance of the other transcripts was not changed or was only moderately increased during this period. CHO restriction during the 3-h post-exercise period blunted muscle glycogen resynthesis but did not increase the mRNA levels of genes associated with muscle adaptation to endurance exercise, as compared with abundant post-exercise CHO consumption. Conclusion CHO restriction after a glycogen-depleting and metabolically-demanding cycling session is not effective for increasing the acute mRNA levels of genes involved in mitochondrial biogenesis and oxidative metabolism in human skeletal muscle.
Collapse
Affiliation(s)
- Catarina Ramos
- School of Health Sciences, Örebro University, 701 82, Örebro, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, Toronto, M3J 1P3, Canada
| | - Sigitas Kamandulis
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Andrejus Subocius
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania.,Department of Surgery, Kaunas Clinical Hospital, 47144, Kaunas, Lithuania.,Clinic of Surgery, Republican Hospital of Kaunas, 45130, Kaunas, Lithuania
| | - Marius Brazaitis
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Tomas Venckunas
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Thomas Chaillou
- School of Health Sciences, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
29
|
Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:antiox10020224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
|
30
|
Specht KS, Kant S, Addington AK, McMillan RP, Hulver MW, Learnard H, Campbell M, Donnelly SR, Caliz AD, Pei Y, Reif MM, Bond JM, DeMarco A, Craige B, Keaney JF, Craige SM. Nox4 mediates skeletal muscle metabolic responses to exercise. Mol Metab 2021; 45:101160. [PMID: 33400973 PMCID: PMC7856463 DOI: 10.1016/j.molmet.2020.101160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The immediate signals that couple exercise to metabolic adaptations are incompletely understood. Nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) produces reactive oxygen species (ROS) and plays a significant role in metabolic and vascular adaptation during stress conditions. Our objective was to determine the role of Nox4 in exercise-induced skeletal muscle metabolism. METHODS Mice were subjected to acute exercise to assess their immediate responses. mRNA and protein expression responses to Nox4 and hydrogen peroxide (H2O2) were measured by qPCR and immunoblotting. Functional metabolic flux was measured via ex vivo fatty acid and glucose oxidation assays using 14C-labeled palmitate and glucose, respectively. A chronic exercise regimen was also utilized and the time to exhaustion along with key markers of exercise adaptation (skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase activity) were measured. Endothelial-specific Nox4-deficient mice were then subjected to the same acute exercise regimen and their subsequent substrate oxidation was measured. RESULTS We identified key exercise-responsive metabolic genes that depend on H2O2 and Nox4 using catalase and Nox4-deficient mice. Nox4 was required for the expression of uncoupling protein 3 (Ucp3), hexokinase 2 (Hk2), and pyruvate dehydrogenase kinase 4 (Pdk4), but not the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α). Global Nox4 deletion resulted in decreased UCP3 protein expression and impaired glucose and fatty acid oxidization in response to acute exercise. Furthermore, Nox4-deficient mice demonstrated impaired adaptation to chronic exercise as measured by the time to exhaustion and activity of skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase. Importantly, mice deficient in endothelial-Nox4 similarly demonstrated attenuated glucose and fatty acid oxidation following acute exercise. CONCLUSIONS We report that H2O2 and Nox4 promote immediate responses to exercise in skeletal muscle. Glucose and fatty acid oxidation were blunted in the Nox4-deficient mice post-exercise, potentially through regulation of UCP3 expression. Our data demonstrate that endothelial-Nox4 is required for glucose and fatty acid oxidation, suggesting inter-tissue cross-talk between the endothelium and skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Kalyn S Specht
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adele K Addington
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ryan P McMillan
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Metabolism Core, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Matthew W Hulver
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather Learnard
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Maura Campbell
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Sarah R Donnelly
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongmei Pei
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michaella M Reif
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jacob M Bond
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, 24016, USA
| | - Anthony DeMarco
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Siobhan M Craige
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
31
|
Ostrom EL, Traustadóttir T. Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. Free Radic Biol Med 2020; 160:418-432. [PMID: 32866619 PMCID: PMC7704731 DOI: 10.1016/j.freeradbiomed.2020.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), is an inducible transcription factor that improves redox balance through stimulating antioxidant gene expression. In older humans the Nrf2 response to a single bout of acute exercise is blunted compared to young indicating impaired redox signaling. The purpose of this randomized controlled trial was to investigate if the signaling impairment could be reversed with exercise training in older men and women, while also comparing to young. Young (18-28y, n = 21) and older (≥60y, n = 19) men and women were randomized to 8-week aerobic exercise training (ET; 3 d/wk, 45 min/d) or a non-exercise control group (CON). Nrf2 nuclear localization, gene expression for NQO1, HO1, and GCLC, and GCLC protein were measured in PBMCs in response to acute exercise trial (AET; 30-min cycling at 70% VO2 peak pre- and post-intervention at 7 timepoints (Pre, +10 m, +30 m, +1 h, +4 h, +8 h, +24 h). Young had greater Nrf2 signaling response compared to older at pre-intervention (p = 0.05), whereas the older had significantly higher basal Nrf2 levels (p = 0.004). ET decreased basal Nrf2 expression compared to CON (p = 0.032) and improved the Nrf2 signaling response in both young and older (p < 0.05). The degree of restoration in Nrf2 signaling response was related to the degree of change in basal Nrf2 (p = 0.039), which was driven by older adults (p = 0.014). Lower basal nuclear Nrf2 levels were associated with changes seen in AET responses for Nrf2 and GCLC protein, as well as NQO1 and GCLC mRNA. Together these data demonstrate that exercise training improves Nrf2 signaling and downstream gene expression and that lower basal Nrf2 levels are associated with a more dynamic acute response. Our results provide evidence that the impaired Nrf2 signaling in sedentary older adults can be restored to a degree with moderate exercise training, albeit not to the level seen in young. CLINICALTRIALS.GOV ID: NCT03419988.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
32
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
33
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
34
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
35
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Nikolaidis MG, Margaritelis NV, Matsakas A. Quantitative Redox Biology of Exercise. Int J Sports Med 2020; 41:633-645. [PMID: 32455453 DOI: 10.1055/a-1157-9043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform "street fighting" quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the "borders" between cellular signaling and stress.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.,General Military Hospital of Thessaloniki, Dialysis Unit, Thessaloniki, Greece
| | - Antonios Matsakas
- Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
37
|
Chen L, Bai J, Li Y. miR‑29 mediates exercise‑induced skeletal muscle angiogenesis by targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. Mol Med Rep 2020; 22:661-670. [PMID: 32467996 PMCID: PMC7339600 DOI: 10.3892/mmr.2020.11164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the molecular changes and related regulatory mechanisms in the response of skeletal muscle to exercise. The microarray dataset ‘GSE109657’ of the skeletal muscle response to high-intensity intermittent exercise training (HIIT) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and analyzed using weighted gene co-expression network analysis (WGCNA) to identify the significant functional co-expressed gene modules. Moreover, functional enrichment analysis was performed for the DEGs in the significant modules. In addition, protein-protein interaction (PPI) network and microRNA (miR)-transcription factor (TF)-target regulatory network were constructed. A total of 530 DEGs in the skeletal muscle were screened after HIIT, suggesting an effect of HIIT on the skeletal muscle. Moreover, three significant modules (brown, blue and red modules) were identified after WGCNA, and the genes Collagen Type IV α1 Chain (COL4A1) and COL4A2 in the brown module showed the strongest correlation with HIIT. The DEGs in the three modules were significantly enriched in focal adhesion, extracellular matrix organization and the PI3K/Akt signaling pathway. Furthermore, the PPI network contained 104 nodes and 211 interactions. Vascular endothelial growth factor A (VEGFA), COL4A1 and COL4A2 were the hub genes in the PPI network, and were all regulated by miR-29a/b/c. In addition, VEGFA, COL4A1 and COL4A2 were significantly upregulated in the skeletal muscle response to HIIT. Therefore, the present results suggested that the growth and migration of vascular endothelial cells, and skeletal muscle angiogenesis may be regulated by miR-29a/b/c targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. The present results may provide a theoretical basis to investigate the effect of exercise on skeletal muscle.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physical Education, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jun Bai
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanfei Li
- Office of Academic Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| |
Collapse
|
38
|
Coccurello R, Volonté C. P2X7 Receptor in the Management of Energy Homeostasis: Implications for Obesity, Dyslipidemia, and Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:199. [PMID: 32528404 PMCID: PMC7247848 DOI: 10.3389/fendo.2020.00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism entails the highly regulated balance between food intake, nutrient breakdown, energy generation (ATP), and energy storage for the preservation of vital functions and body mass. Purinergic signaling has attracted increasing attention in the regulatory mechanisms not only for the reverse processes of white adipose tissue lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and leptin production. This regulatory role has remarkable implications in the handling of body's energy expenditure and energy reservoir. Hence, selected purinergic receptors can play a relevant function in lipid metabolism, endocrine activity, glucose uptake, ATP-dependent increased expression of uncoupling protein 1, and browning of adipose tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7 subtype is involved in fat distribution, as well as in the modulation of inflammatory pathways in white adipose tissue. Within this context, very recent evidence has established a direct function of P2X7 in energy metabolism. Specifically, either genetic deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor produces a decrease of whole-body energy expenditure and, concurrently, an increase of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in the promotion of adaptive thermogenesis.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex System (ISC), National Research Council (CNR), Rome, Italy
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR), Rome, Italy
| |
Collapse
|
39
|
Mousavi SR, Jafari M, Rezaei S, Agha-alinejad H, Sobhani V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab Anim (NY) 2020; 49:119-125. [DOI: 10.1038/s41684-020-0503-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
40
|
Henriquez-Olguin C, Meneses-Valdes R, Jensen TE. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges. Redox Biol 2020; 35:101473. [PMID: 32122793 PMCID: PMC7284909 DOI: 10.1016/j.redox.2020.101473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments. This short review will first outline the sources of ROS in exercising skeletal muscle and then discuss some examples of exercise adaptations, which are evidenced to be regulated by compartmentalized redox signaling. We speculate that knowledge of these redox pathways might one day allow targeted manipulation to increase redox-signaling in specific compartments to augment the exercise-hormetic response in health and disease.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Meneses-Valdes
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Integrated Physiology Unit, Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Magherini F, Fiaschi T, Marzocchini R, Mannelli M, Gamberi T, Modesti PA, Modesti A. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res 2019; 53:1155-1165. [PMID: 31762356 DOI: 10.1080/10715762.2019.1697438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence about the health benefits of regular physical activity is well established. Exercise intensity is a significant variable and structured high-intensity interval training (HIIT) has been demonstrated to improve both whole-body and skeletal muscle metabolic health in different populations. Conversely, fatigue accumulation, if not resolved, leads to overwork, chronic fatigue syndrome (CFS), overtraining syndrome up to alterations of endocrine function, immune, systemic inflammation, and organic diseases with health threat. In response to temporary increases in stress during training, some athletes are unable to maintain sufficient caloric intake, thus suffering a negative energy balance that causes further stress. The regulation of the energy balance is controlled by the central nervous system through an elaborate interaction of the signalling that involves different tissues such as leptin, adiponectin and ghrelin whose provide important feedback to the hypothalamus to regulate the energy balance. Although exercise-induced reactive oxygen species are required for normal force production in muscle, high levels of ROS appear to promote contractile dysfunction. However, a high level of oxidative stress in may induce a rise in inflammatory markers and a disregulation in expression of adiponectin, leptin and grelin.
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Marzocchini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michele Mannelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
44
|
Merry TL, MacRae C, Pham T, Hedges CP, Ristow M. Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training. Am J Physiol Cell Physiol 2019; 318:C337-C345. [PMID: 31774701 DOI: 10.1152/ajpcell.00426.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress induced by acute exercise may regulate exercise training-induced adaptations that improve metabolic health. One of the central transcription regulatory targets of reactive oxygen species (ROS) is Nrf2 (nuclear factor erythroid-derived 2-like 2, or NFE2L2). Here, we investigated whether global deficiency of Nrf2 in mice would impact exercise training-induced changes in glucose and lipid homeostasis. We report that following 6 wk of treadmill exercise training, Nrf2-deficient mice have elevated fasting plasma triglycerides and free fatty acids and higher blood glucose levels following a meal despite having a similar fat mass to wild-type controls. This impaired glucose homeostasis appears to be related to reduced insulin sensitivity primarily in adipose and liver tissue, and although a clear mechanism was not evident, Nrf2-deficient mice had increased markers of hepatic oxidative stress and stress-related kinase activation in white adipose tissue (WAT) without overt inflammation alteration in WAT or modulation of hepatic and WAT fibroblast growth factor 21 gene expression. Our results suggest that Nrf2 facilitates exercise training-induced improvements in glucose homeostasis; however, further research is required to determine whether this occurs through direct regulation of exercise adaptations or via the maintenance of redox balance during training.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
45
|
Townsend LK, Weber AJ, Barbeau PA, Holloway GP, Wright DC. Reactive oxygen species-dependent regulation of pyruvate dehydrogenase kinase-4 in white adipose tissue. Am J Physiol Cell Physiol 2019; 318:C137-C149. [PMID: 31721616 DOI: 10.1152/ajpcell.00313.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules mediating the exercise-induced adaptations in skeletal muscle. Acute exercise also drives the expression of genes involved in reesterification and glyceroneogenesis in white adipose tissue (WAT), but whether ROS play any role in this effect has not been explored. We speculated that exercise-induced ROS would regulate acute exercise-induced responses in WAT. To address this question, we utilized various models to alter redox signaling in WAT. We examined basal and exercise-induced gene expression in a genetically modified mouse model of reduced mitochondrial ROS emission [mitochondrial catalase overexpression (MCAT)]. Additionally, H2O2, various antioxidants, and the β3-adrenergic receptor agonist CL316243 were used to assess gene expression in white adipose tissue culture. MCAT mice have reduced ROS emission from WAT, enlarged WAT depots and adipocytes, and greater pyruvate dehydrogenase kinase-4 (Pdk4) gene expression. In WAT culture, H2O2 reduced glyceroneogenic gene expression. In wild-type mice, acute exercise induced dramatic but transient increases in Pdk4 and phosphoenolpyruvate carboxykinase (Pck1) mRNA in both subcutaneous inguinal WAT and epididymal WAT depots, which was almost completely absent in MCAT mice. Furthermore, the induction of Pdk4 and Pck1 in WAT culture by CL316243 was markedly reduced in the presence of antioxidants N-acetyl-cysteine or vitamin E. Genetic and nutritional approaches that attenuate redox signaling prevent exercise- and β-agonist-induced gene expression within WAT. Combined, these data suggest that ROS represent important mediators of gene expression within WAT.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alyssa J Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
46
|
Henríquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 2019; 10:4623. [PMID: 31604916 PMCID: PMC6789013 DOI: 10.1038/s41467-019-12523-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle. Furthermore, two NOX2 loss-of-function mouse models lacking either p47phox or Rac1 presented striking phenotypic similarities, including greatly reduced exercise-stimulated glucose uptake and GLUT4 translocation. These findings indicate that NOX2 is a major myocellular ROS source, regulating glucose transport capacity during moderate-intensity exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguin
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.,Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Jonas R Knudsen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Steffen H Raun
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 65, Solna, Sweden
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
47
|
Giacovazzo G, Fabbrizio P, Apolloni S, Coccurello R, Volonté C. Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice. Front Cell Neurosci 2019; 13:390. [PMID: 31496939 PMCID: PMC6712077 DOI: 10.3389/fncel.2019.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/07/2019] [Indexed: 12/26/2022] Open
Abstract
The P2X7 receptor, a member of the ionotropic purinergic P2X family of extracellular ATP-gated receptors, exerts strong trophic effects when tonically activated in cells, in addition to cytotoxic effects after a sustained activation. Because of its widespread distribution, P2X7 regulates several cell- and tissue-specific physiological functions, and is involved in a number of disease conditions. A novel role has recently emerged for P2X7 in the regulation of glucose and energy metabolism. In previous work, we have demonstrated that genetic depletion, and to a lesser extent also pharmacological inhibition of P2X7, elicits a significant decrease of the whole body energy expenditure and an increase of the respiratory exchange ratio. In the present work, we have investigated the effects of P2X7 stimulation in vivo on the whole body energy metabolism. Adult mice were daily injected with the specific P2X7 agonist 2′(3′)-O-(4-Benzoylbenzoyl)adenosine 5′-triphosphate for 1 week and subjected to indirect calorimetric analysis for 48 h. We report that 2′(3′)-O-(4-Benzoylbenzoyl)adenosine 5′-triphosphate increases metabolic rate and O2 consumption, concomitantly decreasing respiratory rate and upregulating NADPH oxidase 2 in gastrocnemius and tibialis anterior muscles. Our results indicate a major impact on energy homeostasis and muscle metabolism by activation of P2X7.
Collapse
Affiliation(s)
| | - Paola Fabbrizio
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Savina Apolloni
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Roberto Coccurello
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy.,Institute for Complex System (ISC), CNR, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy.,Institute for Systems Analysis and Computer Science, CNR, Rome, Italy
| |
Collapse
|
48
|
Abstract
Focusing on daily nutrition is important for athletes to perform and adapt optimally to exercise training. The major roles of an athlete's daily diet are to supply the substrates needed to cover the energy demands for exercise, to ensure quick recovery between exercise bouts, to optimize adaptations to exercise training, and to stay healthy. The major energy substrates for exercising skeletal muscles are carbohydrate and fat stores. Optimizing the timing and type of energy intake and the amount of dietary macronutrients is essential to ensure peak training and competition performance, and these strategies play important roles in modulating skeletal muscle adaptations to endurance and resistance training. In this review, recent advances in nutritional strategies designed to optimize exercise-induced adaptations in skeletal muscle are discussed, with an emphasis on mechanistic approaches, by describing the physiological mechanisms that provide the basis for different nutrition regimens.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| |
Collapse
|