1
|
Soleimani E, Abbasalizad Farhangi M. Protein Quality, Glycemic and Metabolic Indices and Anthropometric Features Among Overweight and Obese Adults. Nutr Metab Insights 2023; 16:11786388231181038. [PMID: 37435042 PMCID: PMC10331230 DOI: 10.1177/11786388231181038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Background Various studies have shown an inverse relationship between the quality of protein intake based on essential amino acids (EAAs) with obesity and its complications. We assumed that increasing EAAs-based protein intake quality improves glycemic and metabolic markers and anthropometric measurements in obese and overweight people. Methods This cross-sectional study included 180 obese and overweight participants aged 18 to 35. Dietary information was obtained using an 80-item food frequency questionnaire. The total intake of EAAs was calculated using the United States department of agriculture (USDA) database. Quality protein was defined as the ratio of EAAs (gr) to total dietary protein (gr). Sociodemographic status, physical activity (PA), and anthropometric characteristics were evaluated using a valid and reliable method. Analysis of covariance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index (BMI) were used to measure this association. Results Protein quality intake was highest among the group with the lowest weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and fat mass (FM); and on the other hand, the fat-free mass (FFM) has increased; also Increasing the quality of protein intake improved the lipid profile and some glycemic indices and insulin sensitivity, although this association was not significant. Conclusions Increasing the quality of protein intake significantly improved anthropometric measurements, and also improved some glycemic and metabolic indices although, their relationship was not significant.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Wang K, Peng X, Yang A, Huang Y, Tan Y, Qian Y, Lv F, Si H. Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Front Nutr 2022; 9:940217. [PMID: 35782952 PMCID: PMC9240812 DOI: 10.3389/fnut.2022.940217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of different protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 60 mice (30 female and 30 male) were randomly assigned to six groups and fed female mice with low protein diet (FLP), basal protein diet (FBD), and high protein diet (FHP). Similarly, the male mice fed with low protein diet (MLP), basal protein diet (MBD), and high protein diet (MHP). The low protein diet contained 14% CP, the basal diet contained 20% CP, and the high protein diet contained 26% CP. The results of the study showed that both basal and high protein diets significantly reduced the perirenal adipose tissues (PEAT) index in male mice compared to low protein diet (p < 0.05). For the gut, the FHP significantly increased the relative gut weight compared to the FBD and FLP (p < 0.05). At the same time, the FHP also significantly increased the relative gut length compared with the FBD and FLP (p < 0.05). The MHP significantly increased TC concentration compared with the MLP (p < 0.05), and the MBD tended to increase TC concentration compared with the MLP in serum (p = 0.084). The histomorphology result of the jejunum and ileum showed that a low protein diet was beneficial to the digestion and absorption of nutrients in the small intestine of mice. While different protein levels had no effect on the total number of fecal microbial species in mice, different protein levels had a significant effect on certain fecal microbes in mice, the absolute abundance of Verrucomicrobia in the feces of male mice was significantly higher in both high and basal protein diets than in the low protein diet (p < 0.05). The high protein diet significantly reduced the absolute abundance of Patescibacteria in the feces of female mice compared to both the basal and low protein diets (p < 0.05). The absolute abundance of Patescibacteria in male feces was not affected by dietary protein levels (p > 0.05). Taken together, our results suggest that a low protein diet can alter fat deposition and lipid metabolism in mice, and that it benefited small intestinal epithelial structure and microbes.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yiqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxiao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yajing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
3
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
4
|
Sears B, Saha AK. Dietary Control of Inflammation and Resolution. Front Nutr 2021; 8:709435. [PMID: 34447777 PMCID: PMC8382877 DOI: 10.3389/fnut.2021.709435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The healing of any injury requires a dynamic balance of initiation and resolution of inflammation. This hypothesis-generating review presents an overview of the various nutrients that can act as signaling agents to modify the metabolic responses essential for the optimal healing of injury-induced inflammation. In this hypothesis-generating review, we describe a defined nutritional program consisting of an integrated interaction of a calorie-restricted anti-inflammatory diet coupled with adequate levels of omega-3 fatty acids and sufficient levels of dietary polyphenols that can be used in clinical trials to treat conditions associated with insulin resistance. Each dietary intervention works in an orchestrated systems-based approach to reduce, resolve, and repair the tissue damage caused by any inflammation-inducing injury. The orchestration of these specific nutrients and their signaling metabolites to facilitate healing is termed the Resolution Response. The final stage of the Resolution Response is the activation of intracellular 5' adenosine monophosphate-activated protein kinase (AMPK), which is necessary to repair tissue damaged by the initial injury-induced inflammation. The dietary optimization of the Resolution Response can be personalized to the individual by using standard blood markers. Once each of those markers is in their appropriate ranges, activation of intracellular AMPK will be facilitated. Finally, we outline how the resulting activation of AMPK will affect a diverse number of other intercellular signaling systems leading to an extended healthspan.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, Peabody, MA, United States
| | | |
Collapse
|
5
|
The Effect of Dietary Intake and Nutritional Status on Anthropometric Development and Systemic Inflammation: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115635. [PMID: 34070364 PMCID: PMC8197533 DOI: 10.3390/ijerph18115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
(1) Background: Daily caloric intake should aim to reduce the risk of obesity or poor anthropometric development. Our study objective was to analyze the association between food consumption, inflammatory status and anthropometric development; (2) Methods: We performed a prospective observational analytical research during September 2020 and April 2021 on a group of 160 healthy subjects, aged between 6 and 12 years old, by analyzing food ingestion, the basal metabolic rate, anthropometric development and the inflammatory status; (3) Results: IL-6 was significantly correlated to the sum of skinfolds, along with both serum proteins and triglycerides. The skin folds were significantly correlated with the caloric intake and with total fat intake, next to saturated and trans fats. Unlike the skin folds, the body weight was significantly correlated with the caloric intake along with some vitamins, such as Vitamin A and Vitamin B12. Inactive mass increased with excessive folic acid, Vitamin E, Vitamin K and saturated fat intake; (4) Conclusions: The inflammatory status was influenced by the ingestion of micronutrients, total serum lipids and proteins. The anthropometric development was associated with the ingestion of carbohydrates, energy balance and energy intake. We can conclude that daily menu and nutrition imbalances can influence both the risk of obesity and the inflammatory status.
Collapse
|
6
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Comparing the effects of whey and casein supplementation on nutritional status and immune parameters in patients with chronic liver disease: a randomised double-blind controlled trial. Br J Nutr 2020; 125:768-779. [PMID: 32807252 DOI: 10.1017/s0007114520003219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein supplementation may be beneficial for patients with chronic liver disease (CLD). This study compared the effects of whey protein isolate (WP) and casein (CA) supplementation on nutritional status and immune parameters of CLD patients who were randomly assigned to take 20 g of WP or CA twice per d as a supplement for 15 d. Body composition, muscle functionality and plasmatic immunomarkers were assessed before and after supplementation. Patients were also classified according to the model for end-stage liver disease (MELD) into less (MELD < 15) and more (MELD ≥ 15) severe disease groups. Malnutrition, determined by the Subjective Global Assessment at baseline, was observed in 57·4 % and 54·2 % of patients in the WP and CA groups, respectively (P = 0·649). Protein intake was lower at baseline in the WP group than in the CA group (P = 0·035), with no difference after supplementation (P = 0·410). Both the WP and CA MELD < 15 groups increased protein intake after supplementation according to the intragroup analysis. No differences were observed in body composition, muscle functionality, most plasma cytokines (TNF, IL-6, IL-1β and interferon-γ), immunomodulatory proteins (sTNFR1, sTNFR2, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor) or immunomodulatory hormones (adiponectin, insulin and leptin) after supplementation in the WP groups at the two assessed moments. WP supplementation increased the levels of interferon-γ-induced protein-10/CXCL10 (P = 0·022), eotaxin-1/CCL11 (P = 0·031) and monocyte chemoattractant protein-1/CCL2 (P = 0·018) and decreased IL-5 (P = 0·027), including among those in the MELD ≥ 15 group, for whom IL-10 was also increased (P = 0·008). Thus, WP consumption by patients with CLD impacted the immunomodulatory responses when compared with CA with no impact on nutritional status.
Collapse
|
8
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
9
|
|
10
|
The Impact of Different Animal-Derived Protein Sources on Adiposity and Glucose Homeostasis during Ad Libitum Feeding and Energy Restriction in Already Obese Mice. Nutrients 2019; 11:nu11051153. [PMID: 31126082 PMCID: PMC6567247 DOI: 10.3390/nu11051153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Low-fat diets and energy restriction are recommended to prevent obesity and to induce weight loss, but high-protein diets are popular alternatives. However, the importance of the protein source in obesity prevention and weight loss is unclear. The aim of this study was to investigate the ability of different animal protein sources to prevent or reverse obesity by using lean or obese C57BL/6J mice fed high-fat/high-protein or low-fat diets with casein, cod or pork as protein sources. Only the high-fat/high-protein casein-based diet completely prevented obesity development when fed to lean mice. In obese mice, ad libitum intake of a casein-based high-fat/high-protein diet modestly reduced body mass, whereas a pork-based high-fat/high-protein diet aggravated the obese state and reduced lean body mass. Caloric restriction of obese mice fed high-fat/high-protein diets reduced body weight and fat mass and improved glucose tolerance and insulin sensitivity, irrespective of the protein source. Finally, in obese mice, ad libitum intake of a low-fat diet stabilized body weight, reduced fat mass and increased lean body mass, with the highest loss of fat mass found in mice fed the casein-based diet. Combined with caloric restriction, the casein-based low-fat diet resulted in the highest loss of fat mass. Overall, the dietary protein source has greater impact in obesity prevention than obesity reversal.
Collapse
|
11
|
Madsen L, Myrmel LS, Fjære E, Øyen J, Kristiansen K. Dietary Proteins, Brown Fat, and Adiposity. Front Physiol 2018; 9:1792. [PMID: 30631281 PMCID: PMC6315128 DOI: 10.3389/fphys.2018.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
High protein diets have become popular for body weight maintenance and weight loss despite controversies regarding efficacy and safety. Although both weight gain and weight loss are determined by energy consumption and expenditure, data from rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets strongly influences body and fat mass gain per calorie eaten. Here, we review data from rodent trials examining how high protein diets may modulate energy metabolism and the mechanisms by which energy may be dissipated. We discuss the possible role of activating brown and so-called beige/BRITE adipocytes including non-canonical UCP1-independent thermogenesis and futile cycles, where two opposing metabolic pathways are operating simultaneously. We further review data on how the gut microbiota may affect energy expenditure. Results from human and rodent trials demonstrate that human trials are less consistent than rodent trials, where casein is used almost exclusively as the protein source. The lack of consistency in results from human trials may relate to the specific design of human trials, the possible distinct impact of different protein sources, and/or the differences in the efficiency of high protein diets to attenuate obesity development in lean subjects vs. promoting weight loss in obese subjects.
Collapse
Affiliation(s)
- Lise Madsen
- Institute of Marine Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Yu AYL, López-Olmedo N, Popkin BM. Analysis of dietary trends in Chinese adolescents from 1991 to 2011. Asia Pac J Clin Nutr 2018; 27:1106-1119. [PMID: 30272859 PMCID: PMC6298787 DOI: 10.6133/apjcn.042018.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVES To examine temporal trends in dietary energy, fat, carbohydrate, protein, sodium and potassium intake of Chinese adolescents aged 12 - 17 years by sex and urbanicity, using data from the China Health and Nutrition Survey. METHODS AND STUDY DESIGN Individual level, consecutive 3 - day 24-hour recalls were analyzed from survey years 1991 (n=504), 2000 (n=665), and 2011 (n=267) from nine provinces representing a range of geography, economic development, and health indicators in China. Linear multivariable regression models were conducted to predict mean intakes of energy, macronutrients, sodium, and potassium. Models were adjusted for age, per capita income, parental education, region, and family size. RESULTS From 1991 to 2011, total energy consumption decreased among both sexes and all urbanicity groups (p<0.05). Sodium intake decreased in all sex and urbanicity groups except the high urbanicity group, which was the only group to show significant change in potassium intake (p<0.05). Sodium-potassium ratios decreased overall and across both sexes (p<0.05). However, the major observed shift was a structural change from carbohydrates to fat and protein. Both sexes showed decrease in carbohydrate-derived energy (p<0.05). Proportion of fat-derived energy increased in female adolescents. Proportion of protein-derived energy increased in male adolescents, as well as in the low and high urbanicity groups (p<0.01). CONCLUSIONS This suggests Chinese adolescents are transitioning to a low carbohydrate diet. Urbanicity appears to play a role in sodium, potassium and protein intake. Improvements of sodiumpotassium ratios are primarily due to decreased sodium intake and require further reduction efforts.
Collapse
Affiliation(s)
- Alice Yunzi L Yu
- Department of Nutrition, University of North Carolina at Chapel Hill, USA
| | - Nancy López-Olmedo
- Department of Nutrition, University of North Carolina at Chapel Hill, USA
| | - Barry M Popkin
- Department of Nutrition, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
13
|
Song S, Hua C, Zhao F, Li M, Fu Q, Hooiveld GJEJ, Muller M, Li C, Zhou G. Purified Dietary Red and White Meat Proteins Show Beneficial Effects on Growth and Metabolism of Young Rats Compared to Casein and Soy Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9942-9951. [PMID: 30176144 DOI: 10.1021/acs.jafc.8b02521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study compared the effects of casein, soy protein (SP), red (RMP), and white meat (WMP) proteins on growth and metabolism of young rats. Compared to casein, the ratio of daily feed intake to daily body weight gain of rats was not changed by meat protein but reduced by SP by 93.3% ( P < 0.05). Feeding RMP and WMP reduced the liver total cholesterol (TC) contents by 24.3% and 17.8%, respectively ( P < 0.05). Only RMP increased plasma HDL-cholesterol concentrations (by 12.7%, P < 0.05), whereas SP increased plasma triacylglycerol, TC, and LDL-cholesterol concentrations by 23.7%, 19.5%, and 61.5%, respectively ( P < 0.05). Plasma essential and total amino acid concentrations were increased by WMP (by 18.8% and 12.4%, P < 0.05) but reduced by SP (by 28.3% and 37.7%, P < 0.05). Twenty-five liver proteins were differentially expressed in response to different protein sources. Therefore, meat proteins were beneficial for growth and metabolism of young rats compared to casein and SP.
Collapse
Affiliation(s)
- Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University , 3601 Hongjing Road , Nanjing 211171 , People's Republic of China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University , 3601 Hongjing Road , Nanjing 211171 , People's Republic of China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; Jiang Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Mengjie Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; Jiang Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Qingquan Fu
- School of Food Science, Nanjing Xiaozhuang University , 3601 Hongjing Road , Nanjing 211171 , People's Republic of China
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition , Wageningen University , Wageningen 6700 HB , The Netherlands
| | - Michael Muller
- Norwich Medical School , University of East Anglia , Norwich NR4 2QR , England
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; Jiang Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; Jiang Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| |
Collapse
|
14
|
Impact of phenylketonuria type meal on appetite, thermic effect of feeding and postprandial fat oxidation. Clin Nutr 2018; 37:851-857. [DOI: 10.1016/j.clnu.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
|
15
|
Kemmler W, Kohl M, Freiberger E, Sieber C, von Stengel S. Effect of whole-body electromyostimulation and / or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatr 2018; 18:70. [PMID: 29523089 PMCID: PMC5845205 DOI: 10.1186/s12877-018-0759-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sarcopenic Obesity (SO) is characterized by low lean and high fat mass; i.e. from a functional aspect a disproportion between engine (muscle) and mass to be moved (fat). At present, most research focuses on the engine, but the close "cross talk" between age-associated adipose and skeletal muscle tissue inflammation calls for comprehensive interventions that affect both components alike. Protein and exercise are likely candidates, however with respect to the latter, the enthusiasm for intense and frequent exercise is rather low, especially in functionally limited older people. The aim of this study was therefore to evaluate the effect of whole-body electromyostimulation (WB-EMS), a time-efficient, joint-friendly and highly customizable exercise technology, on obesity parameters and cardiometabolic risk in men with SO. METHODS One-hundred community-dwelling (cdw) Bavarian men ≥70 years with SO were randomly assigned to either (a) whey protein supplementation (WPS), (b) WB-EMS and protein supplementation (WB-EMS&P) or (c) non-intervention control (CG). Protein supplementation contributed to an intake of 1.7-1.8 g/kg/body mass/d, WB-EMS consisted of 1.5 × 20 min/week (85 Hz, 350 μs, 4 s of strain-4 s of rest) with moderate-high intensity. Using an intention to treat approach with multiple imputation, the primary study endpoint was total body fat mass (TBF), secondary endpoints were trunk fat mass (TF), waist circumference (WC) and total-cholesterol/HDL-cholesterol ratio (TC/HDL-C). RESULTS After 16 weeks of intervention, TBF was reduced significantly in the WPS (- 3.6 ± 7.2%; p = 0.005) and WB-EMS&P (- 6.7 ± 6.2%; p < 0.001), but not in the CG (+ 1.6 ± 7.1%; p = 0.191). Changes in the WB-EMS&P (p < 0.001) and the WPS group (p = 0.011) differ significantly from the CG. TF decreased in the WB-EMS&P (p < 0.001) and WPS (p = .117) and increased in the CG (p = .159); WC decreased significantly in the treatment groups and was maintained in the CG. Lastly, the TC/HDL-C ratio improved significantly in the WB-EMS&P and WPS group and was maintained in the CG. Significant differences between WB-EMS&P and WPS were determined for waist circumference only (p = 0.015; TBF: p = 0.073; TF: p = 0.087; TC/HDL-C: p = .773). CONCLUSION Moderate-high dosed whey protein supplementation, especially when combined with WB-EMS, may be a feasible choice to address obesity and cardiometabolic risk in older cdw men with SO unable or unmotivated to exercise conventionally. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02857660 ; registration date: 05/01/2017.
Collapse
Affiliation(s)
- Wolfgang Kemmler
- Institute of Medical Physics, FAU Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - Ellen Freiberger
- Institute for Biomedicine of Aging, FAU Erlangen-Nürnberg, Nürnberg, Germany
| | - Cornel Sieber
- Institute for Biomedicine of Aging, FAU Erlangen-Nürnberg, Nürnberg, Germany
| | - Simon von Stengel
- Institute of Medical Physics, FAU Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany
| |
Collapse
|
16
|
Antonio J, Ellerbroek A, Evans C, Silver T, Peacock CA. High protein consumption in trained women: bad to the bone? J Int Soc Sports Nutr 2018; 15:6. [PMID: 29434529 PMCID: PMC5793405 DOI: 10.1186/s12970-018-0210-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background It has been posited that the consumption of extra protein (> 0.8 g/kg/d) may be deleterious to bone mineral content. However, there is no direct evidence to show that consuming a high-protein diet results in a demineralization of the skeleton. Thus, the primary endpoint of this randomized controlled trial was to determine if a high-protein diet affected various parameters of whole body and lumbar bone mineral content in exercise-trained women. Methods Twenty-four women volunteered for this 6-month investigation (n = 12 control, n = 12 high-protein). The control group was instructed to consume their habitual diet; however, the high-protein group was instructed to consume ≥2.2 g of protein per kilogram body weight daily (g/kg/d). Body composition was assessed via dual-energy x-ray absorptiometry (DXA). Subjects were instructed to keep a food diary via the mobile app MyFitnessPal®. Exercise or activity level was not controlled. Subjects were asked to maintain their current levels of exercise. Results During the 6-month treatment period, there was a significant difference in protein intake between the control and high-protein groups (mean±SD; control: 1.5±0.3, high-protein: 2.8±1.1 g/kg/d); however, there were no differences in the consumption total calories, carbohydrate or fat. Whole body bone mineral density did not change in the control (pre: 1.22±0.08, post: 1.22±0.09 g/cm2) or high-protein group (pre: 1.25±0.11, post: 1.24±0.10 g/cm2). Similarly, lumbar bone mineral density did not change in the control (pre: 1.08±0.16, post: 1.05±0.13 g/cm2) or high-protein group (pre: 1.07±0.11, post: 1.08±0.12 g/cm2). In addition, there were no changes in whole body or lumbar T-Scores in either group. Furthermore, there were no changes in fat mass or lean body mass. Conclusion Despite an 87% higher protein intake (high-protein versus control), 6 months of a high-protein diet had no effect on whole body bone mineral density, lumbar bone mineral density, T-scores, lean body mass or fat mass.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Anya Ellerbroek
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Cassandra Evans
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Tobin Silver
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Corey A Peacock
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| |
Collapse
|
17
|
Kemmler W, Weissenfels A, Teschler M, Willert S, Bebenek M, Shojaa M, Kohl M, Freiberger E, Sieber C, von Stengel S. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin Interv Aging 2017; 12:1503-1513. [PMID: 28989278 PMCID: PMC5624743 DOI: 10.2147/cia.s137987] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sarcopenic obesity (SO) is a geriatric syndrome characterized by the disproportion between the amount of lean mass and fat mass. Exercise decreases fat and maintains muscle mass; however, older people fail to exercise at doses sufficient to affect musculoskeletal and cardiometabolic risk factors. The aim of this study was to evaluate the effect of whole-body electromyostimulation (WB-EMS), a time-efficient, joint-friendly and highly individualized exercise technology, on sarcopenia and SO in older men. MATERIALS AND METHODS A total of 100 community-dwelling northern Bavarian men aged ≥70 years with sarcopenia and obesity were randomly (1-1-1) assigned to either 16 weeks of 1) WB-EMS and protein supplementation (WB-EMS&P), 2) isolated protein supplementation or 3) nonintervention control. WB-EMS consisted of 1.5×20 min (85 Hz, 350 µs, 4 s of strain to 4 s of rest) applied with moderate-to-high intensity while moving. We further generated a daily protein intake of 1.7-1.8 g/kg/body mass per day. The primary study end point was Sarcopenia Z-Score, and the secondary study end points were body fat rate (%), skeletal muscle mass index (SMI) and handgrip strength. RESULTS Intention-to-treat analysis determined a significantly favorable effect of WB-EMS&P (P<0.001) and protein (P=0.007) vs control. Both groups significantly (P<0.001) lost body fat (WB-EMS&P: 2.1%; protein: 1.1%) and differed significantly (P≤0.004) from control (0.3%). Differences between WB-EMS&P and protein were significant for the Sarcopenia Z-Score (P=0.39) and borderline nonsignificant (P=0.051) for body fat. SMI increased significantly in both groups (P<0.001 and P=0.043) and decreased significantly in the control group (CG; P=0.033); differences between the verum groups and control were significant (P≤0.009). Handgrip strength increased in the WB-EMS group (1.90 kg; P<0.001; P=0.050 vs control) only. No adverse effects of WB-EMS or protein supplementation were recorded. CONCLUSION WB-EMS&P is a safe and efficient method for tackling sarcopenia and SO in older men. However, the suboptimum effect on functional parameters should be addressed by increased voluntary activation during WB-EMS application.
Collapse
Affiliation(s)
- Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Weissenfels
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc Teschler
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Willert
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Bebenek
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mahdieh Shojaa
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Kohl
- Faculty of Medical and Life Science, University of Furtwangen, Schwenningen, Germany
| | - Ellen Freiberger
- Institute of Biomedicine of Aging, Friedrich-Alexander University of Erlangen-Nürnberg, Nürnberg, Germany
| | - Cornel Sieber
- Institute of Biomedicine of Aging, Friedrich-Alexander University of Erlangen-Nürnberg, Nürnberg, Germany
| | - Simon von Stengel
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Protein Supplementation to Augment the Effects of High Intensity Resistance Training in Untrained Middle-Aged Males: The Randomized Controlled PUSH Trial. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3619398. [PMID: 28656141 PMCID: PMC5471590 DOI: 10.1155/2017/3619398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
High intensity (resistance exercise) training (HIT) defined as a "single set resistance exercise to muscular failure" is an efficient exercise method that allows people with low time budgets to realize an adequate training stimulus. Although there is an ongoing discussion, recent meta-analysis suggests the significant superiority of multiple set (MST) methods for body composition and strength parameters. The aim of this study is to determine whether additional protein supplementation may increase the effect of a HIT-protocol on body composition and strength to an equal MST-level. One hundred and twenty untrained males 30-50 years old were randomly allocated to three groups: (a) HIT, (b) HIT and protein supplementation (HIT&P), and (c) waiting-control (CG) and (after cross-over) high volume/high-intensity-training (HVHIT). HIT was defined as "single set to failure protocol" while HVHIT consistently applied two equal sets. Protein supplementation provided an overall intake of 1.5-1.7 g/kg/d/body mass. Primary study endpoint was lean body mass (LBM). LBM significantly improved in all exercise groups (p ≤ 0.043); however only HIT&P and HVHIT differ significantly from control (p ≤ 0.002). HIT diverges significantly from HIT&P (p = 0.017) and nonsignificantly from HVHIT (p = 0.059), while no differences were observed for HIT&P versus HVHIT (p = 0.691). In conclusion, moderate to high protein supplementation significantly increases the effects of a HIT-protocol on LBM in middle-aged untrained males.
Collapse
|
19
|
Wright M, Sotres-Alvarez D, Mendez MA, Adair L. The association of trajectories of protein intake and age-specific protein intakes from 2 to 22 years with BMI in early adulthood. Br J Nutr 2017; 117:750-758. [PMID: 28347359 PMCID: PMC5842682 DOI: 10.1017/s0007114517000502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 01/21/2023]
Abstract
No study has analysed how protein intake from early childhood to young adulthood relate to adult BMI in a single cohort. To estimate the association of protein intake at 2, 11, 15, 19 and 22 years with age- and sex-standardised BMI at 22 years (early adulthood), we used linear regression models with dietary and anthropometric data from a Filipino birth cohort (1985-2005, n 2586). We used latent growth curve analysis to identify trajectories of protein intake relative to age-specific recommended daily allowance (intake in g/kg body weight) from 2 to 22 years, then related trajectory membership to early adulthood BMI using linear regression models. Lean mass and fat mass were secondary outcomes. Regression models included socioeconomic, dietary and anthropometric confounders from early life and adulthood. Protein intake relative to needs at age 2 years was positively associated with BMI and lean mass at age 22 years, but intakes at ages 11, 15 and 22 years were inversely associated with early adulthood BMI. Individuals were classified into four mutually exclusive trajectories: (i) normal consumers (referent trajectory, 58 % of cohort), (ii) high protein consumers in infancy (20 %), (iii) usually high consumers (18 %) and (iv) always high consumers (5 %). Compared with the normal consumers, 'usually high' consumption was inversely associated with BMI, lean mass and fat mass at age 22 years whereas 'always high' consumption was inversely associated with male lean mass in males. Proximal protein intakes were more important contributors to early adult BMI relative to early-childhood protein intake; protein intake history was differentially associated with adulthood body size.
Collapse
Affiliation(s)
- Melecia Wright
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle A. Mendez
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Linda Adair
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Caron J, Domenger D, Dhulster P, Ravallec R, Cudennec B. Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front Endocrinol (Lausanne) 2017; 8:85. [PMID: 28484425 PMCID: PMC5401913 DOI: 10.3389/fendo.2017.00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
The gut plays a central role in energy homeostasis. Food intake regulation strongly relies on the gut-brain axis, and numerous studies have pointed out the significant role played by gut hormones released from enteroendocrine cells. It is well known that digestive products of dietary protein possess a high satiating effect compared to carbohydrates and fat. Nevertheless, the processes occurring in the gut during protein digestion involved in the short-term regulation of food intake are still not totally unraveled. This review provides a concise overview of the current data concerning the implication of food-derived peptides in the peripheral regulation of food intake with a focus on the gut hormones cholecystokinin and glucagon-like peptide 1 regulation and the relationship with some aspects of glucose homeostasis.
Collapse
Affiliation(s)
- Juliette Caron
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Dorothée Domenger
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Pascal Dhulster
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Benoit Cudennec
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec,
| |
Collapse
|
21
|
Paauw ND, Joles JA, Drost JT, Verhaar MC, Franx A, Navis G, Maas AH, Lely AT. High-Normal Estimated Glomerular Filtration Rate in Early-Onset Preeclamptic Women 10 Years Postpartum. Hypertension 2016; 68:1407-1414. [DOI: 10.1161/hypertensionaha.116.08227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/11/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Women with a history of preeclampsia have a 5- to 12-fold increased risk to develop end-stage kidney disease. Previous observations in small cohorts suggest that former preeclamptic (fPE) women have subtle abnormalities in renal hemodynamics and renal function, which might predispose them to renal failure in later life. In this study, we analyzed renal function in a cross-sectional cohort consisting of former early-onset preeclamptic (fPE, n=339) and former healthy pregnant women (fHP, n=332), overall with a mean age of 39 years at 10 years postpartum. Estimated glomerular filtration rate (eGFR), assessed by the modification of diet in renal disease (MDRD) and chronic kidney disease–epidemiology (CKD-epi) equations, and urinary protein:creatinine ratios were assessed 10 years postpartum. Median MDRD and CKD-epi eGFR did not significantly differ between fHP and fPE groups, whereas a comparison of distribution of eGFR revealed a shift toward a high-normal MDRD eGFR in the fPE group (χ
2
,
P
=0.02) with the same trend for CKD-epi eGFR (χ
2
,
P
=0.18). The odds ratio for fPE women having MDRD eGFR >110 mL/min per 1.73 m
2
was 1.6 (1.1–2.4). In addition, the median urinary protein:creatinine ratio was slightly higher in fPE (8.5 versus 7.1 mg/mmol;
P
<0.01) and correlated positively with both MDRD and CKD-epi eGFR in fPE women. No increased incidence of CKD in fPE women was observed. In conclusion, we demonstrate subtle changes in renal function in former early-onset preeclamptic women 10 years postpartum, characterized by a high-normal eGFR and a slightly higher protein excretion. Whether these subtle differences predispose to or predict long-term renal function loss in fPE women remains to be investigated.
Clinical Trial Registration—
URL:
http://www.trialregister.nl
. Unique identifier: NTR2668.
Collapse
Affiliation(s)
- Nina D. Paauw
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - Jaap A. Joles
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - José T. Drost
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - Marianne C. Verhaar
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - Arie Franx
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - Gerjan Navis
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - Angela H.E.M. Maas
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| | - A. Titia Lely
- From the Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center (N.D.P., A.F., A.T.L.) and Department of Nephrology and Hypertension (J.A.J., M.C.V.), University Medical Center Utrecht, The Netherlands; Department of Cardiology, Isala Klinieken, Zwolle, The Netherlands (J.T.D.); Department of Nephrology, University Medical Center Groningen, The Netherlands (G.N.); and Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.H.E.M.M.)
| |
Collapse
|
22
|
The Energy Content and Composition of Meals Consumed after an Overnight Fast and Their Effects on Diet Induced Thermogenesis: A Systematic Review, Meta-Analyses and Meta-Regressions. Nutrients 2016; 8:nu8110670. [PMID: 27792142 PMCID: PMC5133058 DOI: 10.3390/nu8110670] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the effects of differing energy intakes, macronutrient compositions, and eating patterns of meals consumed after an overnight fast on Diet Induced Thermogenesis (DIT). The initial search identified 2482 records; 26 papers remained once duplicates were removed and inclusion criteria were applied. Studies (n = 27) in the analyses were randomized crossover designs comparing the effects of two or more eating events on DIT. Higher energy intake increased DIT; in a mixed model meta-regression, for every 100 kJ increase in energy intake, DIT increased by 1.1 kJ/h (p < 0.001). Meals with a high protein or carbohydrate content had a higher DIT than high fat, although this effect was not always significant. Meals with medium chain triglycerides had a significantly higher DIT than long chain triglycerides (meta-analysis, p = 0.002). Consuming the same meal as a single bolus eating event compared to multiple small meals or snacks was associated with a significantly higher DIT (meta-analysis, p = 0.02). Unclear or inconsistent findings were found by comparing the consumption of meals quickly or slowly, and palatability was not significantly associated with DIT. These findings indicate that the magnitude of the increase in DIT is influenced by the energy intake, macronutrient composition, and eating pattern of the meal.
Collapse
|
23
|
Protein digestion and energy homeostasis: How generated peptides may impact intestinal hormones? Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Rotondo F, Sanz T, Fernández-López JA, Alemany M, Remesar X. Stable isotope analysis of dietary arginine accrual and disposal efficiency in male rats fed diets with different protein content. RSC Adv 2016. [DOI: 10.1039/c6ra11039h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The administration of diets with different protein/energy ratios induce variable but distinctive responses in rats; an excessive protein content tends to decrease fat accumulation, but reversion of this ratio tends to increase adipose tissue mass.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | - Tania Sanz
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| |
Collapse
|
25
|
Does Long-Term High Fat Diet Always Lead to Smaller Hippocampi Volumes, Metabolite Concentrations, and Worse Learning and Memory? A Magnetic Resonance and Behavioral Study in Wistar Rats. PLoS One 2015; 10:e0139987. [PMID: 26447788 PMCID: PMC4598109 DOI: 10.1371/journal.pone.0139987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Obesity is a worldwide epidemic with more than 600 million affected individuals. Human studies have demonstrated some alterations in brains of otherwise healthy obese individuals and elevated risk of neurodegenerative disease of old age; these studies have also pointed to slightly diminished memory and executive functions among healthy obese individuals. Similar findings were obtained in animal models of obesity induced by high fat diet. On the other hand, low carbohydrate high fat diets are currently promoted for losing weight (e.g., Atkin’s style diets). However, the long-term effects of such diets are not known. Additionally, high fat diets leading to (mild) ketonemia were shown to improve brain function in elderly humans and in some animal models. Aim To evaluate the hypothesis that long-term use of a high fat diet was associated with decreases in spatial memory, smaller hippocampi and hippocampi metabolite concentrations in Wistar rats. Methods Twenty five male Wistar rats were put on high fat diet (HFD; 60% calories from fat, 30% from carbohydrates) on their 55th day of life, while 25 control male rats (CONs) remained on chow. Adequate levels of essential nutrients were provided. Both groups underwent memory tests in 8-arm radial maze at 3rd, 6th, 9th, and 12th month. 1H magnetic resonance spectroscopy was employed to measure concentrations of tNAA (marker of neuronal integrity) at one month and one year, whereas MRI was used to evaluate hippocampal volumes. Results Obese rats (OBRs) consumed similar amount of calories as CONs, but less proteins. However, their protein intake was within recommended amounts. Throughout the experiment OBRs had statistically higher concentrations of blood ketone bodies than CONs, but still within normal values. At post-mortem assessment, OBRs had 38% larger fat deposits than CONs (p<0.05), as evaluated by volume of epididymis fat, an acknowledged marker of fat deposits in rats. Contrary to our expectations, OBRs had better scores of memory behavioral tasks than CONs throughout the experiment. At one year, their hippocampi were by 2.6% larger than in CONs (p = 0.05), whereas concentration of tNAA was 9.8% higher (p = 0.014). Conclusion Long-term HFD in our study resulted in better memory, larger hippocampal volumes, as well as higher hippocampal metabolite concentrations, possibly due to increased levels of blood ketone bodies. The results should be interpreted with caution, as results from animal models do not necessarily directly translate in human condition.
Collapse
|
26
|
Filip S, Vidrih R. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet? Food Technol Biotechnol 2015; 53:298-306. [PMID: 27904361 PMCID: PMC5068384 DOI: 10.17113/ftb.53.03.15.4022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/10/2015] [Indexed: 01/07/2023] Open
Abstract
Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets.
Collapse
Affiliation(s)
- Sebastjan Filip
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana,
Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana,
Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Lin Y, Mouratidou T, Vereecken C, Kersting M, Bolca S, de Moraes ACF, Cuenca-García M, Moreno LA, González-Gross M, Valtueña J, Labayen I, Grammatikaki E, Hallstrom L, Leclercq C, Ferrari M, Gottrand F, Beghin L, Manios Y, Ottevaere C, Van Oyen H, Molnar D, Kafatos A, Widhalm K, Gómez-Martinez S, Prieto LED, De Henauw S, Huybrechts I. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: the HELENA cross-sectional study. Nutr J 2015; 14:10. [PMID: 25609179 PMCID: PMC4334414 DOI: 10.1186/1475-2891-14-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/29/2014] [Indexed: 11/28/2022] Open
Abstract
Background Previous studies suggest that dietary protein might play a beneficial role in combating obesity and its related chronic diseases. Total, animal and plant protein intakes and their associations with anthropometry and serum biomarkers in European adolescents using one standardised methodology across European countries are not well documented. Objectives To evaluate total, animal and plant protein intakes in European adolescents stratified by gender and age, and to investigate their associations with cardio-metabolic indicators (anthropometry and biomarkers). Methods The current analysis included 1804 randomly selected adolescents participating in the HELENA study (conducted in 2006–2007) aged 12.5-17.5 y (47% males) who completed two non-consecutive computerised 24-h dietary recalls. Associations between animal and plant protein intakes, and anthropometry and serum biomarkers were examined with General linear Model multivariate analysis. Results Average total protein intake exceeded the recommendations of World Health Organization and European Food Safety Authority. Mean total protein intake was 96 g/d (59% derived from animal protein). Total, animal and plant protein intakes (g/d) were significantly lower in females than in males and total and plant protein intakes were lower in younger participants (12.5-14.9 y). Protein intake was significantly lower in underweight subjects and higher in obese ones; the direction of the relationship was reversed after adjustments for body weight (g/(kg.d)). The inverse association of plant protein intakes was stronger with BMI z-score and body fat percentage (BF%) compared to animal protein intakes. Additionally, BMI and BF% were positively associated with energy percentage of animal protein. Conclusions This sample of European adolescents appeared to have adequate total protein intake. Our findings suggest that plant protein intakes may play a role in preventing obesity among European adolescents. Further longitudinal studies are needed to investigate the potential beneficial effects observed in this study in the prevention of obesity and related chronic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Huybrechts
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, UZ - 4K3, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | |
Collapse
|
28
|
Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr 2014; 11:20. [PMID: 24864135 PMCID: PMC4033492 DOI: 10.1186/1550-2783-11-20] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals.
Collapse
Affiliation(s)
- Eric R Helms
- Sport Performance Research in New Zealand (SPRINZ) at AUT Millennium Institute, AUT University, 17 Antares Place, Mairangi Bay, Auckland 0632, New Zealand
| | | | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
29
|
Petzke KJ, Freudenberg A, Klaus S. Beyond the role of dietary protein and amino acids in the prevention of diet-induced obesity. Int J Mol Sci 2014; 15:1374-91. [PMID: 24447927 PMCID: PMC3907874 DOI: 10.3390/ijms15011374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022] Open
Abstract
High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.
Collapse
Affiliation(s)
- Klaus J Petzke
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Anne Freudenberg
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Susanne Klaus
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
30
|
Fielding AA, Warren-Forward H, Baines SK. A Snapshot of Eating Behavior, Food Tolerance, and Dietary Intake after Laparoscopic Adjustable Gastric Banding. Bariatr Surg Pract Patient Care 2013. [DOI: 10.1089/bari.2013.9979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Alison A. Fielding
- School of Health Sciences, University of Newcastle, Callaghan, Australia
| | | | - Surinder K. Baines
- School of Health Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
31
|
Davidenko O, Darcel N, Fromentin G, Tomé D. Control of protein and energy intake - brain mechanisms. Eur J Clin Nutr 2013; 67:455-61. [DOI: 10.1038/ejcn.2013.73] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men. Eur J Nutr 2013; 53:49-60. [DOI: 10.1007/s00394-013-0497-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/16/2013] [Indexed: 01/06/2023]
|
33
|
Forbes JM, Cowan SP, Andrikopoulos S, Morley AL, Ward LC, Walker KZ, Cooper ME, Coughlan MT. Glucose homeostasis can be differentially modulated by varying individual components of a western diet. J Nutr Biochem 2013; 24:1251-7. [PMID: 23313044 DOI: 10.1016/j.jnutbio.2012.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/14/2012] [Accepted: 09/21/2012] [Indexed: 01/19/2023]
Abstract
Chronic overconsumption of a Western diet has been identified as a major risk factor for diabetes, yet precisely how each individual component contributes to defects in glucose homeostasis independent of consumption of other macronutrients remains unclear. Eight-week-old male Sprague Dawley rats were randomized to feeding with one of six semi-pure diets: control, processed (high advanced glycation end products/AGE), high protein, high dextrose (glucose polymer), high in saturated fat (plant origin), or high in saturated fat (animal origin). After chronic feeding for 24 weeks, body composition was determined by bioelectrical impedance spectroscopy and glucose homeostasis was assessed. When compared to the control and high AGE diets, excess consumption of the diet high in saturated fat (animal source) increased body weight and adiposity, and decreased insulin sensitivity, as defined by HOMA IR, impaired skeletal muscle insulin signaling and insulin hypersecretion in the context of increased circulating glucagon-like peptide (GLP-1). Compared to the control diet, chronic consumption of the high AGE, protein or dextrose diet increased fasting plasma glucose, decreased fasting plasma insulin and insulin secretion. These diets also reduced circulating GLP-1 concentrations. These data suggest that individual components of a western diet have differential effects in modulating glucose homeostasis and adiposity. These data provide clear evidence of a link between over-consumption of a western diet and the development of diabetes.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Complications, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
For an adult in N balance, apart from small amounts of amino acids required for the synthesis of neurotransmitters, hormones, etc, an amount of amino acids almost equal to that absorbed from the diet can be considered to be "surplus" in that it will be catabolized. The higher diet-induced thermogenesis from protein than from carbohydrate or fat has generally been assumed to be due to increased protein synthesis, which is ATP expensive. To this must be added the ATP cost of protein catabolism through the ubiquitin-proteasome pathway. Amino acid catabolism will add to thermogenesis. Deamination results in net ATP formation except when serine and threonine deaminases are used, but there is the energy cost of synthesizing glutamine in extra-hepatic tissues. The synthesis of urea has a net cost of only 1·5 × ATP when the ATP yield from fumarate metabolism is offset against the ATP cost of the urea cycle, but this offset is thermogenic. In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis - an ATP-expensive, and hence thermogenic, process. Complete oxidation of most amino acid carbon skeletons also involves a number of thermogenic steps in which ATP (or GTP) or reduced coenzymes are utilized. There are no such thermogenic steps in the metabolism of pyruvate, acetyl CoA or acetoacetate, but for amino acids that are metabolized by way of the citric acid cycle intermediates there is thermogenesis ranging from 1 up to 7 × ATP equivalent per mol.
Collapse
|
35
|
Freudenberg A, Petzke KJ, Klaus S. Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem 2012; 23:1524-30. [PMID: 22405695 DOI: 10.1016/j.jnutbio.2011.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 12/21/2022]
Abstract
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet. Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with L-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.
Collapse
Affiliation(s)
- Anne Freudenberg
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | | | | |
Collapse
|
36
|
Van Kleef E, Van Trijp JCM, Van Den Borne JJGC, Zondervan C. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges. Crit Rev Food Sci Nutr 2012; 52:611-28. [PMID: 22530713 PMCID: PMC3662086 DOI: 10.1080/10408398.2010.504901] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined.
Collapse
Affiliation(s)
- E Van Kleef
- Wageningen University, Marketing & Consumer Behaviour Group, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Lin Y, Bolca S, Vandevijvere S, Van Oyen H, Van Camp J, De Backer G, Foo LH, De Henauw S, Huybrechts I. Dietary sources of animal and plant protein intake among Flemish preschool children and the association with socio-economic and lifestyle-related factors. Nutr J 2011; 10:97. [PMID: 21943312 PMCID: PMC3191475 DOI: 10.1186/1475-2891-10-97] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 09/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background The aims of this study were to assess the intake of animal, plant and food group-specific protein, and to investigate their associations with socio-economic and lifestyle-related factors in Flemish preschoolers. Methods Three-day estimated dietary records were collected from 661 preschoolers aged 2.5-6.5 y (338 boys and 323 girls). Multiple linear regression analysis was used to investigate the association between animal, plant, and food group-specific protein intake and socio-economic and lifestyle factors. Results Animal proteins (mean 38 g/d) were the main source of total protein (mean 56 g/d), while mean plant protein intake amounted to 18 g/d. The group of meat, poultry, fish and eggs was the main contributor (51%) to animal protein intake, followed by milk and milk products (35%). Bread and cereals (41%) contributed most to the plant protein intake, followed by low-nutritious, energy-dense foods (21%). With higher educated fathers and mothers as reference, respectively, preschoolers with lower secondary and secondary paternal education had lower animal, dairy-, and meat-derived protein intakes, and those with lower secondary and secondary maternal education consumed less plant, and bread and cereal-derived proteins. Compared to children with high physical activity levels, preschoolers with low and moderate physical activity had lower animal and plant protein intakes. Significantly higher potatoes and grains-, and fish- derived proteins were reported for children of smoking mothers and fathers, respectively, compared to those of non-smoking mothers and fathers. Conclusions The total protein intake of Flemish preschoolers was sufficient according to the recommendations of the Belgian Superior Health Council. Parental level of education and smoking status might play a role in the sources of children's dietary proteins.
Collapse
Affiliation(s)
- Yi Lin
- Unit Nutrition and Food Safety, Department of Public Health, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brattbakk HR, Arbo I, Aagaard S, Lindseth I, de Soysa AKH, Langaas M, Kulseng B, Lindberg F, Johansen B. Balanced caloric macronutrient composition downregulates immunological gene expression in human blood cells-adipose tissue diverges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 17:41-52. [PMID: 21679058 DOI: 10.1089/omi.2010.0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease, obesity, and type 2 diabetes are conditions characterized by low-grade systemic inflammation, strongly influenced by lifestyle, but the mechanisms that link these characteristics are poorly understood. Our first objective was to investigate if a normocaloric diet with a calorically balanced macronutrient composition influenced immunological gene expression. Findings regarding the suitability of blood as biological material in nutrigenomics and gene expression profiling have been inconclusive. Our second objective was to compare blood and adipose tissue sample quality in terms of adequacy for DNA-microarray analyses, and to determine tissue-specific gene expression patterns. Blood and adipose tissue samples were collected for gene expression profiling from three obese men before, during, and after a 28-day normocaloric diet intervention where each meal contained an approximately equal caloric load of macronutrients. Time series analyses of blood gene expression revealed a cluster of downregulated genes involved in immunological processes. Blood RNA quality and yield were satisfactory, and DNA-microarray analysis reproducibility was similar in blood and adipose tissue. Gene expression correlation between blood and adipose tissue varied according to gene function, and was especially low for genes involved in immunological and metabolic processes. This suggests that diet composition is of importance in inflammatory processes in blood cells. The findings also suggest that a systems biology approach, in which tissues are studied in parallel, should be employed to fully understand the impact of dietary challenges on the human body.
Collapse
Affiliation(s)
- Hans-Richard Brattbakk
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim 7491, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Athletes and exercisers have utilised high-protein diets for centuries. The objective of this review is to examine the evidence for the efficacy and potential dangers of high-protein diets. One important factor to consider is the definition of a ‘high-protein diet’. There are several ways to consider protein content of a diet. The composition of the diet can be determined as the absolute amount of the protein (or other nutrient of interest), the % of total energy (calories) as protein and the amount of protein ingested per kg of body weight. Many athletes consume very high amounts of protein. High-protein diets most often are associated with muscle hypertrophy and strength, but now also are advocated for weight loss and recovery from intense exercise or injuries. Prolonged intake of a large amount of protein has been associated with potential dangers, such as bone mineral loss and kidney damage. In otherwise healthy individuals, there is little evidence that high protein intake is dangerous. However, kidney damage may be an issue for individuals with already existing kidney dysfunction. Increased protein intake necessarily means that overall energy intake must increase or consumption of either carbohydrate or fat must decrease. In conclusion, high protein intake may be appropriate for some athletes, but there are potential negative consequences that must be carefully considered before adopting such a diet. In particular, care must be taken to ensure that there is sufficient intake of other nutrients to support the training load.
Collapse
|
40
|
Effects of a supra-sustained gelatin-milk protein diet compared with (supra-)sustained milk protein diets on body-weight loss. Br J Nutr 2011; 105:1388-98. [PMID: 21272400 DOI: 10.1017/s0007114510005106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diets higher in protein content result in increased satiety and energy expenditure. In the short term, gelatin showed stronger hunger suppression and less subsequent energy intake compared with other proteins. The present study investigated whether a supra-sustained gelatin-milk protein (GMP) diet promotes weight loss compared with a sustained milk protein (SMP) diet and a supra-sustained milk protein (SSMP) diet during an 8-week diet period. A total of seventy-two healthy subjects (31·2 (sd 4·8) kg/m2; 43 (sd 10) years) followed one of the three diets in a subject-specific amount: SMP, SSMP or GMP diet. During weeks 1-4, energy intake was 100 % of individual energy requirement: 10, 40 and 50 % of energy (En %) as protein, fat and carbohydrate, respectively (SMP diet), and 20, 30 and 50 En % as protein, fat and carbohydrate, respectively (SSMP diet or GMP diet). During weeks 5-8, energy intake was 33 % of individual energy requirement: 30, 35 and 35 En % as protein, fat and carbohydrate, respectively (SMP diet), and 60, 5 and 35 En % as protein, fat and carbohydrate, respectively (SSMP diet or GMP diet). Thus, absolute protein intake was kept constant throughout per subject. Significant decreases in BMI (P < 0·0001) were similar between the GMP ( - 1·7 (sd 0·5) kg/m2) and the SMP ( - 2·1 (sd 0·8) kg/m2) and SSMP ( - 1·6 (sd 0·5) kg/m2) diets. Decreases in fat-free mass (FFM), fat mass (FM) and FM %, and increases in FFM % were similar between the GMP and both control diets. Changes in RQ differed (P < 0·05) between the GMP ( - 0·01 (sd 0·06)) and SSMP ( - 0·04 (sd 0·04)) diets. Changes in HDL concentrations differed (P < 0·05) between the GMP ( - 0·21 (sd 0·18) mmol/l) and the SMP and SSMP diets ( - 0·08 (sd 0·18) mmol/l and - 0·09 (sd 0·26) mmol/l, respectively). In conclusion, a gelatin-milk protein diet does not induce more beneficial effects during an 8-week weight-loss period compared with a SMP or SSMP diet.
Collapse
|
41
|
Plant and animal protein intake and its association with overweight and obesity among the Belgian population. Br J Nutr 2010; 105:1106-16. [DOI: 10.1017/s0007114510004642] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of the present study was to assess animal and plant protein intakes in the Belgian population and to examine their relationship with overweight and obesity (OB). The subjects participated in the Belgian National Food Consumption Survey conducted in 2004. Food consumption was assessed by using two non-consecutive 24 h dietary recalls. About 3083 participants ( ≥ 15 years of age; 1546 males, 1537 females) provided completed dietary information. Animal protein intake (47 g/d) contributed more to total protein intakes of 72 g/d than plant protein intake, which accounted for 25 g/d. Meat and meat products were the main contributors to total animal protein intakes (53 %), whereas cereals and cereal products contributed most to plant protein intake (54 %). Males had higher animal and plant protein intakes than females (P < 0·001). Legume and soya protein intakes were low in the whole population (0·101 and 0·174 g/d, respectively). In males, animal protein intake was positively associated with BMI (β = 0·013; P = 0·001) and waist circumference (WC; β = 0·041; P = 0·002). Both in males and females, plant protein intake was inversely associated with BMI (males: β = − 0·036; P < 0·001; females: β = − 0·046; P = 0·001) and WC (male: β = − 0·137; P < 0·001; female: β = − 0·096; P = 0·024). In conclusion, plant protein intakes were lower than animal protein intakes among a representative sample of the Belgian population and decreased with age. Associations with anthropometric data indicated that plant proteins could offer a protective effect in the prevention of overweight and OB in the Belgian population.
Collapse
|
42
|
Alfenas RDCG, Bressan J, Paiva ACD. Effects of protein quality on appetite and energy metabolism in normal weight subjects. ACTA ACUST UNITED AC 2010; 54:45-51. [PMID: 20414547 DOI: 10.1590/s0004-27302010000100008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/14/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the effects of consumption of different protein sources on food intake and energy expenditure in normal weight subjects. SUBJECTS AND METHODS Breakfast preparations (casein, soy protein, whey protein or control) were ingested during seven consecutive days. Appetite, food intake, and energy expenditure were assessed. RESULTS Casein consumption led to a lower energy intake than whey protein. There was lower energy intake on day 7 than on day 1 of the casein session. Soy protein preparations resulted in higher diet induced thermogenesis (DIT) than in control preparations. The respiratory quotient (RQ) obtained in the whey protein session was lower than the control and soy protein sessions. CONCLUSION These results suggest that the consumption of different protein types leads to distinct effects on satiety (casein), DIT (soy protein), and/or RQ (whey protein).
Collapse
|
43
|
Son’kin VD, Kirdin AA, Andreev RS, Akimov EB. Homeostatic non-shivering thermogenesis in humans facts and hypotheses. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s0362119710050129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Hochstenbach-Waelen A, Westerterp KR, Soenen S, Westerterp-Plantenga MS. No long-term weight maintenance effects of gelatin in a supra-sustained protein diet. Physiol Behav 2010; 101:237-44. [PMID: 20457173 DOI: 10.1016/j.physbeh.2010.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022]
Abstract
In the short-term, gelatin showed stronger hunger suppression and less energy intake compared with other proteins. This study investigated if a supra-sustained gelatin-milk protein (GMP) diet improves weight maintenance (WM) compared with a sustained milk protein (SMP) diet and supra-sustained milk protein (SSMP) diet during a 4-months WM period after 8-week weight loss (WL) in sixty-five healthy subjects (28.6+/-3.4kg/m(2); 44+/-10years). Absolute protein intake was kept constant (sustained) throughout per subject. Diets were: protein(P)/fat(F)/carbohydrate(C): 15/40/45% of energy (En%) (SMP) and 30/25/45 En% (SSMP or GMP) for weeks 9-16. Diets on weeks 17-24: P/F/C: 30/35/35 En% (SMP) and 60/5/35 En% (SSMP or GMP). From weeks 8 to 16, and weeks 16 to 24, changes in BMI were similar between the GMP (-0.4+/-0.6 and 0.3+/-0.7kg/m(2) respectively), and the SMP (-0.7+/-0.9 and 0.1+/-0.7kg/m(2) respectively) and SSMP (-0.6+/-0.6 and 0.3+/-0.6kg/m(2) respectively) diets. Sparing of fat free mass (FFM): increases/decreases in FFM%/fat-mass% from weeks 8 to 16 were similar between the GMP and both control diets, and maintained from weeks 16 to 24. In conclusion, all 3 diets resulted in a successful WM period, while a GMP diet does not improve body weight maintenance and related variables after weight loss compared with a SMP and SSMP diet.
Collapse
Affiliation(s)
- A Hochstenbach-Waelen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre+, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Hochstenbach-Waelen A, Westerterp-Plantenga MS, Veldhorst MAB, Westerterp KR. Single-protein casein and gelatin diets affect energy expenditure similarly but substrate balance and appetite differently in adults. J Nutr 2009; 139:2285-92. [PMID: 19864402 DOI: 10.3945/jn.109.110403] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increasing the protein content of a diet results in increased satiety and energy expenditure (EE). It is not clear whether the magnitude of these effects differs between proteins differing in concentrations of indispensable amino acids (IAA). We hypothesized that a protein lacking IAA may stimulate appetite suppression and EE and may limit positive protein balance. Therefore, we compared appetite, EE, and substrate balances between gelatin (incomplete protein) and casein (complete protein) in single-protein diets with either 25 or 10% of energy (En%) from protein. During a 36-h stay in a respiration chamber, 23 healthy men (n = 11) and women (n = 12) (BMI, 22.2 +/- 2.3 kg/m(2); age, 25 +/- 7 y) consumed 4 isoenergetic diets: 25 En% (25/20/55 En% protein/fat/carbohydrate) and 10 En% (10/35/55 En% protein/fat/carbohydrate) casein or gelatin diet in a randomized crossover design. For 3 d before the study, participants consumed a diet at home with similar macronutrient distribution as the diet they would receive during the subsequent stay in the chamber. Hunger was suppressed 44% more (P < 0.05) and protein balance was more negative when consuming the 10 En% gelatin diet (-0.17 +/- 0.03 MJ/d) compared with the 10 En% casein diet (-0.07 +/- 0.03 MJ/d; P < 0.05); carbohydrate and fat balances did not differ between the treatments. EE did not differ when participants consumed the 25 En% or 10 En% diets. Participants were in higher protein balance (0.56 +/- 0.05 vs. 0.30 +/- 0.04 MJ/d; P < 0.0001), lower carbohydrate balance (0.86 +/- 0.14 vs. 1.37 +/- 0.17 MJ/d; P < 0.01), and similar negative fat balance when they consumed the 25 En% casein compared with the 25 En% gelatin diet. In conclusion, when we compared the effects of an incomplete protein (gelatin) and a complete protein (casein) at 2 concentrations over 36 h, gelatin resulted in a greater appetite suppression; casein caused a greater positive (smaller negative) protein balance, and effects on EE did not differ. In terms of weight loss for people with obesity, the greater hunger-suppressing effect of gelatin may play a role in reducing energy intake if this effect is maintained when consuming a gelatin diet in the long term. In addition, long-term use of casein may contribute to preservation of fat-free mass.
Collapse
Affiliation(s)
- Ananda Hochstenbach-Waelen
- Department of Human Biology, Nutrition and Toxicology, Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Comparison of 2 diets with either 25 or 10 energy% gelatin on energy expenditure, substrate balances and appetite profile. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.eclnm.2009.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Griffioen-Roose S, Mars M, Finlayson G, Blundell JE, de Graaf C. Satiation due to equally palatable sweet and savory meals does not differ in normal weight young adults. J Nutr 2009; 139:2093-8. [PMID: 19759247 DOI: 10.3945/jn.109.110924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sensory properties are greatly involved in the process of satiation. Regarding the nature of sensory signals, an important distinction can be made between sweet and savory taste. It is unclear, however, whether sweet and savory differ in their influence on satiation. Our objective was to investigate the difference between a sweet and savory taste on satiation, independent of palatability, texture, energy density, and macronutrient composition. A crossover design was used, consisting of 3 test conditions in which 2 tastes (sweet and savory) were compared. Sixty-four healthy, nonsmoking, unrestrained participants (18 males and 46 females), with a mean age of 22.3 +/- 2.4 y and a mean BMI of 21.6 +/- 1.7 kg/m(2), enrolled. Rice was used as a test meal served in either a sweet or savory version. The meals were similar in palatability, texture, energy density, and macronutrient composition. Ad libitum intake, eating rate, and changes in pleasantness and appetite during the meals were measured. Ad libitum intake did not differ between the 2 meals; participants ate a mean of 314 +/- 144 g of the sweet meal and 333 +/- 159 g of the savory meal. Eating rate (sweet, 38 +/- 14 g/min; savory, 37 +/- 14 g/min) and changes in pleasantness and appetite during the meals were similar. Homogeneous meals with a sweet or savory taste, similar in palatability, texture, energy density, and macronutrient composition, do not differ in their influence on satiation in normal weight young adults.
Collapse
|
48
|
Veldhorst MAB, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 2009; 90:519-26. [PMID: 19640952 DOI: 10.3945/ajcn.2009.27834] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND High-protein diets have been shown to increase energy expenditure (EE). OBJECTIVE The objective was to study whether a high-protein, carbohydrate-free diet (H diet) increases gluconeogenesis and whether this can explain the increase in EE. DESIGN Ten healthy men with a mean (+/-SEM) body mass index (in kg/m(2)) of 23.0 +/- 0.8 and age of 23 +/- 1 y received an isoenergetic H diet (H condition; 30%, 0%, and 70% of energy from protein, carbohydrate, and fat, respectively) or a normal-protein diet (N condition; 12%, 55%, and 33% of energy from protein, carbohydrate, and fat, respectively) for 1.5 d according to a randomized crossover design, and EE was measured in a respiration chamber. Endogenous glucose production (EGP) and fractional gluconeogenesis were measured via infusion of [6,6-(2)H(2)]glucose and ingestion of (2)H(2)O; absolute gluconeogenesis was calculated by multiplying fractional gluconeogenesis by EGP. Body glycogen stores were lowered at the start of the intervention with an exhaustive glycogen-lowering exercise test. RESULTS EGP was lower in the H condition than in the N condition (181 +/- 9 compared with 226 +/- 9 g/d; P < 0.001), whereas fractional gluconeogenesis was higher (0.95 +/- 0.04 compared with 0.64 +/- 0.03; P < 0.001) and absolute gluconeogenesis tended to be higher (171 +/- 10 compared with 145 +/- 10 g/d; P = 0.06) in the H condition than in the N condition. EE (resting metabolic rate) was greater in the H condition than in the N condition (8.46 +/- 0.23 compared with 8.12 +/- 0.31 MJ/d; P < 0.05). The increase in EE was a function of the increase in gluconeogenesis (DeltaEE = 0.007 x Deltagluconeogenesis - 0.038; r = 0.70, R(2) = 0.49, P < 0.05). The contribution of Deltagluconeogenesis to DeltaEE was 42%; the energy cost of gluconeogenesis was 33% (95% CI: 16%, 50%). CONCLUSIONS Forty-two percent of the increase in energy expenditure after the H diet was explained by the increase in gluconeogenesis. The cost of gluconeogenesis was 33% of the energy content of the produced glucose.
Collapse
Affiliation(s)
- Margriet A B Veldhorst
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, Netherlands.
| | | | | |
Collapse
|
49
|
|
50
|
Hochstenbach-Waelen A, Veldhorst MAB, Nieuwenhuizen AG, Westerterp-Plantenga MS, Westerterp KR. Comparison of 2 diets with either 25% or 10% of energy as casein on energy expenditure, substrate balance, and appetite profile. Am J Clin Nutr 2009; 89:831-8. [PMID: 19176726 DOI: 10.3945/ajcn.2008.26917] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND An increase in the protein content of a diet results in an increase in satiety and energy expenditure. It is not clear to what extent a specific type of protein has such effects. OBJECTIVE The objective was to compare the effects of 2 diets with either 25% or 10% of energy from casein (25En% and 10En% casein diets), as the only protein source, on energy expenditure, substrate balance, and appetite profile. DESIGN During a 36-h stay in a respiration chamber, 24 healthy subjects [12 men and 12 women, body mass index (in kg/m(2)) of 22.4 +/- 2.4, age 25 +/- 7 y] received isoenergetic diets according to subject-specific energy requirements: 25En% diet (25%, 20%, and 55% of energy as protein, fat, and carbohydrate, respectively) and 10En% diet (10%, 35%, and 55% of energy as protein, fat, and carbohydrate, respectively) in a randomized crossover design. Three days before the diets began, the subjects consumed a similar diet at home. Energy expenditure, substrate oxidation, and appetite scores were measured. RESULTS The 25En% casein diet resulted in a 2.6% higher 24-h total energy expenditure (9.30 +/- 0.24 compared with 9.07 +/- 0.24 MJ/d; P < 0.01) and a higher sleeping metabolic rate (6.74 +/- 0.16 compared with 6.48 +/- 0.17 MJ/d; P < 0.001) than did the 10En% casein diet. With the 25En% casein diet, compared with the 10En% casein diet, the subjects were in positive protein balance (0.57 +/- 0.05 compared with -0.08 +/- 0.03 MJ/d; P < 0.0001) and negative fat balance (-0.83 +/- 0.14 compared with 0.11 +/- 0.17 MJ/d; P < 0.0001), whereas positive carbohydrate balances were not significantly different between diets. Satiety was 33% higher with the 25En% casein diet than with the 10En% casein diet (P < 0.05). CONCLUSION A 25En% casein diet boosts energy expenditure, protein balance, satiety, and negative fat balance, which is beneficial to body weight management.
Collapse
Affiliation(s)
- Ananda Hochstenbach-Waelen
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|