1
|
Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H, Fu L. piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal 2024; 122:111333. [PMID: 39102928 DOI: 10.1016/j.cellsig.2024.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.
Collapse
Affiliation(s)
- Ande Jiao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huaxing Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang 161041, China
| | - Jiaqi Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Lu Gong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
2
|
Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, Liu Q, Chen W, Zhou Y, Mao H. The Spermine Oxidase/Spermine Axis Coordinates ATG5-Mediated Autophagy to Orchestrate Renal Senescence and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306912. [PMID: 38775007 PMCID: PMC11304251 DOI: 10.1002/advs.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-β1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-β1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.
Collapse
Affiliation(s)
- Dan Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Xiaohui Lu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Hongyu Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yating Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Simin Jiang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Guanglan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yiping Xu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Kefei Wu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Xianrui Dou
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| |
Collapse
|
3
|
Lu G, Tang Y, Chen O, Guo Y, Xiao M, Wang J, Liu Q, Li J, Gao T, Zhang X, Zhang J, Cheng Q, Kuang R, Gu J. Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection. J Adv Res 2024:S2090-1232(24)00307-2. [PMID: 39069209 DOI: 10.1016/j.jare.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. OBJECTIVES Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. METHODS Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. RESULTS Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. CONCLUSION Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Rong Kuang
- NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China.
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Mihailović M, Soković Bajić S, Arambašić Jovanović J, Brdarić E, Dinić S, Grdović N, Uskoković A, Rajić J, Đorđević M, Tolinački M, Golić N, Živković M, Vidaković M. Beneficial Effects of Probiotic Lactobacillus paraplantarum BGCG11 on Pancreatic and Duodenum Function in Diabetic Rats. Int J Mol Sci 2024; 25:7697. [PMID: 39062940 PMCID: PMC11277547 DOI: 10.3390/ijms25147697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.
Collapse
Affiliation(s)
- Mirjana Mihailović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Jelena Arambašić Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Svetlana Dinić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Nevena Grdović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Aleksandra Uskoković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Jovana Rajić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Marija Đorđević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| |
Collapse
|
5
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
6
|
Greenwell AA, Tabatabaei Dakhili SA, Wagg CS, Saed CT, Chan JS, Yang K, Mangra‐Bala IA, Stenlund MJ, Eaton F, Gopal K, Dyck JR, Lopaschuk GD, Ussher JR. Pharmacological Inhibition of Succinyl Coenzyme A:3-Ketoacid Coenzyme A Transferase Alleviates the Progression of Diabetic Cardiomyopathy. J Am Heart Assoc 2024; 13:e032697. [PMID: 38533954 PMCID: PMC11179756 DOI: 10.1161/jaha.123.032697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Cory S. Wagg
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
- Department of PediatricsUniversity of AlbertaEdmontonABCanada
| | - Christina T. Saed
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Jordan S.F. Chan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Kunyan Yang
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Indiresh A. Mangra‐Bala
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Magnus J. Stenlund
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Jason R.B. Dyck
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
- Department of PediatricsUniversity of AlbertaEdmontonABCanada
| | - Gary D. Lopaschuk
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
- Department of PediatricsUniversity of AlbertaEdmontonABCanada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research InstituteUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
7
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
8
|
Tian H, Huang Q, Cheng J, Xiong Y, Xia Z. Rev-erbα attenuates diabetic myocardial injury through regulation of ferroptosis. Cell Signal 2024; 114:111006. [PMID: 38086436 DOI: 10.1016/j.cellsig.2023.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Diabetes is a widespread disease that threatens the life and health of human beings, and diabetic cardiomyopathy (DCM) is one of the major complications of diabetic patients. The pathological mechanisms of DCM are complex, including inflammation, endoplasmic reticulum stress, and oxidative stress that have been reported previously. Although recent studies suggested that ferroptosis is also involved in the progression of DCM, the exact mechanism remains unclear. Rev-erbα cardiac conditional knockout mice were generated and type 2 diabetes were induced by high fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ) in in vivo experiments. In parallel, our in vitro experiments entailed the introduction of elevated levels of glucose (HG) and palmitic acid (PA) to induce glycolipid toxicity in H9c2 cardiomyocytes. Further deterioration of cardiac function was detected by echocardiography after the clock gene rev-erbα was knocked out. This was accompanied by significant elevations in markers of inflammation, myocardial fibrosis, and oxidative stress. In addition, iron content, transmission electron microscopy (TEM), and RT-PCR assays confirmed significantly increased levels of ferroptosis in rev-erbα-deficient DCM. Intriguingly, Co-Immunoprecipitation (Co-IP) data uncovered an interaction between rev-erbα and nuclear factor E2-related factor 2 (NRF2) in diabetic myocardial tissues. It is worth highlighting that ferroptosis within cardiomyocytes witnessed significant mitigation upon the administration of sulforaphane (SFN), an NRF2 agonist, to HG + PA-incubated H9c2 cells. Our study demonstrates for the first time that knockdown of the clock gene rev-erbα exacerbates myocardial injury and ferroptosis in type 2 diabetic mice, which can be reversed by activating NRF2.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxin Cheng
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Lou X, Zhang Y, Guo J, Gao L, Ding Y, Zhuo X, Lei Q, Bian J, Lei R, Gong W, Zhang X, Jiao Q. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Heart Fail Rev 2024; 29:1-11. [PMID: 37555989 DOI: 10.1007/s10741-023-10336-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Lina Gao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yingying Ding
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
10
|
Wu S, Zhou Y, Liang J, Ying P, Situ Q, Tan X, Zhu J. Upregulation of NF-κB by USP24 aggravates ferroptosis in diabetic cardiomyopathy. Free Radic Biol Med 2024; 210:352-366. [PMID: 38056575 DOI: 10.1016/j.freeradbiomed.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Recent investigations have proposed a potential causal association between the occurrence of ferroptosis, nuclear factor kappa B (NF-κB) and ubiquitin-specific protease 24 (USP24). Nevertheless, the mechanism of USP24 and NF-κB regulation of ferroptosis in the context of diabetic cardiomyopathy (DCM) remain unclear. METHODS In this study, a high-fat diet and a streptozotocin-induced mouse DCM model were established, and high glucose and palmitic acid treatment of H9c2 cells and neonatal mouse primary cardiomyocytes (NMPCs) was used as an in vitro DCM models. Utilizing both the in vivo and in vitro DCM models, we assessed of USP24, NF-κB, and ferroptosis levels, and explored the relationship among them. RESULTS In in vivo and in vitro DCM models, increased expression of USP24, NF-κB, phosphorylated NF-κB (p-NF-κB) and fatty acid-CoA ligase 4 (FACL4) were detected, along with accumulated iron, as well as reduced ferritin heavy chain 1 (FTH1), solute carrier family 7 member 11 (SLC7A11) and antioxidant capacity. Knockdown of USP24 resulted in a reduction of NF-κB levels, while knockdown of NF-κB did not lead to a decrease in USP24 expression. Moreover, in H9c2 cells, knockdown of USP24 and NF-κB separately resulted in reduced levels of FACL4, increased levels of SLC7A11 and FTH1, as well as improved antioxidant capacity and cell viability. In shUSP24 knockdown H9c2 cells, administration of phorbol 12-myristate 13-acetate (PMA) activated NF-κB, subsequently reversing the previously observed effect caused by USP24 knockdown. CONCLUSIONS These findings show that USP24 upregulates NF-κB to promote ferroptosis in DCM.
Collapse
Affiliation(s)
- Shenglin Wu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yueran Zhou
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiaquan Liang
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Pengxiang Ying
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiwei Situ
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuerui Tan
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jinxiu Zhu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong 518172, China.
| |
Collapse
|
11
|
You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, Xue M, Li X, Li H, Zhang C, Wang W, Cai X, Li X. Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK-ATF4-CHOP pathway. Exp Neurol 2023; 368:114500. [PMID: 37553048 DOI: 10.1016/j.expneurol.2023.114500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is involved in cognitive impairment of children. Chronic intermittent hypoxia (CIH) is considered as the critical pathophysiological mechanism of OSAHS. Calcium sensitive receptor (CaSR) mediated apoptosis in many neurological disease models by endoplasmic reticulum stress (ERS)-related pathway. However, little is known about the role of CaSR in OSAHS-induced cognitive dysfunction. In this study, we explored the effect of CaSR on CIH-induced cognitive impairment and possible mechanisms on regulation of PERK-ATF4-CHOP pathway in vivo and in vitro. CIH exposed for 9 h in PC12 cells and resulted in the cell apoptosis, simulating OSAHS-induced neuronal injury. CIH upregulated the level of CaSR, p-PERK, ATF4 and CHOP, contributing to the cell apoptosis. Treated with CaSR inhibitor (NPS-2143) or p-PERK inhibitor (GSK2656157) before CIH exposure, CIH-induced PC12 cell apoptosis was alleviated via inhibition of CaSR by downregulating p-PERK, ATF4 and CHOP. In addition, we established CIH mice model. With CIH exposure for 4 weeks in mice, more spatial memory errors were observed during 8-arm radial maze test. CIH significantly increased apoptotic cells in hippocampus via upregulating cleaved Caspase-3 and downregulating ratio of Bcl-2 to Bax. Besides, treatment of CaSR inhibitor alleviated the hippocampal neuronal apoptosis following CIH with downregulated p-PERK, ATF4 and CHOP, suggesting that CaSR contributed to CIH-induced neuronal apoptosis in hippocampus via ERS pathway. Sum up, our results demonstrated that CaSR accelerated hippocampal apoptosis via PERK-ATF4-CHOP pathway, holding a critical function on CIH-mediated cognitive impairment. Conversely, inhibition of CaSR suppressed PERK-ATF4-CHOP pathway and alleviated cognitive impairment.
Collapse
Affiliation(s)
- Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yixuan Ma
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingyi Hong
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Mingjie Xue
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huimin Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pediatric, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China
| | - Chengrui Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
12
|
Zhang X, Han S, Jiang X, Duan S, Gao Y, Ding J, Li X, Sun B, Hu X, Zhang X, Zhang W. Comparative analysis of bile metabolic profile in patients with biliary obstruction complicated by Clonorchis sinensis infection. Front Cell Infect Microbiol 2023; 13:1254016. [PMID: 37868349 PMCID: PMC10585366 DOI: 10.3389/fcimb.2023.1254016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Background Clonorchiasis is an important foodborne parasitic disease. However, eggs of Clonorchis sinensis (C. sinensis) cannot be detected in feces during biliary obstruction. Moreover, many diseases can cause biliary obstruction, such as gallstones, adenocarcinoma, cholangiocarcinoma and Ascaris lumbricoides infection. Therefore, it is of great significance to distinguish between patients of biliary obstruction and biliary obstruction with C. sinensis infection. Methods A total of 48 biliary obstruction patients were enrolled, including 23 infected with C. sinensis (C. sinensis) (OB+C.s) and 25 non-infected subjects (OB). The bile samples were collected by endoscopic retrograde cholangiopancreatography and analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, bile amino acid levels were determined by targeted metabolomics analysis. Result A total of 146 and 132 significant metabolites were identified in electrospray ionization (ESI)+ and ESI- modes, respectively. The levels of amino acids (asparagine, glutamate, ornithine) and polyamines (spermidine and spermine) were significantly changed. Targeted analysis showed that the levels of amino acids (such as L-arginine, L-glutamine, L-lysine, L-propionic, and L-tyrosine) were lower in OB+C.s patients compared to those in OB patients. Marked metabolic pathways were involved in "Glutathione metabolism", "Caffeine metabolism", "Alanine, aspartate and glutamate metabolism", "Arginine and proline metabolism", "Purine metabolism", "Beta-Alanine metabolism", and "D-glutamine and D-glutamate metabolism". Conclusion These results show that there were significant differences between OB+C.s and OB patients, especially in amino acids. The metabolic signature and perturbations in metabolic pathways may help to better distinguish OB+C.s and OB patients.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shanshan Duan
- Beijing Obstetrics and Gynecology Hospital Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yannan Gao
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Beibei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xinyi Hu
- Department of Stomatology, Laixi People's Hospital, Shandong, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Wei C, Xu J, Liu Y, Qadir J, Zhang S, Yuan H. Exogenous Spermidine Alleviates Diabetic Myocardial Fibrosis Via Suppressing Inflammation and Pyroptosis in db/db Mice. Balkan Med J 2023; 40:333-343. [PMID: 37350700 PMCID: PMC10500142 DOI: 10.4274/balkanmedj.galenos.2023.2023-3-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Background The main pathological feature of diabetic cardiomyopathy (DCM) caused by diabetes mellitus is myocardial fibrosis. According to recent studies in cardiology, it has been suggested that spermidine (SPD) has cardioprotective properties. Aims To explore the role and mechanism of SPD in alleviating myocardial fibrosis of DCM. Study Design In vivo and in vitro study. Methods Type 2 diabetic mice and primary neonatal mouse cardiac fibroblasts (CFs) were selected. Measurements of serum-related markers, echocardiographic analysis, and immunohistochemistry were used to evaluate myocardial fibrosis injury and the effects of SPD. The proliferation and migration of CFs undergoing different treatments were studied. Immunoblotting and real-time quantitative reverse transcription polymerase chain reaction were used to demonstrate molecular mechanisms. Results In vivo immunoblotting analysis indicated a downregulation of ornithine decarboxylase and an upregulation of SPD/spermine N1-acetyltransferase. We observed cardiac dysfunction in diabetic mice after 12 weeks. However, the administration of exogenous SPD improved cardiac function, decreased collagen deposition, and reduced myocardial tissue damage. mRNA expression levels of NLRP3, Caspase-1, GSDMD-N, interleukin (IL)-1β, IL-17A, and IL-18 were increased and suppressed in the myocardium of db/db mice upon treatment with SPD. SPD inhibited the proliferation, migration, and collagen secretion of high-glucose-treated fibroblasts in vitro. SPD inhibits the activation of the TGF-β1/Smad signaling pathway and decreases collagen deposition by reducing pyroptosis and Smad-7 ubiquitination levels. Conclusion Based on our findings, SPD may have potential applications in protecting against the deterioration of cardiac function in patients with DCM due to a significant new mechanism for diabetic myocardial fibrosis that we discovered.
Collapse
Affiliation(s)
- Can Wei
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Jiyu Xu
- School of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
- These authors contributed equally
| | - Yong Liu
- Animal Research Institute, Research Department, Mudanjiang Medical University, Mudanjiang, China
| | - Javeria Qadir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Shumin Zhang
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| | - Hui Yuan
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
14
|
Sun J, Xu J, Liu Y, Lin Y, Wang F, Han Y, Zhang S, Gao X, Xu C, Yuan H. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing reactive oxygen species, endoplasmic reticulum stress, and Pannexin-1-mediated ferroptosis. BIOMOLECULES & BIOMEDICINE 2023; 23:825-837. [PMID: 36946337 PMCID: PMC10494846 DOI: 10.17305/bb.2022.8846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication and death cause of diabetes mellitus (DM). Recent cardiology studies suggest that spermidine (SPD) has cardioprotective effects. Here, we verified the hypothesis of SPD's protective effects on DCM. Therefore, db/db mice and primary neonatal mouse cardiomyocytes were used to observe the effects of SPD. Immunoblotting showed that ornithine decarboxylase (ODC) and SPD/spermine N1-acetyltransferase (SSAT) were downregulated and upregulated in the myocardium of db/db mice, respectively. We found that diabetic mice showed cardiac dysfunction in 12 weeks. Conversely, exogenous SPD could improve cardiac functions and reduce the deposition of collagens, myocardial damage, reactive oxygen species (ROS) levels, and endoplasmic reticulum stress (ERS) in diabetic mouse hearts. Our results also demonstrated that cardiomyocytes displayed ferroptosis and then activated Pannexin-1 expression, which resulted in the increase of the extracellular adenosine triphosphate (ATP). Subsequently, increased ATP as a paracrine molecule combined to purinergic receptor P2X7 to activate ERK1/2 signaling pathway in cardiomyocytes and activated NCOA4-mediated ferroptinophagy to promote lipid peroxidation and ferroptosis. Interestingly, SPD could reverse these molecular processes. Our findings indicate an important new mechanism for DCM and suggest that SPD has potential applicability to protect against deterioration of cardiac function with DCM.
Collapse
Affiliation(s)
- Jian Sun
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jiyu Xu
- School of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Yong Liu
- Animal Research Institute, Research Department, Mudanjiang Medical University, Mudanjiang, China
| | - Yitong Lin
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Fengge Wang
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yue Han
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Shumin Zhang
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyan Gao
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hui Yuan
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
15
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Hou Y, Wang Y, Tang K, Yang Y, Wang Y, Liu R, Wu B, Chen X, Fu Z, Zhao F, Chen L. CD226 deficiency attenuates cardiac early pathological remodeling and dysfunction via decreasing inflammatory macrophage proportion and macrophage glycolysis in STZ-induced diabetic mice. FASEB J 2023; 37:e23047. [PMID: 37392373 DOI: 10.1096/fj.202300424rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.
Collapse
Affiliation(s)
- Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yazhen Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Kang Tang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yan Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yiwei Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ruiyan Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Bin Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xutao Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhaoyue Fu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Feng Zhao
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Yu YN, Ren YY, Shao ZL, Chen BL, Cui BY, Chao CY, Guo LJ, Guo S, Zhang MX, Wang SX, Zhu ML, Yin YL, Li P. Perillaldehyde improves diabetic cardiomyopathy by upregulating miR-133a-3p to regulate GSK-3β. Eur J Pharmacol 2023; 953:175836. [PMID: 37329971 DOI: 10.1016/j.ejphar.2023.175836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Diabetic cardiomyopathy (DCM) is part of the most important causes of death from cardiovascular disease. Perillaldehyde (PAE), a major component of the herb perilla, has been shown to ameliorate doxorubicin-induced cardiotoxicity, but it is unclear whether PAE exerts beneficial effects on DCM. Exploring the potential molecular mechanisms of PAE for the treatment of DCM through network pharmacology and molecular docking. The SD rat type 1 diabetes model was established by a single intraperitoneal injection of streptozotocin (60 mg/kg), the cardiac function indexes of each group were detected by echocardiography; the morphological changes, apoptosis, protein expression of P-GSK-3β (S9), collagen I (Col-Ⅰ), collagen III (Col-Ⅲ) and alpha-smooth muscle actin (α-SMA), and miR-133a-3p expression levels were detected. An DCM model of H9c2 cells was established in vitro and transfected with Mimic and Inhibitor of miR-133a-3p. The results showed that PAE ameliorated cardiac dysfunction, reduced fasting glucose and cardiac weight index, and improved myocardial injury and apoptosis in DCM rats. It reduced high glucose-induced apoptosis, promoted migration and improved mitochondrial division injury in H9c2 cells. PAE decreased P-GSK-3β (S9), Col-Ⅰ, Col-Ⅲ and α-SMA protein expression and upregulated miR-133a-3p expression levels. After miR-133a-3p Inhibitor treatment, the expression of P-GSK-3β (S9) and α-SMA expression were significantly increased; after miR-133a-3p Mimic treatment, the expression of P-GSK-3β (S9) and α-SMA decreased significantly in H9c2 cells. It suggests that the mechanism of action of PAE to improve DCM may be related to the upregulation of miR-133a-3p and inhibition of P-GSK-3β expression.
Collapse
Affiliation(s)
- Ya-Nan Yu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan-Yuan Ren
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhen-Lei Shao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bu-Lei Chen
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bao-Yue Cui
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | | | - Li-Juan Guo
- Department of Oncology, Xinxiang Medical University First Affiliated Hospital, Xinxiang, 453119, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ming-Xiang Zhang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mo-Li Zhu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
18
|
Qi Q, Hu C, Zhang H, Sun R, Liu Q, Ouyang K, Xie Y, Li X, Wu W, Liu Y, Zhao G, Wei L. Dietary Supplementation with Putrescine Improves Growth Performance and Meat Quality of Wenchang Chickens. Animals (Basel) 2023; 13:ani13091564. [PMID: 37174601 PMCID: PMC10177372 DOI: 10.3390/ani13091564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
This study was to investigate the effects of dietary supplementation with putrescine on the growth performance and meat quality of chickens. A total of 480 eighty-day-old female Wenchang chickens were randomly assigned into four groups, with 8 replications per group and 15 animals per replicate. The chickens in the control group (Con) were fed a basal diet; the 3 experimental groups were fed a basal diet with 0.01%, 0.03%, and 0.05% putrescine, respectively. The experiment lasted for 40 days. The results showed that dietary supplementation with 0.05% putrescine increased (p < 0.05) the final body weight and average daily weight gain, and decreased the ratio of feed intake to the body weight gain of Wenchang chickens. Dietary supplementation with putrescine decreased the concentrations of putrescine, spermidine, and spermine in serum (p < 0.05). The contents of methionine, phenylalanine, lysine, aspartic acid, tyrosine, total essential amino acids, and total amino acids in breast muscle were higher (p < 0.05) in 0.03% and 0.05% groups than those in Con group. However, the contents of undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, arachidic acid, docosanoic acid, tricosanic acid, lignoceric acid, erucic acid, cis-11,14,17-eicosatrienoate, linoleic acid, and total n-6 monounsaturated fatty acids in breast muscle were lower (p < 0.05) in 0.03% and 0.05% groups than those in Con group. In addition, putrescine supplementation decreased (p < 0.05) the ratio of n-6/n-3 polyunsaturated fatty acids in breast meat. Overall, dietary supplementation with 0.05% putrescine enhanced the growth performance and meat quality of Wenchang chickens.
Collapse
Affiliation(s)
- Qi Qi
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572025, China
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haojie Zhang
- College of Ocean and Fishery, Guangdong Eco-Engineering Polytechnic, Guangzhou 510220, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Quanwei Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Kun Ouyang
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Wei Wu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yuhang Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572025, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572025, China
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
19
|
Deng Q, Zhu Y, Zhang M, Fei A, Liang J, Zheng J, Zhang Q, Cheng T, Ge X. Ferroptosis as a potential new therapeutic target for diabetes and its complications. Endocr Connect 2023; 12:e220419. [PMID: 36656308 PMCID: PMC9986392 DOI: 10.1530/ec-22-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Diabetes is a complex metabolic disease. In recent years, diabetes and its chronic complications have become a health hotspot of global concern. It is very important to find promising therapeutic targets and directions. Ferroptosis is a new type of programmed cell death that is different from cell necrosis, apoptosis, and autophagy. Ferroptosis is mainly characterized by iron-dependent lipid peroxidation. With the reduction of the anti-oxidative capacity of cells, the accumulated reactive lipid oxygen species will cause oxidative cell death and lead to ferroptosis at lethal levels. Recent studies have shown that ferroptosis plays an important regulatory role in the initiation and development of diabetes, as well as various complications of diabetes. In this review, we will summarize new findings related to ferroptosis and diabetic complications and propose ferroptosis as a potential target for treating diabetic complications.
Collapse
Affiliation(s)
- Qian Deng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Zhu
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Mengmeng Zhang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiaqi Liang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Jinjin Zheng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Qingping Zhang
- College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| | - Tong Cheng
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
20
|
Han X, Zhang J, Liu J, Wang H, Du F, Zeng X, Guo C. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia-reperfusion injuries. Apoptosis 2023; 28:108-123. [PMID: 36474078 DOI: 10.1007/s10495-022-01785-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, a newly discovered form of regulated cell death dependent on iron and reactive oxygen species, is mainly characterized by mitochondrial shrinkage, increased density of bilayer membranes and the accumulation of lipid peroxidation, causing membrane lipid peroxidation and eventually cell death. Similar with the most forms of regulated cell death, ferroptosis also participated in the pathological metabolism of myocardial infarction and myocardial ischemia/reperfusion injuries, which are still the leading causes of death worldwide. Given the crucial roles ferroptosis played in cardiovascular diseases, such as myocardial infarction and myocardial ischemia/reperfusion injuries, it is considerable to delve into the molecular mechanisms of ferroptosis contributing to the progress of cardiovascular diseases, which might offer the potential role of ferroptosis as a targeted treatment for a wide range of cardiovascular diseases. This review systematically summarizes the process and regulatory metabolisms of ferroptosis, discusses the relationship between ferroptosis and myocardial infarction as well as myocardial ischemia/reperfusion injuries, which might potentially provide novel insights for the pathological metabolism and original ideas for the prevention as well as treatment targeting ferroptosis of cardiovascular diseases such as myocardial infarction and myocardial ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4Th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
21
|
Sun J, Xu J, Liu Y, Xu X, Zhang S, Hao Y, Lin Y, Han Y, Li F, Yuan H. Proteomic and metabolomic analyses reveal the novel targets of spermine for alleviating diabetic cardiomyopathy in type II diabetic mice. Front Cardiovasc Med 2022; 9:1022861. [PMID: 36312255 PMCID: PMC9614018 DOI: 10.3389/fcvm.2022.1022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the most serious complications of diabetes. Recent cardiology studies suggest that spermine has a cardioprotective effect. Here, we used proteomic and metabolomic analyses to reveal the underlying research targets in a type II diabetic (T2D) mouse model treated with spermine. Left ventricular tissues from nine mice (Control group, three; T2D group, three; T2D+SP group, three) were excised and analyzed. Quantitative analysis of the global proteome and metabolome was performed using the 4D label-free technique and untargeted metabolomics, respectively, and differentially expressed proteins (DEPs) and metabolites were used to perform bioinformatic analyses. A total of 169 DEPs were identified in T2D/Control group, including 115 upregulated and 54 downregulated proteins. Furthermore, 16 DEPs were identified in T2D+SP/T2D group, where these DEPs were found highly enriched in the cellular, metabolic processes, biological regulation, response to stimulus, and immune system process. The results of association analysis between proteomics and metabolomics showed that SP could affect the production of 51 metabolites by regulating the expression of 16 DEPs in the T2D+SP/T2D group. We also found that PRKG1 was closely related to the expressions of 10 overlapping metabolites between db/db and SP-treated mice. Our findings provide insights into the underlying mechanisms for DCM and suggest the potential applicability of utilizing spermine on protecting against DCM-associated cardiac function deterioration.
Collapse
Affiliation(s)
- Jian Sun
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jiyu Xu
- School of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Yong Liu
- Research Department, Animal Research Institute, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyi Xu
- The First Clinical School of Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Shumin Zhang
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| | - Yankun Hao
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yitong Lin
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yue Han
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Feiya Li
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Hui Yuan
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China,School of Stomatology, Mudanjiang Medical University, Mudanjiang, China,*Correspondence: Hui Yuan
| |
Collapse
|
22
|
Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells 2022; 11:cells11193075. [PMID: 36231037 PMCID: PMC9562006 DOI: 10.3390/cells11193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
Collapse
|
23
|
Houttuynia cordata polysaccharide alleviates chronic vascular inflammation by suppressing calcium-sensing receptor in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|
25
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
26
|
Li J, Xu M, Xing B, Liu Y, Zhang Q, Guo J, Duan J. Combination of Salviae Miltiorrhizae Radix et Rhizoma and Carthami Flos improves cardiac function of diabetic cardiomyopathy mice by regulating the unfolded protein response signaling pathway. Phytother Res 2022; 36:3571-3583. [PMID: 35708293 DOI: 10.1002/ptr.7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a unique clinical entity elicited by diabetes independent of other cardiovascular risk factors, of which the pathological mechanisms and treatment strategies remain largely undefined. This study aimed to clarify the role of unfolded protein response (UPR) signaling pathway in the pathogenesis of DCM, and to explore the effect of aqueous extract of Salviae Miltiorrhizae Radix et Rhizoma and Carthami Flos (DH) on DCM mice. Cardiac function of DCM mice was evaluated by echocardiography, and lipid profile of left ventricular was analyzed by untargeted lipidomics. The results showed that DH significantly improved the diabetic symptoms, cardiac dyslipidemia, and systolic dysfunction of DCM mice. UPR signaling pathway was significantly down-regulated in the left ventricular of DCM mice. DH significantly up-regulated the transcriptions of key transducers in UPR signaling pathway. Conditional knockout of Xbp1 in cardiomyocyte (a key regulator in UPR signaling pathway) eliminated the protective effect of DH on cardiac systolic function of DCM mice, which suggested that UPR signaling pathway, especially the Xbp1, was required for DH protection against DCM. In conclusion, DH improved cardiac function of DCM mice, and this effect was dependent on its regulation of UPR signaling pathway.
Collapse
Affiliation(s)
- Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiling Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baotong Xing
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Transcriptomics Coupled to Proteomics Reveals Novel Targets for the Protective Role of Spermine in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5909378. [PMID: 35437457 PMCID: PMC9013312 DOI: 10.1155/2022/5909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Diabetic cardiomyopathy (DbCM) is the main complication and the cause of high mortality of diabetes. Exploring the transcriptomics and proteomics of DbCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). Methods and Results By using a mouse DbCM model, we analyzed the overall transcriptome and proteome of the myocardium, before/after treatment with SPM. The general state and cardiac structure and function changes of each group were also compared. Diabetes induced an increased blood glucose and serum triglyceride content, a decreased body weight, serum insulin level, and cardiac function-related indexes, accompanied by disrupted myocardial tissue morphology and ultrastructure damage. Using RNA sequencing (RNA-seq), we identified thousands of differentially expressed genes (DEGs) in DbCM with or without SPM treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in lipid metabolism and amino acid metabolism pathways. Specifically, quantitative real-time PCR (qRT-PCR) confirmed that SPM protected DbCM by reversing the expressions of lipid metabolism and amino acid metabolism-related genes, including Alox15, Gm13033, pla2g12a, Ptges, Pnpla2, and Acot1. To further reveal the pathogenesis of DbCM, we used proteome-based data-independent acquisition (DIA) and identified 139 differentially expressed proteins (DEPs) with 67 being upregulated and 72 being downregulated in DbCM. Venn intersection analysis showed 37 coexpressed genes and proteins in DbCM, including 29 upregulation and 8 downregulation in DbCM. In the protein-protein interaction (PPI) network constructed by the STRING database, the metabolism-related coexpressed genes and proteins, such as Acot2, Ephx2, Cyp1a1, Comt, Acox1, Hadhb, Hmgcs2, Acot1, Inmt, and Cat, can interact with the identified DEGs and DEPs. Conclusion The biomarkers and canonical pathways identified in this study may hold the key to understand the mechanisms of DbCM pathobiology and provide new targets for the therapeutic effect of SPM against DbCM by targeting lipid and amino acid metabolism pathways.
Collapse
|
28
|
Yan M, Li L, Wang Q, Shao X, Luo Q, Liu S, Li Y, Wang D, Zhang Y, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation. Pharmacotherapy 2022; 148:112709. [DOI: 10.1016/j.biopha.2022.112709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
29
|
Qiu Y, Li L, Guo X, Liu J, Xu L, Li Y. Exogenous spermine inhibits high glucose/oxidized LDL‑induced oxidative stress and macrophage pyroptosis by activating the Nrf2 pathway. Exp Ther Med 2022; 23:310. [PMID: 35350102 PMCID: PMC8943647 DOI: 10.3892/etm.2022.11239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that macrophage pyroptosis promotes the progression of diabetic atherosclerosis. Spermine, a natural cellular metabolite, demonstrates a protective effect against cardiovascular diseases. However, whether spermine has a protective effect against macrophage pyroptosis caused by high glucose (HG) and oxidized low-density lipoprotein (ox-LDL) conditions remains to be elucidated. To investigate the protective effect of spermine and the related underlying mechanism, THP-1 macrophages were treated with HG/ox-LDL, spermine, or the specific nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. Cell viability was detected using CCK-8, cell membrane permeability was analyzed using lactate dehydrogenase (LDH) and Hoechst/propidium iodide staining and pyroptosis-related gene and protein expression levels were evaluated using polymerase chain reaction and western blot analysis. Spermine showed a potent preventive effect on THP-1 macrophage pyroptosis and oxidative stress induced by HG/ox-LDL. Cells treated with spermine showed increased cell viability, reduced reactive oxygen species (ROS) production, decreased LDH levels in the supernatant and reduced cell swelling. In addition, spermine significantly reduced NLR family pyrin domain containing 3, cleaved caspase-1, N-gasdermin D and IL-1β expression, as well as IL-1β levels in the supernatant. This demonstrated that the inhibition of pyroptosis and oxidative stress due to spermine was Nrf2 dependent. Furthermore, spermine enhanced Nrf2 nuclear translocation, thereby increasing heme oxygenase-1 and NADPH quinone oxidoreductase-1 expression, which subsequently reduced ROS production. In addition, the anti-pyroptotic and antioxidant effects of spermine were reversed by ML385 inhibition of Nrf2. It was concluded that spermine prevented macrophage pyroptosis and increased ROS overproduction by activating the Nrf2 pathway. The data suggested that spermine may be a potential novel drug for the treatment of diabetic atherosclerosis because it targets macrophage pyroptosis.
Collapse
Affiliation(s)
- Yuxuan Qiu
- Department of Endocrinology and Metabolic Disease, Harbin Medical University, Harbin, Heilongjiang 150076, P.R. China
| | - Linna Li
- Department of Laboratory Medicine, Harbin City First Hospital, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaohui Guo
- Department of Laboratory Medicine, Harbin City First Hospital, Harbin, Heilongjiang 150010, P.R. China
| | - Jiangwen Liu
- Department of Endocrinology and Metabolic Disease, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Liang Xu
- Department of Endocrinology and Metabolic Disease, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yanbo Li
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150007, P.R. China
| |
Collapse
|
30
|
Peng M, Liu H, Ji Q, Ma P, Niu Y, Ning S, Sun H, Pang X, Yang Y, Zhang Y, Han J, Hao G. Fufang Xueshuantong Improves Diabetic Cardiomyopathy by Regulating the Wnt/ β-Catenin Pathway. Int J Endocrinol 2022; 2022:3919161. [PMID: 36237833 PMCID: PMC9553353 DOI: 10.1155/2022/3919161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications of diabetic patients and the major reason for the high prevalence of heart failure in diabetic patients. Fufang Xueshuantong (FXST) is a traditional Chinese medicine formula commonly used in the treatment of diabetic retinopathy and stable angina pectoris. However, the role of FXST in DCM has not yet been clarified. This study was conducted to investigate the effects of FXST on diabetic myocardial lesions and reveal its molecular mechanism. The rats were intraperitoneally injected with 65 mg/kg streptozotocin (STZ) to induce diabetes mellitus (DM). DM rats were given saline or FXST. The rats in the control group were intraperitoneally injected with an equal amount of sodium citrate buffer and gavaged with saline. After 12 weeks, echocardiography, heart weight index (HWI), and myocardial pathological changes were determined. The expression of transforming growth factor-beta1 (TGF-β1), collagen I, and collagen III was examined using immunofluorescence staining and western blot. The expressions of Wnt/β-catenin signaling pathway-related proteins and mRNA were detected by western blot and real-time PCR. The results showed that FXST significantly improved cardiac function, ameliorated histopathological changes, and decreased HWI in the DM rats. FXST significantly inhibited the expression of myocardial TGF-β1, collagen I, and collagen III in DM rats. Furthermore, FXST significantly inhibited the Wnt/β-catenin pathway. Taken together, FXST has a protective effect on DCM, which might be mediated by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Meizhong Peng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingxuan Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pan Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiting Niu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shangqiu Ning
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huihui Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxin Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Zhang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Han
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
31
|
Linnan B, Yanzhe W, Ling Z, Yuyuan L, Sijia C, Xinmiao X, Fengqin L, Xiaoxia W. In situ Metabolomics of Metabolic Reprogramming Involved in a Mouse Model of Type 2 Diabetic Kidney Disease. Front Physiol 2021; 12:779683. [PMID: 34916961 PMCID: PMC8670437 DOI: 10.3389/fphys.2021.779683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
The in situ metabolic profiling of the kidney is crucial to investigate the complex metabolic reprogramming underlying diabetic kidney disease (DKD) and to allow exploration of potential metabolic targets to improve kidney function. However, as the kidney is a highly heterogeneous organ, traditional metabolomic methods based on bulk analysis that produce an averaged measurement are inadequate. Herein, we employed an in situ metabolomics approach to discover alternations of DKD-associated metabolites and metabolic pathways. A series of histology-specific metabolic disturbances were discovered in situ using airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI). In combination with integrated metabolomics analysis, five dysfunctional metabolic pathways were identified and located in the kidneys of type-2 DKD mice simultaneously for the first time, including taurine metabolism, arginine and proline metabolism, histidine metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways. As crucial nodes of metabolic pathways, five dysregulated rate-limiting enzymes related to altered metabolic pathways were further identified. These findings reveal alternations from metabolites to enzymes at the molecular level in the progression of DKD and provide insights into DKD-associated metabolic reprogramming.
Collapse
Affiliation(s)
- Bai Linnan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Yanzhe
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang Ling
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yuyuan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Sijia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xie Xinmiao
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fengqin
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Xiaoxia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
33
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Hydrogen sulfide plays a potential alternative for the treatment of metabolic disorders of diabetic cardiomyopathy. Mol Cell Biochem 2021; 477:255-265. [PMID: 34687394 DOI: 10.1007/s11010-021-04278-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiovascular complication that tends to occur in patients with diabetes, obesity, or insulin resistance, with a higher late mortality rate. Sustained hyperglycemia, increased free fatty acids, or insulin resistance induces metabolic disorders in cardiac tissues and cells, leading to myocardial fibrosis, left ventricular hypertrophy, diastolic and/or systolic dysfunction, and finally develop into congestive heart failure. The close connection between all signaling pathways and the complex pathogenesis of DCM cause difficulties in finding effective targets for the treatment of DCM. It reported that hydrogen sulfide (H2S) could regulate cell energy substrate metabolism, reduce insulin resistance, protect cardiomyocytes, and improve myocardial function by acting on related key proteins such as differentiation cluster 36 (CD36) and glucose transporter 4 (GLUT4). In this article, the relative mechanisms of H2S in alleviating metabolic disorders of DCM were reviewed, and how H2S can better prevent and treat DCM in clinical practice will be discussed.
Collapse
|
35
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Song C, Shi D, Chang K, Li X, Dong Q, Ma X, Wang X, Guo Z, Liu Y, Wang J. Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo. Free Radic Biol Med 2021; 169:137-148. [PMID: 33857626 DOI: 10.1016/j.freeradbiomed.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
An extensive body of research has demonstrated that pulmonary toxicity induced by fluoride is related to cell apoptosis. Although induction of death receptor-initiated extrinsic apoptosis by sodium fluoride (NaF) has been reported, its mechanism of action is still not clearly defined. Herein, we found that NaF treatment induced activation of caspase-8 in BEAS-2B cells, resulting in apoptosis, which was markedly reduced by blocking caspase-8 using small interfering RNA (siRNA). In this study, we report that death receptor 5 (DR5), a major component of the extrinsic apoptotic pathway, is markedly induced upon NaF stimulation. Enhanced DR5 induction was necessary for the apoptotic effects of NaF, inasmuch as transfected BEAS-2B cells with DR5 siRNA attenuated NaF-induced caspase-8 activation in lung cells. Mechanism investigation indicated that the induction of DR5, following NaF exposure, was mediated by tumor protein 53 (p53)-dependent transcriptional activation. Notably, we demonstrated that NaF could induce a significant increase in intracellular reactive oxygen species (ROS) level derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Specifically, NOX4 knockdown inhibited NaF-induced the activation of p53/DR5 axis by reducing NOX4-derived ROS production. Further in vivo investigation demonstrated that NOX4 deficiency markedly attenuates NaF-induced lung injury, apoptosis, and ROS levels in the lung. Moreover, the expressions of p53 and DR5 were significantly reduced after NaF treatment in NOX4 knockout mice compared with the wild type mice. Taken together, our findings provide a novel insight into for the pulmonary apoptosis in response to NaF exposure.
Collapse
Affiliation(s)
- Chao Song
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China.
| | - Dongmei Shi
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xianghui Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Qing Dong
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Xia Ma
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Xuefei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Zhenhuan Guo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Yonglu Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Jundong Wang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
37
|
Zhang X, Zhang L, Chen Z, Li S, Che B, Wang N, Chen J, Xu C, Wei C. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway. Int J Mol Med 2021; 47:27. [PMID: 33537831 PMCID: PMC7895520 DOI: 10.3892/ijmm.2021.4860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the primary cause of end‑stage renal disease, which is closely associated with dysfunction of the podocytes, the main component of the glomerular filtration membrane; however, the exact underlying mechanism is unknown. Polyamines, including spermine, spermidine and putrescine, have antioxidant and anti‑aging properties that are involved in the progression of numerous diseases, but their role in DN has not yet been reported. The present study aimed to explore the role of polyamines in DN, particularly in podocyte injury, and to reveal the molecular mechanism underlying the protective effect of exogenous spermine. Streptozotocin intraperitoneal injection‑induced type 1 diabetic (T1D) rat models and high glucose (HG)‑stimulated podocyte injury models were established. It was found that in T1D rat kidneys and HG‑induced podocytes, ornithine decarboxylase (a key enzyme for polyamine synthesis) was downregulated, while spermidine/spermine N1‑acetyltransferase (a key enzyme for polyamines degradation) was upregulated, which suggested that reduction of the polyamine metabolic pool particularly decreased spermine content, is a major factor in DN progression. In addition, hyperglycemia can induce an increased rat kidney weight ratio, serum creatinine, urea, urinary albumin excretion and glomerular cell matrix levels, and promote mesangial thickening and loss or fusion of podocytes. The expression levels of podocyte marker proteins (nephrin, CD2‑associated protein and podocin) and autophagy‑related proteins [autophagy protein 5, microtube‑associated proteins 1A/1B light chain 3 (LC3)II/LC3I, Beclin 1 and phosphorylated (p)‑AMPK] were downregulated, while cleaved caspase‑3, P62 and p‑mTOR were increased. These changes could be improved by pretreatment with exogenous spermine or rapamycin (autophagic agonist). In conclusion, spermine may have the potential to prevent diabetic kidney injury in rats by promoting autophagy via regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Li Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Chen
- Department of Infectious Diseases, General Hospital for The Head Office of Agricultural Cultivation of Heilongjiang, Harbin, Heilongjiang 150088, P.R. China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bingbing Che
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ningning Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junting Chen
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
38
|
Wei C, Sun M, Liang X, Che B, Wang N, Shi L, Fan Y. Spermine Regulates Immune and Signal Transduction Dysfunction in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2021; 12:740493. [PMID: 35173678 PMCID: PMC8842652 DOI: 10.3389/fendo.2021.740493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Exploring the transcriptomics of DCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). METHODS AND RESULTS By using a mouse DCM model, we analyzed the transcriptome of the myocardium, before/after treatment with SPM. Using RNA sequencing (RNA-seq), we identified 1,318 differentially expressed genes (DEGs), with 636 being upregulated and 682 being downregulated in DCM compared to control check (CK). We then identified 1,393 DEGs, with 887 being upregulated and 506 being downregulated in SPM compared to DCM. Kyoto Encyclopedia of Genes And Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in the immune system and signal transduction-related pathways. UpSet Venn analysis showed that 174 DEGs in DCM could be reversed by SPM, with 45 candidates related to immune system and related signal transduction pathways. Trend analysis demonstrated the dynamic changes in gene levels in DCM and SPM treatment, shown as 49 immune and signal transduction-related candidates were significantly enriched in some classical pathways, such as complement and coagulation cascades and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway. To further reveal the protective mechanism of SPM to DCM, we predicted 14 overlapped transcription factors (TFs) and their co-factors involved in gene transcription regulation and showed gene interaction with Cytoscape. CONCLUSION The biomarkers and canonical pathways identified in this study may hold the key to understanding the mechanisms of DCM pathobiology and providing new targets for the therapeutic effect of SPM against DCM by targeting abnormal immune response and signal transduction.
Collapse
Affiliation(s)
- Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengting Sun
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Liang
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bingbing Che
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ningning Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lili Shi, ; Ying Fan,
| | - Ying Fan
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lili Shi, ; Ying Fan,
| |
Collapse
|
39
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Wang Y, Wang Y, Li F, Zhang X, Li H, Yang G, Xu C, Wei C. Spermine Protects Cardiomyocytes from High Glucose-Induced Energy Disturbance by Targeting the CaSR-gp78-Ubiquitin Proteasome System. Cardiovasc Drugs Ther 2020; 35:73-85. [PMID: 32918657 DOI: 10.1007/s10557-020-07064-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the mediation of spermine on energy metabolism disorder and diabetic cardiomyopathy (DCM) development as well as the underlying mechanisms. METHODS An in vitro model of DCM was established by incubating primary cultured neonatal rat cardiomyocytes with high glucose (HG). Spermine content was assessed by RP-HPLC. The protein levels were detected by western blot. Mitochondrial functions were analyzed using the respiratory chain complex assay kit and immunofluorescence staining. RESULTS The endogenous content of spermine was decreased in the HG group, and the protein levels of ornithine decarboxylase, respiratory chain complex (I-V), mitochondrial fusion-related protein (Mfn1, Mfn2), Cx43, N-cadherin, CaSR, and β-catenin (in cytomembrane) were also down-regulated by HG. In contrast, the protein levels of spermine-N1-acetyltransferase, gp78, Fis1, Drp1, and β-catenin were up-regulated by HG. Meanwhile, we observed that HG increased ubiquitination levels of Mfn1, Mfn2, and Cx43, decreased membrane potential (ΔΨm), and the opening of mitochondrial permeability transport pore (mPTP) followed by intracellular ATP leakage. The supplement of spermine or siRNA-mediated knockdown of gp78 significantly alleviated the detrimental effects of HG, while downregulation of CaSR aggravated the development of DCM. We further confirmed that the lower level of spermine by HG activates the gp78-ubiquitin-proteasome pathway via downregulation of CaSR protein level, which in turn damages mitochondrial gap junction intercellular communication and leads to reduced ATP level. CONCLUSION The protective role of spermine on energy metabolism disorder is based on higher CaSR protein level and lower gp78 activation, pointing to the possibility that spermine can be a target for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China
| | - Yuwen Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Fadong Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China
| | - Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China
| | - Guangdong Yang
- Departemnt of Chemistry and Biochemistry, Laurentian University, Sudbury, P3E 2C6, Canada
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081, China.
| |
Collapse
|