1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Leahy C, Osborne N, Shirota L, Rote P, Lee YK, Song BJ, Yin L, Zhang Y, Garcia V, Hardwick JP. The fatty acid omega hydroxylase genes (CYP4 family) in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD): An RNA sequence database analysis and review. Biochem Pharmacol 2024; 228:116241. [PMID: 38697309 DOI: 10.1016/j.bcp.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Fatty acid omega hydroxylase P450s consist of enzymes that hydroxylate various chain-length saturated and unsaturated fatty acids (FAs) and bioactive eicosanoid lipids. The human cytochrome P450 gene 4 family (CYP4) consists of 12 members that are associated with several human diseases. However, their role in the progression of metabolic dysfunction-associated fatty liver disease (MASLD) remains largely unknown. It has long been thought that the induction of CYP4 family P450 during fasting and starvation prevents FA-related lipotoxicity through FA metabolism to dicarboxylic acids that are chain-shortened in peroxisomes and then transported to the mitochondria for complete oxidation. Several studies have revealed that peroxisome succinate transported to the mitochondria is used for gluconeogenesis during fasting and starvation, and recent evidence suggests that peroxisome acetate can be utilized for lipogenesis and lipid droplet formation as well as epigenetic modification of gene transcription. In addition, omega hydroxylation of the bioactive eicosanoid arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) is essential for activating the GPR75 receptor, leading to vasoconstriction and cell proliferation. Several mouse models of diet-induced MASLD have revealed the induction of selective CYP4A members and the suppression of CYP4F during steatosis and steatohepatitis, suggesting a critical metabolic role in the progression of fatty liver disease. Thus, to further investigate the functional roles of CYP4 genes, we analyzed the differential gene expression of 12 members of CYP4 gene family in datasets from the Gene Expression Omnibus (GEO) from patients with steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. We also observed the differential expression of various CYP4 genes in the progression of MASLD, indicating that different CYP4 members may have unique functional roles in the metabolism of specific FAs and eicosanoids at various stages of fatty liver disease. These results suggest that targeting selective members of the CYP4A family is a viable therapeutic approach for treating and managing MASLD.
Collapse
Affiliation(s)
- Charles Leahy
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Nicholas Osborne
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Leticia Shirota
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Paula Rote
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Liya Yin
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, 15 Dana Road Science Building, Rm. 530, Valhalla, NY 10595, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
4
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
5
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
6
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
7
|
Yuan J, Yu Z, Zhang P, Luo K, Xu Y, Lan T, Zhang M, Chen Y, Lu Z. DDAH1 recruits peroxiredoxin 1 and sulfiredoxin 1 to preserve its activity and regulate intracellular redox homeostasis. Redox Biol 2024; 70:103080. [PMID: 38354630 PMCID: PMC10876909 DOI: 10.1016/j.redox.2024.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.
Collapse
Affiliation(s)
- Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China.
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
9
|
Bai Y, Li T, Liu J, Wang Y, Wang C, Ju S, Zhou C, Chen Y, Yao W, Xiong B. Aerobic exercise and vitamin E improve high-fat diet-induced NAFLD in rats by regulating the AMPK pathway and oxidative stress. Eur J Nutr 2023; 62:2621-2632. [PMID: 37219594 DOI: 10.1007/s00394-023-03179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver disease. We explored simple and effective ways to improve NAFLD and investigate the mechanism of action. METHODS NAFLD was induced in 40 rats fed a high-fat diet (HFD). Magnetic resonance imaging was used to evaluate the progression and improvement of NAFLD. The treatment-related interventions included aerobic exercise (E) and vitamin E (VE) supplementation. Expression levels of proteins related to fat metabolism were also assessed. The activities of antioxidant enzymes in the liver and serum lipid metabolism were analyzed using biochemical methods. RESULTS Aerobic exercise and vitamin E effectively improved NAFLD in rats, resulting in decreased hepatic fat accumulation, reduced hepatocyte ballooning, and decreased triglyceride levels. Combination therapy achieved the best effect. Both aerobic exercise and vitamin E activate the AMPK pathway to phosphorylate acetyl-CoA carboxylase (ACC) and reduce fatty acid synthesis. The expression of sterol regulatory element-binding protein-1 (SREBP-1) was decreased significantly in the treated groups, particularly in the E + VE + HFD group. The expression of carnitine palmitoyl-transferase 1C (CPT1C) significantly increased in the treated groups, particularly in the E + VE + HFD group. Compared with the control group, reactive oxygen species (ROS) in the E + HFD group were slightly decreased, while that in the VE + HFD group were significantly decreased, with the even greater reduction observed in the E + VE + HFD group. CONCLUSION Aerobic exercise and vitamin E supplementation can improve HFD-induced NAFLD in rats by regulating the AMPK pathway and reducing oxidative stress.
Collapse
Affiliation(s)
- Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Mazhar IJ, Yasir M, Sarfraz S, Shlaghya G, Narayana SH, Mushtaq U, Shaman Ameen B, Nie C, Nechi D, Penumetcha SS. Vitamin E and Pioglitazone: A Comprehensive Systematic Review of Their Efficacy in Non-alcoholic Fatty Liver Disease. Cureus 2023; 15:e43635. [PMID: 37719477 PMCID: PMC10504864 DOI: 10.7759/cureus.43635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, especially in people with obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic syndrome. Weight loss and dietary modifications are established first-line treatments for NAFLD. Currently, there is no approved drug for NAFLD; however, pioglitazone and vitamin E have shown some beneficial effects. This systematic review covers the comparative efficacies of vitamin E, pioglitazone, and vitamin E plus pioglitazone. As of December 2022, the sources for prior literature review included PubMed, PubMed Central, and Medline. We included studies assessing the efficacy of pioglitazone, vitamin E, and vitamin E plus pioglitazone in improving liver histology, liver markers, and lipid profile when compared to other interventions in patients with NAFLD/non-alcoholic steatohepatitis (NASH). Review materials include randomized control trials (RCTs), traditional reviews, systematic reviews, meta-analyses, and observational studies on human participants published within the last five years in the English language. Studies on animals, pediatric populations, and with insufficient data were excluded from the review. Two authors scanned and filtered articles independently and later performed quality checks. A third reviewer resolved any conflicts. The risk of bias was assessed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines for systematic reviews, the Cochrane Risk of Bias Tool for RCTs, and the Scale for the Assessment of Narrative Review Articles for Traditional Reviews. A total of 21 articles were shortlisted. The results showed that pioglitazone and vitamin E are effective in reducing steatosis, inflammation, and ballooning, reducing liver markers, but there seem to be conflicting data on fibrosis resolution. Pioglitazone decreases triglycerides and increases high-density lipoproteins. One study has suggested that pioglitazone has superior efficacy to vitamin E in fibrosis reduction and vitamin E plus pioglitazone has superior efficacy than pioglitazone alone for NASH resolution. However, these conclusions require further validation through extensive analysis and additional research. In conclusion, diabetic patients with NAFLD can be given pioglitazone, and non-diabetic patients with NAFLD can be given vitamin E.
Collapse
Affiliation(s)
- Iqra J Mazhar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Mohamed Yasir
- Internal Medicine, Kursk State Medical University, Kursk, RUS
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Saba Sarfraz
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gandhala Shlaghya
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sri Harsha Narayana
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ujala Mushtaq
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Basim Shaman Ameen
- Orthopedics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chuhao Nie
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Daniel Nechi
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Sri Penumetcha
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
11
|
Xiong Z, Liu L, Jian Z, Ma Y, Li H, Jin X, Liao B, Wang K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023; 15:3301. [PMID: 37571239 PMCID: PMC10421296 DOI: 10.3390/nu15153301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The relationship between vitamin E intake or circulating α-tocopherol and various health outcomes is still debatable and uncertain. We conducted an umbrella review to identify the relationships between vitamin E intake or circulating tocopherol and health outcomes by merging and recalculating earlier meta-analyses. The connections that were found to be statistically significant were then classified into different evidence levels based on p values, between-study heterogeneity, prediction intervals, and small study effects. We finally included 32 eligible meta-analyses with four vitamin E sources and 64 unique health outcomes. Only the association between circulating α-tocopherol and wheeze or asthma in children was substantiated by consistent evidence. Suggestive evidence was suggested for seven results on endothelial function (supplemental vitamin E): serum C-reactive protein (CRP) concentrations (supplemental vitamin E), cervical cancer (dietary vitamin E), esophageal cancer (dietary vitamin E), cervical intraepithelial neoplasia (CIN, dietary vitamin E), pancreatic cancer (total vitamin E intake), and colorectal cancer (circulating α-tocopherol levels); all of these showed a protective effect consistent with the vitamin E source. In conclusion, our work has indicated that vitamin E is protective for several particular health outcomes. Further prospective studies are required when other factors that may contribute to bias are considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| |
Collapse
|
12
|
Matsumoto Y, Fujii H, Harima M, Okamura H, Yukawa-Muto Y, Odagiri N, Motoyama H, Kotani K, Kozuka R, Kawamura E, Hagihara A, Uchida-Kobayashi S, Enomoto M, Yasui Y, Habu D, Kawada N. Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15051175. [PMID: 36904174 PMCID: PMC10005291 DOI: 10.3390/nu15051175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is not fully clear as to which dietary patterns are associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) in Asia. We conducted a cross-sectional study of 136 consecutively recruited patients with NAFLD (49% female, median age 60 years). Severity of liver fibrosis was assessed using the Agile 3+ score, a recently proposed system based on vibration-controlled transient elastography. Dietary status was assessed using the 12-component modified Japanese diet pattern index (mJDI12). Skeletal muscle mass was assessed by bioelectrical impedance. Factors associated with intermediate-high-risk Agile 3+ scores and skeletal muscle mass (75th percentile or higher) were analyzed by multivariable logistic regression. After adjustment for confounders, such as age and sex, the mJDI12 (OR: 0.77; 95% CI: 0.61, 0.99) and skeletal muscle mass (75th percentile or higher) (OR: 0.23; 95% CI: 0.07, 0.77) were significantly associated with intermediate-high-risk Agile 3+ scores. Soybeans and soybean foods were significantly associated with skeletal muscle mass (75th percentile or higher) (OR: 1.02; 95% CI: 1.00, 1.04). In conclusion, the Japanese diet pattern was associated with the severity of liver fibrosis in Japanese patients with NAFLD. Skeletal muscle mass was also associated with the severity of liver fibrosis, and intake of soybeans and soybean foods.
Collapse
Affiliation(s)
- Yoshinari Matsumoto
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Hideki Fujii
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3905
| | - Mika Harima
- Nutrition Department, Osaka Metropolitan University Hospital, 1-5-7 Asahimachi, Abeno-ku, Osaka 545-8586, Japan
| | - Haruna Okamura
- Nutrition Department, Osaka Metropolitan University Hospital, 1-5-7 Asahimachi, Abeno-ku, Osaka 545-8586, Japan
| | - Yoshimi Yukawa-Muto
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoshi Odagiri
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroyuki Motoyama
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kohei Kotani
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Ritsuzo Kozuka
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Sawako Uchida-Kobayashi
- Department of Premier Preventive Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoko Yasui
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Daiki Habu
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
13
|
Sazaki I, Sakurai T, Yamahata A, Mogi S, Inoue N, Ishida K, Kikkai A, Takeshita H, Sakurai A, Takahashi Y, Chiba H, Hui SP. Oxidized Low-Density Lipoproteins Trigger Hepatocellular Oxidative Stress with the Formation of Cholesteryl Ester Hydroperoxide-Enriched Lipid Droplets. Int J Mol Sci 2023; 24:ijms24054281. [PMID: 36901709 PMCID: PMC10002183 DOI: 10.3390/ijms24054281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidized low-density lipoproteins (oxLDLs) induce oxidative stress in the liver tissue, leading to hepatic steatosis, inflammation, and fibrosis. Precise information on the role of oxLDL in this process is needed to establish strategies for the prevention and management of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Here, we report the effects of native LDL (nLDL) and oxLDL on lipid metabolism, lipid droplet formation, and gene expression in a human liver-derived C3A cell line. The results showed that nLDL induced lipid droplets enriched with cholesteryl ester (CE) and promoted triglyceride hydrolysis and inhibited oxidative degeneration of CE in association with the altered expression of LIPE, FASN, SCD1, ATGL, and CAT genes. In contrast, oxLDL showed a striking increase in lipid droplets enriched with CE hydroperoxides (CE-OOH) in association with the altered expression of SREBP1, FASN, and DGAT1. Phosphatidylcholine (PC)-OOH/PC was increased in oxLDL-supplemented cells as compared with other groups, suggesting that oxidative stress increased hepatocellular damage. Thus, intracellular lipid droplets enriched with CE-OOH appear to play a crucial role in NAFLD and NASH, triggered by oxLDL. We propose oxLDL as a novel therapeutic target and candidate biomarker for NAFLD and NASH.
Collapse
Affiliation(s)
- Iku Sazaki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Arisa Yamahata
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sumire Mogi
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koutaro Ishida
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ami Kikkai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hana Takeshita
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Takahashi
- School of Medical Technology, Health Sciences University of Hokkaido, Sapporo 002-8072, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-11-706-3693
| |
Collapse
|
14
|
Du K, Huang X, Peng A, Yang Q, Chen D, Zhang J, Qi R. Engineered Fenofibrate as Oxidation-Sensitive Nanoparticles with ROS Scavenging and PPARα-Activating Bioactivity to Ameliorate Nonalcoholic Fatty Liver Disease. Mol Pharm 2023; 20:159-171. [PMID: 36342356 DOI: 10.1021/acs.molpharmaceut.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in western countries and China. Fenofibrate (FNB) can activate peroxisome proliferator-activated receptor α (PPARα) to increase fatty acid oxidation and ameliorate NAFLD. However, the application of FNB is limited in clinic due to its poor water solubility and low oral bioavailability. In this study, FNB-loaded nanoparticles (FNB-NP) based on a reactive oxygen species (ROS)-responsive peroxalate ester derived from vitamin E (OVE) and an amphiphilic conjugate 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) were developed to enhance the preventive effects of FNB against NAFLD. In in vitro studies, FNB-NP displayed a high encapsulation efficiency of 97.25 ± 0.6% and a drug loading efficiency of 29.67 ± 0.1%, with a size of 197.0 ± 0.2 nm. FNB released from FNB-NP was dramatically accelerated in the medium with high H2O2 concentrations. Moreover, FNB-NP exhibited well storage stability and plasma stability. In pharmacokinetic (PK) studies, FNB-NP, compared with FNB crude drug, significantly increased the AUC0→t and AUC0→∞ of the plasma FNB acid by 3.3- and 3.4-fold, respectively. In pharmacodynamics (PD) studies, compared with an equal dose of FNB crude drug, FNB-NP more significantly reduced hepatic lipid deposition via facilitating FNB release in the liver and further upregulating PPARα expression in NAFLD mice. Meanwhile, oxidative stress in NAFLD was significantly suppressed after FNB-NP administration, suggesting that OVE plays a synergistic effect on antioxidation. Therefore, ROS-sensitive FNB delivery formulations FNB-NP enhance the preventive effects of FNB against NAFLD and could be further studied as a promising drug for the treatment of NAFLD in clinic.
Collapse
Affiliation(s)
- Kaiyue Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Xin Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Ankang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Qinghua Yang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing400038, China
| | - Du Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing400038, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| |
Collapse
|
15
|
Şenol Y, Kaplan O, Varan C, Demirtürk N, Öncül S, Fidan BB, Ercan A, Bilensoy E, Çelebier M. Pharmacometabolomic assessment of vitamin E loaded human serum albumin nanoparticles on HepG2 cancer cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Risk Prevention and Health Promotion for Non-Alcoholic Fatty Liver Diseases (NAFLD). LIVERS 2022. [DOI: 10.3390/livers2040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious clinicopathological condition that is recognized as the most frequent chronic liver disease, affecting 14–30% of the world’s population. The prevalence of NAFLD has rapidly grown and is correlated with the growth in obesity and type 2 diabetes, among other factors. NAFLD often results in long-term complications including cardiovascular disease, liver cirrhosis, and liver fibrosis. This paper provides an updated overview of NAFLD with a focus on epidemiology, etiology, pathophysiology, screening, complications, and pharmacological therapies to identify effective risk prevention and health promotion.
Collapse
|
17
|
Zhu Y, Frank J, Riphagen IJ, Minović I, Vos MJ, Eggersdorfer ML, Navis GJ, Bakker SJL. Associations of 24 h urinary excretions of α- and γ-carboxyethyl hydroxychroman with plasma α- and γ-tocopherol and dietary vitamin E intake in older adults: the Lifelines-MINUTHE Study. Eur J Nutr 2022; 61:3755-3765. [PMID: 35718823 PMCID: PMC9464128 DOI: 10.1007/s00394-022-02918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Urinary metabolites of vitamin E, i.e., α- and γ-carboxyethyl hydroxychroman (α- and γ-CEHC), have gained increasing attention and have been proposed as novel biomarkers of vitamin E intake and status. However, there are insufficient data on the relationship of plasma α-tocopherol and γ-tocopherol and dietary vitamin E intake with 24 h urinary excretions of α- and γ-CEHC. OBJECTIVES We aimed to (1) investigate the associations of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC with plasma α- and γ-tocopherol, respectively; (2) investigate the associations of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC with dietary vitamin E intake, and we hypothesize that 24 h urinary excretions of α- and γ-CEHC will better correlate with vitamin E intake than urinary α- and γ-CEHC/creatinine ratios. DESIGN 24 h Urine and plasma samples were collected from 1519 participants (60-75 years, male: 50%) included in the Lifelines-MINUTHE Study for the assessments of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC, and plasma α- and γ-tocopherol. Among those participants, dietary vitamin E intake data from 387 participants were available from an externally validated Flower-Food Frequency Questionnaire (FFQ). The associations of plasma α- and γ-tocopherol, dietary vitamin E intake, with urinary α- and γ-CEHC were assessed using multivariate linear regressions. RESULTS 24 h Urinary excretion of α-CEHC (median (IQR): 0.9 (0.3-2.4) µmol) was less than that of γ-CEHC (median (IQR): 1.5 (0.5-3.5) µmol). After adjustment for covariates, we found that 24 h urinary α-CEHC excretion and urinary α-CEHC/creatinine ratio were both positively associated with plasma α-tocopherol (std.beta: 0.06, p = 0.02; std.beta: 0.06, p = 0.01, respectively). Furthermore, the sum of 24 h urinary α- and γ-CEHC excretions was positively associated with dietary vitamin E intake (std.beta: 0.08; p = 0.03), whereas there was no relation between urinary α- and γ-CEHC/creatinine ratios and vitamin E intake. No association was observed neither between plasma α- and γ-tocopherol and dietary vitamin E intake, nor between urinary γ-CEHC and plasma γ-tocopherol. CONCLUSION Our study confirmed our hypothesis that 24 h urinary α- and γ-CEHC excretions would be a better marker for dietary vitamin E intake than urinary α- and γ-CEHC/creatinine ratios. Considering that both 24 h urinary α- and γ-CEHC excretions and α- and γ-CEHC/creatinine ratios were also associated with plasma α-tocopherol status, we suggest that 24 h urinary α- and γ-CEHC excretions could be used to assess overall vitamin E status.
Collapse
Affiliation(s)
- Yinjie Zhu
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Jan Frank
- Department of Food Biofunctionality (140B), Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Ineke J Riphagen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Certe Medical Diagnostics and Advice, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Isidor Minović
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Gerjan J Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Hu J, Zheng Y, Ying H, Ma H, Li L, Zhao Y. Alanyl-Glutamine Protects Mice against Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis and Fibrosis by Modulating Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14183796. [PMID: 36145172 PMCID: PMC9503574 DOI: 10.3390/nu14183796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease with increasing prevalence rates over years and is associated with hepatic lipid accumulation, liver injury, oxidative stress, hepatic inflammation, and liver fibrosis and lack of approved pharmacological therapy. Alanyl-glutamine (Ala-Gln) is a recognized gut-trophic nutrient that has multiple pharmacological effects in the prevention of inflammation- and oxidative-stress-associated diseases. Nevertheless, whether Ala-Gln has a protective effect on NASH still lacks evidence. The aim of this study is to explore the influence of Ala-Gln on NASH and its underlying mechanisms. Here, C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet to establish the model of NASH, and Ala-Gln at doses of 500 and 1500 mg/kg were intraperitoneally administered to mice along with a MCD diet. The results showed that Ala-Gln treatment significantly attenuated MCD-induced hepatic pathological changes, lowered NAFLD activity score, and reduced plasma alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels. Ala-Gln dramatically alleviated lipid accumulation in liver through modulating the expression levels of fatty acid translocase (FAT/CD36) and farnesoid X receptor (FXR). In addition, Ala-Gln exerted an anti-oxidant effect by elevating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, Ala-Gln exhibited an anti-inflammatory effect via decreasing the accumulation of activated macrophages and suppressing the production of proinflammatory mediators. Notably, Ala-Gln suppressed the development of liver fibrosis in MCD-diet-fed mice, which may be due to the inhibition of hepatic stellate cells activation. In conclusion, these findings revealed that Ala-Gln prevents the progression of NASH through the modulation of oxidative stress and inflammation and provided the proof that Ala-Gln might be an effective pharmacological agent to treat NASH.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| | - Yigang Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Correspondence:
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
20
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
|
21
|
Sumida Y, Yoneda M, Seko Y, Takahashi H, Hara N, Fujii H, Itoh Y, Yoneda M, Nakajima A, Okanoue T. Role of vitamin E in the treatment of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 177:391-403. [PMID: 34715296 DOI: 10.1016/j.freeradbiomed.2021.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD), can progress to cirrhosis, hepatocellular carcinoma (HCC), and hepatic failure/liver transplantation. Indeed, NASH will soon be the leading cause of HCC and liver transplantation. Lifestyle intervention represents the cornerstone of NASH treatment, but it is difficult to sustain. However, no pharmacotherapies for NASH have been approved. Oxidative stress has been implicated as one of the key factors in the pathogenesis of NASH. Systematic reviews with meta-analyses have confirmed that vitamin E reduces transaminase activities and may resolve NASH histopathology without improving hepatic fibrosis. However, vitamin E is not recommended for the treatment of NASH in diabetes, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis. Nevertheless, vitamin E supplementation may improve clinical outcomes in patients with NASH and bridging fibrosis or cirrhosis. Further studies are warranted to confirm such effects of vitamin E and that it would reduce overall mortality/morbidity without increasing the incidence of cardiovascular events. Future clinical trials of the use of vitamin E in combination with other anti-fibrotic agents may demonstrate an additive or synergistic therapeutic effect. Vitamin E is the first-line pharmacotherapy for NASH, according to the consensus of global academic societies.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | - Nagisa Hara
- Liver Center, Saga University Hospital, Saga, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
22
|
Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radic Biol Med 2021; 176:1-15. [PMID: 34481937 DOI: 10.1016/j.freeradbiomed.2021.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids are oxidized in vivo by multiple oxidizing species with different properties, some by regulated manner to produce physiological mediators, while others by random mechanisms to give detrimental products. Vitamin E plays an important role as a physiologically essential antioxidant to inhibit unregulated lipid peroxidation by scavenging lipid peroxyl radicals to break chain propagation independent of the type of free radicals which induce chain initiation. Kinetic data suggest that vitamin E does not act as an efficient scavenger of nitrogen dioxide radical, carbonate anion radical, and hypochlorite. The analysis of regio- and stereo-isomer distribution of the lipid oxidation products shows that, apart from lipid oxidation by CYP enzymes, the free radical-mediated lipid peroxidation is the major pathway of lipid oxidation taking place in humans. Compared with healthy subjects, the levels of racemic and trans,trans-hydro (pero)xyoctadecadienoates, specific biomarker of free radical lipid oxidation, are elevated in the plasma of patients including atherosclerosis and non-alcoholic fatty liver diseases. α-Tocopherol acts as a major antioxidant, while γ-tocopherol scavenges nitrogen dioxide radical, which induces lipid peroxidation, nitration of aromatic compounds and unsaturated fatty acids, and isomerization of cis-fatty acids to trans-fatty acids. It is essential to appreciate that the antioxidant effects of vitamin E depend on the nature of both oxidants and substrates being oxidized. Vitamin E, together with other antioxidants such as vitamin C, contributes to the inhibition of detrimental oxidation of biological molecules and thereby to the maintenance of human health and prevention of diseases.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, 153-8904, Japan.
| |
Collapse
|
23
|
Abe RAM, Masroor A, Khorochkov A, Prieto J, Singh KB, Nnadozie MC, Abdal M, Shrestha N, Mohammed L. The Role of Vitamins in Non-Alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2021; 13:e16855. [PMID: 34522493 PMCID: PMC8424975 DOI: 10.7759/cureus.16855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) emerged as the most prevalent liver disorder contributing significantly to disease burden worldwide. It manifests as a broad spectrum of hepatic damage with varying severity ranging from less serious steatosis to a more severe Non-Alcoholic Steatohepatitis (NASH), with or without fibrosis, cirrhosis, and hepatocellular carcinoma. Vitamins, on the other hand, are micronutrients that are vital for healthy well-being. Some studies have linked liver diseases with hypovitaminosis; however, there are still some gaps about the basis of their correlation. Hence, this systematic review aims to discuss the role of vitamins in the pathogenesis of NAFLD and explore their hepatoprotective potential that may benefit clinicians in managing this condition. This systematic review searched for studies indexed in the PubMed, PubMed Central, Medline, Google Scholar, and ScienceDirect databases. Inclusion and exclusion criteria were applied, duplicates were removed, and meticulous screening of articles was done systematically. Out of 729 unique studies generated using the search strategy, 17 were finally included after thorough review and quality appraisal. NAFLD is not simply an outcome of insulin resistance and metabolic derangements; instead, it is a disease with complex underlying pathogenesis. Moreover, vitamin deficiency has been associated with NAFLD development and increased susceptibility to more severe liver damage. Derangement in vitamins correlates to the lipotoxic hepatic environment, altered immune system, unwarranted inflammation, oxidative stress, gene mutations, epigenetic modification, and gut dysbiosis seen in NAFLD. As they influence several pathophysiologic processes in the liver, vitamins A, B3, B6, B9, B12, C, D, and E are promising potential options that can impact NAFLD management. However, more well-designed studies conducted in the human population are still necessary to establish their efficacy and safety as therapeutic agents.
Collapse
Affiliation(s)
- Rose Anne M Abe
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anum Masroor
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Psychiatry, Psychiatric Care Associates, Englewood, USA.,Medicine, Khyber Medical College, Peshawar, PAK
| | - Arseni Khorochkov
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jose Prieto
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Karan B Singh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maduka C Nnadozie
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad Abdal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Niki Shrestha
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
24
|
Special issue on 'Biomarkers of Oxidative Stress, Aging and Nutrition in Human Studies'. Redox Biol 2021; 45:102059. [PMID: 34210644 PMCID: PMC8282506 DOI: 10.1016/j.redox.2021.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|