1
|
Zhou Z, Li Y, Ding J, Sun S, Cheng W, Yu J, Cai Z, Ni Z, Yu C. Chronic unpredictable stress induces anxiety-like behavior and oxidative stress, leading to diminished ovarian reserve. Sci Rep 2024; 14:30681. [PMID: 39730417 DOI: 10.1038/s41598-024-76717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 12/29/2024] Open
Abstract
Chronic stress can adversely affect the female reproductive endocrine system, potentially leading to disorders and impairments in ovarian function. However, current research lacks comprehensive understanding regarding the biochemical characteristics and underlying mechanisms of ovarian damage induced by chronic stress. We established a stable chronic unpredictable stress (CUS)-induced diminished ovarian reserve (DOR) animal model. Our findings demonstrated that prolonged CUS treatment over eight weeks resulted in increased atresia follicles in female mice. This atresia was accompanied by decreased AMH and increased FSH levels. Furthermore, we observed elevated levels of corticosterone both in the peripheral blood and within the ovary. Additionally, we detected abnormalities in ATP metabolism within the ovarian tissue. CUS exposure led to oxidative stress in the ovaries, fostering a microenvironment characterized by oxidative damage to mouse ovarian granulosa cells (mGCs) and heightened levels of reactive oxygen species. Furthermore, CUS prompted mGCs to undergo apoptosis via the mitochondrial pathway. These findings indicate a direct association between the fundamental physiological alterations leading to DOR and the oxidative phosphorylation processes within mGCs. The diminished ATP production by mGCs, triggered by CUS, emerges as a pivotal indicator of CUS-induced DOR. Our study establishes an animal model to investigate the impact of chronic stress on ovarian reserve function and sheds light on potential mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Zhihao Zhou
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
- Traditional Chinese Medicine Department, No. 929 Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Wen Cheng
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Jin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, 200433, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China.
| |
Collapse
|
2
|
Sies H. Dynamics of intracellular and intercellular redox communication. Free Radic Biol Med 2024; 225:933-939. [PMID: 39491734 DOI: 10.1016/j.freeradbiomed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2 gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endosomes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
3
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
5
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
6
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wei Y, Li H, Li Y, Zeng Y, Quan T, Leng Y, Chang E, Bai Y, Bian Y, Hou Y. Advances of curcumin in nervous system diseases: the effect of regulating oxidative stress and clinical studies. Front Pharmacol 2024; 15:1496661. [PMID: 39555102 PMCID: PMC11563972 DOI: 10.3389/fphar.2024.1496661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
In recent years, researchers have highly observed that neurological disorders (NSDs) with the aging of the population are a global health burden whose prevalence is increasing every year. Previous evidence suggested that the occurrence of neurological disorders is correlated with predisposing factors such as inflammation, aging, and injury. Particularly, the neuronal cells are susceptible to oxidative stress, leading to lesions caused by high oxygen-consuming properties. Oxidative stress (OS) is a state of peroxidation, which occurs as a result of the disruption of the balance between oxidizing and antioxidizing substances. The oxidative intermediates such as free radicals, hydrogen peroxide (H2O2), and superoxide anion (O2-) produced by OS promote disease progression. Curcumin, a natural diketone derived from turmeric, is a natural antioxidant with a wide range of neuroprotective, anti-inflammatory, anti-tumor, anti-aging, and antioxidant effects. Fortunately, curcumin is recognized for its potent antioxidant properties and is considered a promising candidate for the prevention and treatment of neurological diseases. Consequently, this review elucidates the mechanisms by which curcumin mitigates oxidative stress and emphasizes the potential in treating nervous system disorders, including depression, Alzheimer's disease, Parkinson's disease, epilepsy, subarachnoid hemorrhage, and glioblastoma. We aim to provide a new therapeutic option for the management of neurological diseases.
Collapse
Affiliation(s)
- Yuxun Wei
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Hong Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yue Li
- Molecular Urooncology, Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | - Yue Zeng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Tian Quan
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yanen Leng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - En Chang
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yingtao Bai
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yuan Bian
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Yi Hou
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| |
Collapse
|
8
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Zhou Y, Xu Y, Tian T, Xu Y. Antihypertensive and antioxidant effects of food-derived bioactive peptides in spontaneously hypertensive rats. Food Sci Nutr 2024; 12:8200-8210. [PMID: 39479630 PMCID: PMC11521693 DOI: 10.1002/fsn3.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
Hypertension significantly impacts the survival and quality of life of animals, often leading to chronic kidney failure. Current clinical drugs used to manage hypertension carry the risk of causing adverse reactions. In contrast, certain natural peptides have demonstrated the ability to safely reduce blood pressure by inhibiting the production of angiotensin. We administered four biologically active peptide solutions to spontaneously hypertensive rats: derived from corn, wheat, egg white, and soybean. The efficacy of these peptides in reducing blood pressure was assessed through regular measurements of systolic pressure. Additionally, we analyzed levels of angiotensin-converting enzyme and angiotensin 2 using immunohistochemistry and ELISA in vivo. The indicators of oxidative stress and inflammation in hypertensive rats were evaluated using qRT-PCR and ELISA, respectively. Both wheat (from 182.5 ± 12.26 mmHg at day 0 to 168.86 ± 5.86 mmHg at day 20, p = .0435) and soybean (from 189 ± 2.19 mmHg at day 0 to 178.25 ± 5.14 mmHg at day 20, p = .0017) notably lowered systolic blood pressure compared to their starting systolic blood pressures in spontaneously hypertensive rats. Both wheat and soybean peptides significantly reduced plasma ANG II levels, akin to captopril's effect. Wheat peptides additionally exhibited antioxidant properties. Only the corn peptide showed a significant increase in transcript levels of the proinflammatory factors IL-6 and TNF-α. At the protein level, all four kinds of peptides significantly elevated IL-6 levels while inhibiting TNF-α secretion. This study demonstrates that wheat peptides and soybean peptides administered as dietary supplements exhibit significant hypotensive and antioxidant effects.
Collapse
Affiliation(s)
| | - Yixin Xu
- Nourse Centre for Pet NutritionWuhuChina
| | | | - Yanping Xu
- Nourse Centre for Pet NutritionWuhuChina
| |
Collapse
|
11
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
12
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
16
|
Chen A, Zhang J, Yan Z, Lu Y, Chen W, Sun Y, Gu Q, Li F, Yang Y, Qiu S, Lin X, Zhang D, Teng J, Fang Y, Shen B, Song N, Ding X. Acidic preconditioning induced intracellular acid adaptation to protect renal injury via dynamic phosphorylation of focal adhesion kinase-dependent activation of sodium hydrogen exchanger 1. Cell Commun Signal 2024; 22:393. [PMID: 39118129 PMCID: PMC11308338 DOI: 10.1186/s12964-024-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.
Collapse
Affiliation(s)
- Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Fang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shanfang Qiu
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xueping Lin
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Dong Zhang
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
17
|
Moreira DC, Hermes-Lima M. Dynamics of Redox Metabolism during Complete Metamorphosis of Insects: Insights from the Sunflower Caterpillar Chlosyne lacinia (Lepidoptera). Antioxidants (Basel) 2024; 13:959. [PMID: 39199204 PMCID: PMC11351957 DOI: 10.3390/antiox13080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Complete insect metamorphosis requires substantial metabolic and physiological adjustments. Although oxidative stress has been implicated in metamorphosis, details on redox metabolism during larva-to-pupa and pupa-to-adult remain scarce. This study explores redox metabolism during metamorphosis of a lepidopteran (Chlosyne lacinia), focusing on core metabolism, antioxidant systems and oxidative stress. The larva-to-pupa transition was characterized by increased lactate dehydrogenase and glutathione peroxidase (GPX) activities, coupled with depletion of reduced glutathione (GSH), high disulfide-to-total-glutathione ratio (GSSG/tGSH), and increased lipid peroxidation. As metamorphosis progressed, metabolic enzyme activities, citrate synthase and glucose 6-phosphate dehydrogenase increased, indicating heightened oxidative metabolism associated with adult development. Concurrently, GSH and GPX levels returned to larval levels and GSSG/tGSH reached its most reduced state right before adult emergence. Adult emergence was marked by a further increase in oxidative metabolism, accompanied by redox imbalance and enhanced antioxidant mechanisms. These findings highlight a fluctuation in redox balance throughout metamorphosis, with periods of oxidative eustress followed by compensatory antioxidant responses. This study is the first to identify concurrent changes in metabolism, antioxidants, redox balance and oxidative stress throughout metamorphosis. Our findings extend knowledge on redox metabolism adjustments and highlight redox adaptations and oxidative stress as natural components of complete insect metamorphosis.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
- Cell Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, Brazil;
| | - Marcelo Hermes-Lima
- Cell Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, Brazil;
| |
Collapse
|
18
|
Guan X, Hu Y, Hao J, Lu M, Zhang Z, Hu W, Li D, Li C. Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis. Curr Atheroscler Rep 2024; 26:411-425. [PMID: 38814419 DOI: 10.1007/s11883-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Our work is to establish more distinct association between specific stress and vascular smooth muscle cells (VSMCs) phenotypes to alleviate atherosclerotic plaque burden and delay atherosclerosis (AS) progression. RECENT FINDING In recent years, VSMCs phenotypic transition has received significant interests. Different stresses were found to be associated with VSMCs phenotypic transition. However, the explicit correlation between VSMCs phenotype and specific stress has not been elucidated clearly yet. We discover that VSMCs phenotypic transition, which is widely involved in the progression of AS, is associated with specific stress. We discuss approaches targeting stresses to intervene VSMCs phenotypic transition, which may contribute to develop innovative therapies for AS.
Collapse
Affiliation(s)
- Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenxian Hu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| |
Collapse
|
19
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
20
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
21
|
Wu J, Shi Y, Zhou M, Chen M, Ji S, Liu X, Zhou M, Xia R, Zheng X, Wang W. Nutrient vitamins enabled metabolic regulation of ferroptosis via reactive oxygen species biology. Front Pharmacol 2024; 15:1434088. [PMID: 39092216 PMCID: PMC11291210 DOI: 10.3389/fphar.2024.1434088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Vitamins are dietary components necessary for cellular metabolic balance, especially redox homeostasis; deficient or excessive supply may give rise to symptoms of psychiatric disorders. Exploring the nutritional and metabolic pathways of vitamins could contribute to uncovering the underlying pathogenesis of ferroptosis-associated diseases. This mini-review aims to provide insights into vitamins closely linked to the regulation of ferroptosis from the perspective of cellular reactive oxygen species biology. The mainstream reprogramming mechanisms of ferroptosis are overviewed, focusing on unique biological processes of iron metabolism, lipid metabolism, and amino acid metabolism. Moreover, recent breakthroughs in therapeutic interventions targeting ferroptosis via fully utilizing vitamin-based pharmacological tools were overviewed, covering vitamins (B, C, E, and K). Finally, mechanism insight related to vitamin-associated nutrient signaling was provided, highlighting the pharmacological benefits of metabolically reprogramming ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yanting Shi
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Man Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Min Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Shuying Ji
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
22
|
Mishra A, Chakraborty S, Jaiswal TP, Bhattacharjee S, Kesarwani S, Mishra AK, Singh SS. Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. Extremophiles 2024; 28:31. [PMID: 39020126 DOI: 10.1007/s00792-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.
Collapse
Affiliation(s)
- Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shreya Kesarwani
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
23
|
Wang D, Woodcock E, Yang X, Nishikawa H, Sviderskaya EV, Oshima M, Edwards C, Zhang Y, Korchev Y. Exploration of individual colorectal cancer cell responses to H 2O 2 eustress using hopping probe scanning ion conductance microscopy. Sci Bull (Beijing) 2024; 69:1909-1919. [PMID: 38644130 DOI: 10.1016/j.scib.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Emily Woodcock
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Xi Yang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiromi Nishikawa
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Christopher Edwards
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Yanjun Zhang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
24
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
25
|
Viebahn-Haensler R, León Fernández OS. Mitochondrial Dysfunction, Its Oxidative Stress-Induced Pathologies and Redox Bioregulation through Low-Dose Medical Ozone: A Systematic Review. Molecules 2024; 29:2738. [PMID: 38930804 PMCID: PMC11207058 DOI: 10.3390/molecules29122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Our hypothesis that controlled ozone applications interfere with the redox balance of a biological organism (first published in 1998 with a preclinical trial on protecting the liver from CCl4 intoxication) has been verified over the past two decades in reactive oxygen species (ROS)-induced mitochondrial pathologies, such as rheumatoid arthritis, osteoarthritis, aging processes and type 2 diabetes, and in the prevention of intoxications. Low-dose ozone acts as a redox bioregulator: the restoration of the disturbed redox balance is comprehensible in a number of preclinical and clinical studies by a remarkable increase in the antioxidant repair markers, here mainly shown as a glutathione increase and a reduction in oxidative stress markers, mainly malondialdehyde. The mechanism of action is shown, and relevant data are displayed, evaluated and comprehensively discussed: the repair side of the equilibrium increases by 21% up to 140% compared to the non-ozone-treated groups and depending on the indication, the stress markers are simultaneously reduced, and the redox system regains its balance.
Collapse
|
26
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Zhou W, Zuo H, Qian Y, Miao W, Chen C. Paeoniflorin attenuates particulate matter-induced acute lung injury by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis through activation of the Nrf2 signaling pathway. Chem Biol Interact 2024; 395:111032. [PMID: 38705442 DOI: 10.1016/j.cbi.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 μM PAE before exposure to 200 μg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wanting Zhou
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hao Zuo
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Qian
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqi Miao
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengshui Chen
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
28
|
Macrì M, D’Albis G, D’Albis V, Antonacci A, Abbinante A, Stefanelli R, Pegreffi F, Festa F. Periodontal Health and Its Relationship with Psychological Stress: A Cross-Sectional Study. J Clin Med 2024; 13:2942. [PMID: 38792482 PMCID: PMC11122378 DOI: 10.3390/jcm13102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Studies suggest that chronic psychological stress can lead to oral health deterioration, alter the immune response, and possibly contribute to increased inflammation, which can impact the physiological healing of periodontal tissues. This cross-sectional study seeks to assess and improve clinical understanding regarding the relationship between perceived stress, mindfulness, and periodontal health. Methods: A total of 203 people were analyzed from December 2022 to June 2023. The Periodontal Screening and Recording (PSR) score and Gingival Bleeding Index (GBI), and Plaque Control Record (PCR) of every patient were registered. Subsequently, participants completed the Sheldon Cohen Perceived Stress Scale (PSS) and the Mindfulness Awareness Attention Scale (MAAS) questionnaires. The collected data underwent statistical analysis, encompassing the evaluation of correlations and dependencies. Applying Welch's t-test to assess the relationship between MAAS and the variable indicating the presence or absence of periodontitis, a noteworthy p-value of 0.004265 was obtained. Results: This underscores a significant distinction in MAAS scores between patients affected by periodontitis and those unaffected by the condition. Additionally, Pearson correlations were computed for GBI and perceived stress, PCR and perceived stress, PCR and MAAS. The resulting p-values of 2.2-16, 3.925-8, and 2.468-8, respectively, indicate a statistically significant correlation in each instance. Conclusions: These findings contribute valuable insights into the interconnectedness of these variables, emphasizing the significance of their associations in the study context. Despite the limitations, the findings of this study suggest a significant relationship between psychological stress, mindfulness, and periodontal tissue health. Clinical trials are necessary to incorporate the assessment of a patient's psychological status as a new valuable tool in the management of periodontal health.
Collapse
Affiliation(s)
- Monica Macrì
- Department of Innovative Technologies in Medicine & Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe D’Albis
- Department of Innovative Technologies in Medicine & Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo D’Albis
- Department of Innovative Technologies in Medicine & Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Anna Antonacci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Antonia Abbinante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Riccardo Stefanelli
- Department for Life Quality Studies, University of Bologna, 40064 Bologna, Italy
| | - Francesco Pegreffi
- Department for Life Quality Studies, University of Bologna, 40064 Bologna, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Felice Festa
- Department of Innovative Technologies in Medicine & Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
29
|
Viebahn-Haensler R, León Fernández O. Ozone in Medicine. The Low-Dose Ozone Concept. The Redox-Bioregulatory Effect as Prominent Biochemical Mechanism and the Role of Glutathione. OZONE: SCIENCE & ENGINEERING 2024; 46:267-279. [DOI: 10.1080/01919512.2023.2291756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2025]
Affiliation(s)
- Renate Viebahn-Haensler
- Scientific committee, Medical Society for the Use of Ozone in Prevention and Therapy, Iffezheim/Baden-Baden, D-76473, Germany
| | - Olga León Fernández
- Pharmacy and Food Institute, University of Havana, Lisa, Havana,10 400, Cuba
| |
Collapse
|
30
|
Ai G, Xiong M, Deng L, Zeng J, Xiao Q. Research progress on the inhibition of oxidative stress by teriparatide in spinal cord injury. Front Neurol 2024; 15:1358414. [PMID: 38711562 PMCID: PMC11071167 DOI: 10.3389/fneur.2024.1358414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Spinal cord injury (SCI) is currently a highly disabling disease, which poses serious harm to patients and their families. Due to the fact that primary SCI is caused by direct external force, current research on SCI mainly focuses on the treatment and prevention of secondary SCI. Oxidative stress is one of the important pathogenic mechanisms of SCI, and intervention of oxidative stress may be a potential treatment option for SCI. Teriparatide is a drug that regulates bone metabolism, and recent studies have found that it has the ability to counteract oxidative stress and is closely related to SCI. This article summarizes the main pathological mechanisms of oxidative stress in SCI, as well as the relationship between them with teriparatide, and explores the therapeutic potential of teriparatide in SCI.
Collapse
Affiliation(s)
- Gangtong Ai
- Department of Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Moliang Xiong
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Liang Deng
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jihuan Zeng
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qiang Xiao
- Department of Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Vergani-Junior CA, Moro RDP, Pinto S, De-Souza EA, Camara H, Braga DL, Tonon-da-Silva G, Knittel TL, Ruiz GP, Ludwig RG, Massirer KB, Mair WB, Mori MA. An Intricate Network Involving the Argonaute ALG-1 Modulates Organismal Resistance to Oxidative Stress. Nat Commun 2024; 15:3070. [PMID: 38594249 PMCID: PMC11003958 DOI: 10.1038/s41467-024-47306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.
Collapse
Affiliation(s)
- Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raíssa De P Moro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Section on Integrative Physiology & Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Gabriel P Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center of Medicinal Chemistry (CQMED), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
32
|
Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int J Mol Sci 2024; 25:4087. [PMID: 38612897 PMCID: PMC11012956 DOI: 10.3390/ijms25074087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.
Collapse
Affiliation(s)
- Maya V. Voronina
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Anastasia S. Frolova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Alessandro Parodi
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
33
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
34
|
De la Llave-Propín Á, Martínez Villalba A, Villarroel M, Pérez C, González de Chávarri E, Díaz MT, Cabezas A, González Garoz R, De la Fuente J, Bermejo-Poza R. Environmental enrichment improves growth and fillet quality in rainbow trout. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3487-3497. [PMID: 38133882 DOI: 10.1002/jsfa.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Some environmental enrichment methods, such as occupational enrichment (OE), can improve fish growth, but little is known about its effects on fillet quality. In this study, we evaluated the effects of OE using underwater currents on different aspects of fillet quality and muscle metabolism in rainbow trout (Oncorhynchus mykiss), before and after a handling procedure (fasting). The trout were placed in groups of 30 in separate tanks in three treatments for 30 days: no artificial currents (CON), randomly fired underwater currents (RFC), and continuous underwater currents (CUC). Additionally, half of the individuals in each treatment were fasted (5 days, 45.2 °C days). RESULTS Slaughter weight, condition factor, and relative growth were lower in CON fish, indicating a positive effect of OE on growth. Rigor mortis, muscle pH, and muscle glycogen levels were similar among treatments, indicating no effect of OE on classical measures of fillet quality. However, significant differences were found regarding fillet colour and muscle enzymes. The fillets of RFC fish were more salmon-pink in colour, which is favoured by consumers. Also, activity levels of pyruvate kinase and glycogen phosphorylase in muscle were significantly higher in CUC fish, probably due to increased energy demands, as pumps were on continually in that treatment. CONCLUSION Overall, RFC fish seemed to have received enough stimulation to improve growth while not being excessive in terms of exhausting the animals (avoiding negative effects on muscle metabolism), whereas OE may have provided a hormetic effect, allowing fish to better adjust to fasting. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Álvaro De la Llave-Propín
- CEIGRAM-ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrea Martínez Villalba
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Concepción Pérez
- Departamento de Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - María Teresa Díaz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Cabezas
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto González Garoz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús De la Fuente
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Bermejo-Poza
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Cai L, Xia M, Zhang F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants (Basel) 2024; 13:423. [PMID: 38671871 PMCID: PMC11047590 DOI: 10.3390/antiox13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among the working-age population. Microglia, resident immune cells in the retina, are recognized as crucial drivers in the DR process. Microglia activation is a tightly regulated immunometabolic process. In the early stages of DR, the M1 phenotype commonly shifts from oxidative phosphorylation to aerobic glycolysis for energy production. Emerging evidence suggests that microglia in DR not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system. This redox adaptation supports metabolic reprogramming and offers potential therapeutic strategies using antioxidants. Here, we provide an overview of recent insights into the involvement of reactive oxygen species and the distinct roles played by key cellular antioxidant pathways, including the NADPH oxidase 2 system, which promotes glycolysis via enhanced glucose transporter 4 translocation to the cell membrane through the AKT/mTOR pathway, as well as the involvement of the thioredoxin and nuclear factor E2-related factor 2 antioxidant systems, which maintain microglia in an anti-inflammatory state. Therefore, we highlight the potential for targeting the modulation of microglial redox metabolism to offer new concepts for DR treatment.
Collapse
Affiliation(s)
- Luwei Cai
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
36
|
Tang K, Xu S, Chen P, Cai J, Huang T, Liu M, Li W, Yu Y, Che B, Zhang W. Potential role of glutathione S‑transferase M1 gene polymorphism in kidney calcium oxalate stone formation. Int Urol Nephrol 2024; 56:887-892. [PMID: 37891380 DOI: 10.1007/s11255-023-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The purpose of this study was to look into the effects of glutathione S-transferase M1 (GSTM1) gene polymorphism on the formation of kidney calcium oxalate stones. METHODS A total of 159 patients with kidney calcium oxalate stones were included in this study as a case group. One hundred and three healthy individuals were included in the control group. The age, gender, and levels of calcium (Ca), uric acid (UA), creatinine (Cr), and urinary creatinine (Ucr) are tracked. Peripheral blood samples are used to perform a polymerase chain reaction to identify the glutathione S-transferase (GST) gene polymorphism (PCR). A commercial kit was used in this study to measure the levels of malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (T-AOC), and 8-hydroxydeoxyguanosine (8-OHdG) in peripheral blood. RESULTS There was no difference in age or gender distribution between the case and control groups (P > 0.05). The Cr, Ucr, Ca, UA, 8-OHdG, MDA, NO, and T-AOC in the case group were significantly higher than those in the control group (P < 0.001). The Hardy-Weinberg genetic equilibrium test showed no difference between the case group (P = 0.23) and the control group (P = 0.09). In the case group, the 8-OHdG and NO in GSTM1 null genotype were significantly higher than those in GSTM1 genotype (P < 0.05), but there was no significant difference in MDA and T-AOC (P > 0.05). Multivariate regression analysis showed that the GSTM1 null genotype was positively correlated with 8-OHdG (P < 0.001) and NO (P < 0.001). CONCLUSIONS GSTM1 gene polymorphism might be a detecting risk factor for kidney calcium oxalate stone formation. TRIAL REGISTRATION ChiCTR2100051300.
Collapse
Affiliation(s)
- Kaifa Tang
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Shenghan Xu
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Pan Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ji Cai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Tao Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Miao Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Wei Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ying Yu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Bangwei Che
- Department of Urology and Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wenjun Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
37
|
Polidori MC. Aging hallmarks, biomarkers, and clocks for personalized medicine: (re)positioning the limelight. Free Radic Biol Med 2024; 215:48-55. [PMID: 38395089 DOI: 10.1016/j.freeradbiomed.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
The rapidly increasing aging prevalence, complexity, and heterogeneity pose the scientific and medical communities in front of challenges. These are delivered by gaps between basic and translational research, as well as between clinical practice guidelines to improve survival and absence of evidence on personalized strategies to improve functions, wellbeing and quality of life. The triumphs of aging science sheding more and more light on mechanisms of aging as well as those of medical and technological progress to prolong life expectancy are clear. Currently, and in the next two to three decades, all efforts must be put in a closer interdisciplinary dialogue between biogerontologists and geriatricians to enable real-life measures of aging phenotypes to be used to uncover the physiological - and therefore translational - relevance of newly discovered aging clocks, biomarkers, and hallmarks.
Collapse
Affiliation(s)
- M Cristina Polidori
- Aging Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Herderstraße 52, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress- Responses in Aging- Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
39
|
García-Giménez JL, Cánovas-Cervera I, Pallardó FV. Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radic Biol Med 2024; 213:123-137. [PMID: 38199289 DOI: 10.1016/j.freeradbiomed.2024.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain.
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Dietz KJ, Vogelsang L. A general concept of quantitative abiotic stress sensing. TRENDS IN PLANT SCIENCE 2024; 29:319-328. [PMID: 37591742 DOI: 10.1016/j.tplants.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Plants often encounter stress in their environment. For appropriate responses to particular stressors, cells rely on sensory mechanisms that detect emerging stress. Considering sensor and signal amplification characteristics, a single sensor system hardly covers the entire stress range encountered by plants (e.g., salinity, drought, temperature stress). A dual system comprising stress-specific sensors and a general quantitative stress sensory system is proposed to enable the plant to optimize its response. The quantitative stress sensory system exploits the redox and reactive oxygen species (ROS) network by altering the oxidation and reduction rates of individual redox-active molecules under stress impact. The proposed mechanism of quantitative stress sensing also fits the requirement of dealing with multifactorial stress conditions.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany.
| | - Lara Vogelsang
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany
| |
Collapse
|
41
|
Shchulkin AV, Abalenikhina YV, Kosmachevskaya OV, Topunov AF, Yakusheva EN. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants (Basel) 2024; 13:215. [PMID: 38397813 PMCID: PMC10885963 DOI: 10.3390/antiox13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
P-glycoprotein (Pgp, ABCB1, MDR1) is an efflux transporter protein that removes molecules from the cells (outflow) into the extracellular space. Pgp plays an important role in pharmacokinetics, ensuring the absorption, distribution, and excretion of drugs and its substrates, as well as in the transport of endogenous molecules (steroid and thyroid hormones). It also contributes to tumor cell resistance to chemotherapy. In this review, we summarize the mechanisms of Pgp regulation during oxidative stress. The currently available data suggest that Pgp has a complex variety of regulatory mechanisms under oxidative stress, involving many transcription factors, the main ones being Nrf2 and Nf-kB. These factors often overlap, and some can be activated under certain conditions, such as the deposition of oxidation products, depending on the severity of oxidative stress. In most cases, the expression of Pgp increases due to increased transcription and translation, but under severe oxidative stress, it can also decrease due to the oxidation of amino acids in its molecule. At the same time, Pgp acts as a protector against oxidative stress, eliminating the causative factors and removing its by-products, as well as participating in signaling pathways.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Yulia V. Abalenikhina
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Elena N. Yakusheva
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| |
Collapse
|
42
|
Wang Y, Xu Y, Yang L, Yang Y, Guo AL, Han XJ, Jiang DN, Chao L. N-acetylcysteine alleviated tris(2-chloroisopropyl) phosphate-induced sperm motility decline and functional dysfunction in mice through reversing oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116000. [PMID: 38266359 DOI: 10.1016/j.ecoenv.2024.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China; Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Lin'yi, Shandong 276003, PR China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - An-Liang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Xiao-Juan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Dan-Ni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China.
| |
Collapse
|
43
|
Mailloux RJ. Proline and dihydroorotate dehydrogenase promote a hyper-proliferative state and dampen ferroptosis in cancer cells by rewiring mitochondrial redox metabolism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119639. [PMID: 37996061 DOI: 10.1016/j.bbamcr.2023.119639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Redox realignment is integral to the initiation, progression, and metastasis of cancer. This requires considerable metabolic rewiring to induce aberrant shifts in redox homeostasis that favor high hydrogen peroxide (H2O2) generation for the induction of a hyper-proliferative state. The ability of tumor cells to thrive under the oxidative burden imposed by this high H2O2 is achieved by increasing antioxidant defenses. This shift in the redox stress signaling threshold (RST) also dampens ferroptosis, an iron (Fe)-dependent form of cell death activated by oxidative distress and lipid peroxidation reactions. Mitochondria are central to the malignant transformation of normal cells to cancerous ones since these organelles supply building blocks for anabolism, govern ferroptosis, and serve as the major source of cell H2O2. This review summarizes advances in understanding the rewiring of redox reactions in mitochondria to promote carcinogenesis, focusing on how cancer cells hijack the electron transport chain (ETC) to promote proliferation and evasion of ferroptosis. I then apply emerging concepts in redox homeodynamics to discuss how the rewiring of the Krebs cycle and ETC promotes shifts in the RST to favor high rates of H2O2 generation for cell signaling. This discussion then focuses on proline dehydrogenase (PRODH) and dihydroorotate dehydrogenase (DHODH), two enzymes over expressed in cancers, and how their link to one another through the coenzyme Q10 (CoQ) pool generates a redox connection that forms a H2O2 signaling platform and pyrimidine synthesome that favors a hyper-proliferative state and disables ferroptosis.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
44
|
Beyersdorf F. Innovation and disruptive science determine the future of cardiothoracic surgery. Eur J Cardiothorac Surg 2024; 65:ezae022. [PMID: 38243711 DOI: 10.1093/ejcts/ezae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
One of the currently most asked questions in the field of medicine is how any specialty in the future will evolve to ensure better health for the patients by using current, unparalleled developments in all areas of science. This article will give an overview of new and evolving strategies for cardiothoracic (CT) surgery that are available today and will become available in the future in order to achieve this goal. In the founding era of CT surgery in the 1950s and 1960s, there was tremendous excitement about innovation and disruptive science, which eventually resulted in a completely new medical specialty, i.e. CT surgery. Entirely new treatment strategies were introduced for many cardiovascular diseases that had been considered incurable until then. As expected, alternative techniques have evolved in all fields of science during the last few decades, allowing great improvements in diagnostics and treatment in all medical specialties. The future of CT surgery will be determined by an unrestricted and unconditional investment in innovation, disruptive science and our own transformation using current achievements from many other fields. From the multitude of current and future possibilities, I will highlight 4 in this review: improvements in our current techniques, bringing CT surgery to low- and middle-income countries, revolutionizing the perioperative period and treating as yet untreatable diseases. These developments will allow us a continuation of the previously unheard-of treatment possibilities provided by ingenious innovations based on the fundamentals of CT surgery.
Collapse
Affiliation(s)
- Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany
- Medical Faculty of the Albert-Ludwigs-University Freiburg, Germany
| |
Collapse
|
45
|
Xu K, Wang Y, Zhang S, Xiong X, Meng D, Qian W, Dong J. An antioxidation-responsive SERS-active microneedle for detecting the antioxidant capacity in living organisms. Anal Chim Acta 2024; 1287:342138. [PMID: 38182399 DOI: 10.1016/j.aca.2023.342138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
To detect the antioxidant capacity in living organisms, an antioxidation-responsive SERS-active microneedle was fabricated by adsorbing resazurin on miniature SERS substrates, SERS-active microneedles. The SERS intensity ratio of characterized peaks of resazurin and its product, resorufin, was adopted and verified as an indicator of antioxidant capacity. The feasibility of detection of the antioxidant capacity in living organisms was proved by using the fabricated SERS-active microneedles to detect the antioxidant capacity of lipopolysaccharide-induce inflammatory animal models. The fabricated SERS-active microneedles can be inserted into target soft tissues with minimal invasion to detect their antioxidant capacity. The fabricated SERS-active microneedles would be a novel tool to bring the detection of antioxidant capacity from samplings ex vivo and cells to complex tissues to promote the researches on redox biology in living organisms.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yang Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shuyu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiulei Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dianhuai Meng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jian Dong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou, 215123, China.
| |
Collapse
|
46
|
Oropeza-Almazán Y, Blatter LA. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules 2024; 14:144. [PMID: 38397381 PMCID: PMC10887423 DOI: 10.3390/biom14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA;
| |
Collapse
|
47
|
Zhang P, Huang C, Liu H, Zhang M, Liu L, Zhai Y, Zhang J, Yang J, Yang J. The mechanism of the NFAT transcription factor family involved in oxidative stress response. J Cardiol 2024; 83:30-36. [PMID: 37149283 DOI: 10.1016/j.jjcc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
As a transcriptional activator widely expressed in various tissues, nuclear factor of activated T cells (NFAT) is involved in the regulation of the immune system, the development of the heart and brain systems, and classically mediating pathological processes such as cardiac hypertrophy. Oxidative stress is an imbalance of intracellular redox status, characterized by excessive generation of reactive oxygen species, accompanied by mitochondrial dysfunction, calcium overload, and subsequent lipid peroxidation, inflammation, and apoptosis. Oxidative stress occurs during various pathological processes, such as chronic hypoxia, vascular smooth muscle cell phenotype switching, ischemia-reperfusion, and cardiac remodeling. Calcium overload leads to an increase in intracellular calcium concentration, while NFAT can be activated through calcium-calcineurin, which is also the main regulatory mode of NFAT factors. This review focuses on the effects of NFAT transcription factors on reactive oxygen species production, calcium overload, mitochondrial dysfunction, redox reactions, lipid peroxidation, inflammation, and apoptosis in response to oxidative stress. We hope to provide a reference for the functions and characteristics of NFAT involved in various stages of oxidative stress as well as related potential targets.
Collapse
Affiliation(s)
- Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| |
Collapse
|
48
|
Kuribayashi S, Fukuhara S, Kitakaze H, Tsujimura G, Imanaka T, Okada K, Ueda N, Takezawa K, Katayama K, Yamaguchi R, Matsuda K, Nonomura N. KEAP1-NRF2 system regulates age-related spermatogenesis dysfunction. Reprod Med Biol 2024; 23:e12595. [PMID: 38915913 PMCID: PMC11194679 DOI: 10.1002/rmb2.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose The average fatherhood age has been consistently increasing in developed countries. Aging has been identified as a risk factor for male infertility. However, its impact on various mechanisms remains unclear. This study focused on the KEAP1-NRF2 oxidative stress response system, by investigating the relationship between the KEAP1-NRF2 system and age-related changes in spermatogenesis. Methods For examination of age-related changes, we used 10-, 30-, 60-, and 90-week-old mice to compare sperm count, sperm motility, and protein expression. For assessment of Keap1 inhibition, 85-week-old C57BL/6J mice were randomly assigned to the following groups: control and bardoxolone methyl (KEAP1 inhibitor). Whole-exome sequencing of a Japanese cohort of patients with non-obstructive azoospermia was performed for evaluating. Results Sperm count decreased significantly with aging. Oxidative stress and KEAP1 expression in the testes were elevated. Inhibition of KEAP1 in aging mice significantly increased sperm count compared with that in the control group. In the human study, the frequency of a missense-type SNP (rs181294188) causing changes in NFE2L2 (NRF2) activity was significantly higher in patients with non-obstructive azoospermia than in healthy control group. Conclusions The KEAP1-NRF2 system, an oxidative stress response system, is associated with age-related spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Sohei Kuribayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | | | - Hiroaki Kitakaze
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Go Tsujimura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takahiro Imanaka
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Okada
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Norichika Ueda
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kentaro Takezawa
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kotoe Katayama
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Rui Yamaguchi
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
49
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
50
|
Menshchikova EB, Chechushkov AV, Kozhin PM, Romakh LP, Serykh AE, Khrapova MV, Petrova ES, Kandalintseva NV. Effect of Inducers and Inhibitors of the Keap1/Nrf2/ARE System on the Viability and Functional Activity of Model Neuronal-Like and Glial Cells. Bull Exp Biol Med 2024; 176:332-337. [PMID: 38340195 DOI: 10.1007/s10517-024-06019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 02/12/2024]
Abstract
On mouse neuroblastoma (Neuro-2a) and human glioblastoma (U-87 MG) cell lines, we studied the effect of inducers and inhibitors of redox-sensitive signaling system of the antioxidant-responsive element Keap1/Nrf2/ARE on the main processes that determine nerve cell viability and vital activity (proliferative activity, apoptosis, autophagy, and activation of the Keap1/Nrf2/ARE system). Inhibitors of the Keap1/Nrf2/ARE system stimulate apoptosis more pronouncedly than inducers, have a weaker effect on autophagy, and do not change the nuclear to cytoplasmic Nrf2 ratio. In general, the revealed effects testify in favor of the potential effectiveness of stimulating the Keap1/Nrf2/ARE system for the prevention and adjuvant therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- E B Menshchikova
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia.
| | - A V Chechushkov
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - P M Kozhin
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - L P Romakh
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - A E Serykh
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M V Khrapova
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E S Petrova
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | | |
Collapse
|