1
|
Crabtree A, Neikirk K, Pinette JA, Whiteside A, Shao B, Bedenbaugh J, Vue Z, Vang L, Le H, Demirci M, Ahmad T, Owens TC, Oliver A, Zeleke F, Beasley HK, Lopez EG, Scudese E, Rodman T, Kabugi K, Koh A, Navarro S, Lam J, Kirk B, Mungai M, Sweetwyne M, Koh HJ, Zaganjor E, Damo SM, Gaddy JA, Kirabo A, Murray SA, Cooper A, Williams C, McReynolds MR, Marshall AG, Hinton A. Quantitative assessment of morphological changes in lipid droplets and lipid-mito interactions with aging in brown adipose. J Cell Physiol 2024; 239:e31340. [PMID: 39138923 DOI: 10.1002/jcp.31340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024]
Abstract
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mert Demirci
- Department of Medicine, Division Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Suzanne Navarro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ben Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mariya Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Fuwa M, Kajita K, Mori I, Asano M, Kajita T, Senda T, Inagaki T, Morita H. Mitochondrial fractions located in the cytoplasmic and peridroplet areas of white adipocytes have distinct roles. FEBS Lett 2024; 598:1753-1768. [PMID: 38658180 DOI: 10.1002/1873-3468.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
The role of mitochondria in white adipocytes (WAs) has not been fully explored. A recent study revealed that brown adipocytes contain functionally distinct mitochondrial fractions, cytoplasmic mitochondria, and peridroplet mitochondria. However, it is not known whether such a functional division of mitochondria exists in WA. Herein, we observed that mitochondria could be imaged and mitochondrial DNA and protein detected in pellets obtained from the cytoplasmic layer and oil layer of WAs after centrifugation. The mitochondria in each fraction were designated as cytoplasmic mitochondria (CMw) and peridroplet mitochondria (PDMw) in WAs, respectively. CMw had higher β-oxidation activity than PDMw, and PDMw was associated with diacylglycerol acyltransferase 2. Therefore, CMw may be involved in β-oxidation and PDMw in droplet expansion in WAs.
Collapse
Affiliation(s)
- Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Japan
| | - Ichiro Mori
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takao Senda
- Department of Anatomy, Gifu University Graduate School of Medicine, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunnma University, Maebashi-shi, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
3
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
4
|
Brownstein AJ, Veliova M, Acin-Perez R, Villalobos F, Petcherski A, Tombolato A, Liesa M, Shirihai OS. Mitochondria isolated from lipid droplets of white adipose tissue reveal functional differences based on lipid droplet size. Life Sci Alliance 2024; 7:e202301934. [PMID: 38056907 PMCID: PMC10700548 DOI: 10.26508/lsa.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Recent studies in brown adipose tissue (BAT) described a unique subpopulation of mitochondria bound to lipid droplets (LDs), which were termed PeriDroplet Mitochondria (PDM). PDM can be isolated from BAT by differential centrifugation and salt washes. Contrary to BAT, this approach has so far not led to the successful isolation of PDM from white adipose tissue (WAT). Here, we developed a method to isolate PDM from WAT with high yield and purity by an optimized proteolytic treatment that preserves the respiratory function of mitochondria. Using this approach, we show that, contrary to BAT, WAT PDM have lower respiratory and ATP synthesis capacities compared with WAT cytoplasmic mitochondria (CM). Furthermore, by isolating PDM from LDs of different sizes, we found a negative correlation between LD size and the respiratory capacity of their PDM in WAT. Thus, our new isolation method reveals tissue-specific characteristics of PDM and establishes the existence of heterogeneity in PDM function determined by LD size.
Collapse
Affiliation(s)
- Alexandra J Brownstein
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Cellular Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Michaela Veliova
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rebeca Acin-Perez
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Frankie Villalobos
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Anton Petcherski
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Alberto Tombolato
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Cells and Tissues, Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Orian S Shirihai
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Cellular Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Zhao T, Tan XY, Pantopoulos K, Xu JJ, Zheng H, Xu YC, Song YF, Luo Z. miR-20a-5p targeting mfn2-mediated mitochondria-lipid droplet contacts regulated differential changes in hepatic lipid metabolism induced by two Mn sources in yellow catfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132749. [PMID: 37871441 DOI: 10.1016/j.jhazmat.2023.132749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Understanding the hazards of different forms of metal elements provided innovative insights into their toxicity and environmental risk assessment. To date, few studies had been conducted to investigate the differential effects and mechanisms of MnO2 NPs and MnSO4, two widely distributed environmental pollutants, on hepatic toxicity and lipid metabolism since lipid metabolism-relevant parameters were broadly used as biomarkers for risk assessment of hazardous contaminants. Thus, using yellow catfish Pelteobagrus fulvidraco, an ecologically and economically important freshwater fish as the model, the present study investigated the differential effects and mechanisms of MnO2 NPs and MnSO4 influencing hepatic lipid metabolism. Compared to MnSO4, MnO2 NPs increased hepatic Mn content, induced lipotoxicity, up-regulated the mRNA expression of lipogenic genes, increased peridroplet mitochondrial (PDM) contents, intensified the contact between mitochondria and lipid droplets (LDs), and downregulated miR-20a-5p abundance. Importantly, miR-20a-5p targeted mfn2, which mediated the contact between mitochondria and LDs and influenced changes in lipid metabolism induced by MnO2 NPs. Mechanistically, the direct Mfn2-Plin2 binding and Mfn2 GTPase activity promoted the MnO2 NPs-induced interactions between mitochondria and LDs, which in turn influenced MnO2 NPs-induced changes in hepatic lipid metabolism. For the first time, our findings indicated the significant differences between the changes in body metabolism induced by nanoparticles and inorganic elements, which helped to illuminate different mechanisms governing the responses of aquatic vertebrates to hazardous metal pollutants (MnO2 NPs and MnSO4).
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Zeng J, Liu J, Ni H, Zhang L, Wang J, Li Y, Jiang W, Wu Z, Zhou M. Mitochondrial transplantation reduces lower limb ischemia-reperfusion injury by increasing skeletal muscle energy and adipocyte browning. Mol Ther Methods Clin Dev 2023; 31:101152. [PMID: 38027061 PMCID: PMC10667789 DOI: 10.1016/j.omtm.2023.101152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Recent studies have shown that mitochondrial transplantation can repair lower limb IRI, but the underlying mechanism of the repair effect remains unclear. In this study, we found that in addition to being taken up by skeletal muscle cells, human umbilical cord mesenchymal stem cells (hMSCs)-derived mitochondria were also taken up by adipocytes, which was accompanied by an increase in optic atrophy 1 (OPA1) and uncoupling protein 1. Transplantation of hMSCs-derived mitochondria could not only supplement the original damaged mitochondrial function of skeletal muscle, but also promote adipocyte browning by increasing the expression of OPA1. In this process, mitochondrial transplantation can reduce cell apoptosis and repair muscle tissue, which promotes the recovery of motor function in vivo. To the best of our knowledge, there is no study on the therapeutic mechanism of mitochondrial transplantation from this perspective, which could provide a theoretical basis.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Vascular Surgery, Kunshan Traditional Chinese Medicine Hospital, Kunshan 215300, China
| | - Jianing Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Haiya Ni
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Ling Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jun Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Yazhou Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Wentao Jiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
8
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Ye M, Yang M, Dai W, Li H, Zhou X, Chen Y, He L. Targeting Renal Proximal Tubule Cells in Obesity-Related Glomerulopathy. Pharmaceuticals (Basel) 2023; 16:1256. [PMID: 37765062 PMCID: PMC10535317 DOI: 10.3390/ph16091256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
As a metabolic disorder, obesity can cause secondary kidney damage, which is called obesity-related glomerulopathy (ORG). As the incidence of obesity increases worldwide, so does the incidence of end-stage renal disease (ESRD) caused by ORGs. However, there is still a lack of effective strategies to prevent and delay the occurrence and development of ORG. Therefore, a deeper understanding and elaboration of the pathogenesis of ORG is conducive to the development of therapeutic drugs for ORG. Here, we review the characteristics of pathological lesions of ORG and describe the roles of lipid metabolism disorders and mitochondrial oxidative stress in the development of ORG. Finally, we summarize the current available drugs or compounds for the treatment of ORG and suggested that ameliorating renal lipid metabolism and mitochondrial function may be potential therapeutic targets for ORG.
Collapse
Affiliation(s)
- Muyao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Hao Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Yinyin Chen
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410081, China
- Changsha Clinical Research, Changsha 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| |
Collapse
|
10
|
Castellá M, Blasco-Roset A, Peyrou M, Gavaldà-Navarro A, Villarroya J, Quesada-López T, Lorente-Poch L, Sancho J, Szymczak F, Piron A, Rodríguez-Fernández S, Carobbio S, Goday A, Domingo P, Vidal-Puig A, Giralt M, Eizirik DL, Villarroya F, Cereijo R. Adipose tissue plasticity in pheochromocytoma patients suggests a role of the splicing machinery in human adipose browning. iScience 2023; 26:106847. [PMID: 37250773 PMCID: PMC10209542 DOI: 10.1016/j.isci.2023.106847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Adipose tissue from pheochromocytoma patients acquires brown fat features, making it a valuable model for studying the mechanisms that control thermogenic adipose plasticity in humans. Transcriptomic analyses revealed a massive downregulation of splicing machinery components and splicing regulatory factors in browned adipose tissue from patients, with upregulation of a few genes encoding RNA-binding proteins potentially involved in splicing regulation. These changes were also observed in cell culture models of human brown adipocyte differentiation, confirming a potential involvement of splicing in the cell-autonomous control of adipose browning. The coordinated changes in splicing are associated with a profound modification in the expression levels of splicing-driven transcript isoforms for genes involved in the specialized metabolism of brown adipocytes and those encoding master transcriptional regulators of adipose browning. Splicing control appears to be a relevant component of the coordinated gene expression changes that allow human adipose tissue to acquire a brown phenotype.
Collapse
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | | | - Juan Sancho
- Endocrine Surgery Unit, Hospital del Mar, 08003 Barcelona, Spain
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anthony Piron
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sonia Rodríguez-Fernández
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Stefania Carobbio
- Bases Moleculares de Patologías Humanas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Albert Goday
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Endocrinology Service, Hospital del Mar, IMIM, 08003 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pere Domingo
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
11
|
Huang W, Su J, Chen X, Li Y, Xing Z, Guo L, Li S, Zhang J. High-Intensity Interval Training Induces Protein Lactylation in Different Tissues of Mice with Specificity and Time Dependence. Metabolites 2023; 13:metabo13050647. [PMID: 37233688 DOI: 10.3390/metabo13050647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Protein lysine lactylation (Kla) is a novel protein acylation reported in recent years, which plays an important role in the development of several diseases with pathologically elevated lactate levels, such as tumors. The concentration of lactate as a donor is directly related to the Kla level. High-intensity interval training (HIIT) is a workout pattern that has positive effects in many metabolic diseases, but the mechanisms by which HIIT promotes health are not yet clear. Lactate is the main metabolite of HIIT, and it is unknown as to whether high lactate during HIIT can induce changes in Kla levels, as well as whether Kla levels differ in different tissues and how time-dependent Kla levels are. In this study, we observed the specificity and time-dependent effects of a single HIIT on the regulation of Kla in mouse tissues. In addition, we aimed to select tissues with high Kla specificity and obvious time dependence for lactylation quantitative omics and analyze the possible biological targets of HIIT-induced Kla regulation. A single HIIT induces Kla in tissues with high lactate uptake and metabolism, such as iWAT, BAT, soleus muscle and liver proteins, and Kla levels peak at 24 h after HIIT and return to steady state at 72 h. Kla proteins in iWAT may affect pathways related to glycolipid metabolism and are highly associated with de novo synthesis. It is speculated that the changes in energy expenditure, lipolytic effects and metabolic characteristics during the recovery period after HIIT may be related to the regulation of Kla in iWAT.
Collapse
Affiliation(s)
- Wenhua Huang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jie Su
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Xuefei Chen
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Yanjun Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Zheng Xing
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Lanlan Guo
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
- Department of Physical Education, University of International Business and Economics, Beijing 100029, China
| | - Shitian Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Xie Y, Hou T, Liu J, Zhang H, Liu X, Kang R, Tang D. Autophagy-dependent ferroptosis as a potential treatment for glioblastoma. Front Oncol 2023; 13:1091118. [PMID: 36845736 PMCID: PMC9954622 DOI: 10.3389/fonc.2023.1091118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor 5-year survival rate. Autophagy is a conserved intracellular degradation system that plays a dual role in GBM pathogenesis and therapy. On one hand, stress can lead to unlimited autophagy to promote GBM cell death. On the other hand, elevated autophagy promotes the survival of glioblastoma stem cells against chemotherapy and radiation therapy. Ferroptosis is a type of lipid peroxidation-mediated regulated necrosis that initially differs from autophagy and other types of cell death in terms of cell morphology, biochemical characteristics, and the gene regulators involved. However, recent studies have challenged this view and demonstrated that the occurrence of ferroptosis is dependent on autophagy, and that many regulators of ferroptosis are involved in the control of autophagy machinery. Functionally, autophagy-dependent ferroptosis plays a unique role in tumorigenesis and therapeutic sensitivity. This mini-review will focus on the mechanisms and principles of autophagy-dependent ferroptosis and its emerging implications in GBM.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinyou Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
14
|
Rahbani JF, Scholtes C, Lagarde DM, Hussain MF, Roesler A, Dykstra CB, Bunk J, Samborska B, O'Brien SL, Tripp E, Pacis A, Angueira AR, Johansen OS, Cinkornpumin J, Hossain I, Lynes MD, Zhang Y, White AP, Pastor WA, Chondronikola M, Sidossis L, Klein S, Kralli A, Cypess AM, Pedersen SB, Jessen N, Tseng YH, Gerhart-Hines Z, Seale P, Calebiro D, Giguère V, Kazak L. ADRA1A-Gα q signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat Metab 2022; 4:1459-1473. [PMID: 36344764 PMCID: PMC9684074 DOI: 10.1038/s42255-022-00667-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Charlotte Scholtes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Damien M Lagarde
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jakub Bunk
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Emma Tripp
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia S Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew D Lynes
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrew P White
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William A Pastor
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Maria Chondronikola
- Department of Nutrition and Radiology, University of California, Davis, Davis, CA, USA
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Labros Sidossis
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Anastasia Kralli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steen B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Vincent Giguère
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
16
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1017387. [PMID: 36387849 PMCID: PMC9640443 DOI: 10.3389/fendo.2022.1017387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) involves serious lipid metabolism disorder, and renal ectopic lipid deposition aggravates DN progression. However, the molecular mechanism of renal lipid deposition in DN remains unclear. Lipid droplets (LDs) are lipid pools in cells that change dynamically in response to the cellular energy needs. The LDs and mitochondria are connected through a part of the mitochondria known as the peridroplet mitochondria (PDM). In this review, we summarize the definition, detection methods, and function of the PDM. Finally, we discuss the research status of PDM in DN and the possibility of its use as a therapeutic target.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
17
|
Tokarek J, Gadzinowska J, Młynarska E, Franczyk B, Rysz J. What Is the Role of Gut Microbiota in Obesity Prevalence? A Few Words about Gut Microbiota and Its Association with Obesity and Related Diseases. Microorganisms 2021; 10:microorganisms10010052. [PMID: 35056501 PMCID: PMC8777962 DOI: 10.3390/microorganisms10010052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/09/2023] Open
Abstract
Obesity is becoming the most dangerous lifestyle disease of our time, and its effects are already being observed in both developed and developing countries. The aim of this study was to investigate the impact of gut microbiota on the prevalence of obesity and associated morbidities, taking into consideration underlying molecular mechanisms. In addition to exploring the relationship between obesity and fecal microorganisms with their metabolites, the study also focused on the factors that would be able to stimulate growth and remodeling of microbiota. Assessed articles were carefully classified according to a predetermined criterion and were critically appraised and used as a basis for conclusions. The considered articles and reviews acknowledge that intestinal microbiota forms a multifunctional system that might significantly affect human homeostasis. It has been proved that alterations in the gut microbiota are found in obese and metabolically diseased patients. The imbalance of microbiome composition, such as changes in Bacteroidetes/Firmicutes ratio and presence of different species of genus Lactobacillus, might promote obesity and comorbidities (type 2 diabetes mellitus, hypertension, dyslipidemia, depression, obstructive sleep apnea). However, there are also studies that contradict this theory. Therefore, further well-designed studies are needed to improve the knowledge about the influence of microbiota, its metabolites, and probiotics on obesity.
Collapse
|