1
|
Gonzalez-Martin R, Palomar A, Perez-Deben S, Salsano S, Quiñonero A, Caracena L, Fernandez-Saavedra R, Fernandez-Martinez R, Conde-Vilda E, Quejido AJ, Giles J, Vidal C, Bellver J, Dominguez F. Higher Concentrations of Essential Trace Elements in Women Undergoing IVF May Be Associated with Poor Reproductive Outcomes Following Single Euploid Embryo Transfer. Cells 2024; 13:839. [PMID: 38786061 PMCID: PMC11119764 DOI: 10.3390/cells13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Essential trace elements are micronutrients whose deficiency has been associated with altered fertility and/or adverse pregnancy outcomes, while surplus may be toxic. The concentrations of eight essential trace elements were measured using inductively coupled mass spectrometry (ICP-MS) and assessed with respect to clinical in vitro fertilization (IVF) outcomes in a population of 51 women undergoing IVF with intracytoplasmic sperm injection (ICSI), pre-implantation genetic screening for aneuploidy (PGT-A), and single frozen euploid embryo transfer (SET/FET). Specifically, copper (Cu), zinc (Zn), molybdenum, selenium, lithium, iron, chromium, and manganese were quantified in follicular fluid and whole blood collected the day of vaginal oocyte retrieval (VOR) and in urine collected the day of VOR and embryo transfer. We found that the whole blood Cu/Zn ratio was significantly associated with superior responses to ovarian stimulation. Conversely, the whole blood zinc and selenium concentrations were significantly associated with poor ovarian response outcomes. Higher levels of whole blood zinc and selenium, urinary selenium, lithium, and iron had significant negative associations with embryologic outcomes following IVF. Regarding clinical IVF outcomes, higher urinary molybdenum concentrations the day of VOR were associated with significantly lower odds of implantation and live birth, while higher urinary Cu/Mo ratios on the day of VOR were associated with significantly higher odds of implantation, clinical pregnancy, and live birth. Our results suggest that essential trace element levels may directly influence the IVF outcomes of Spanish patients, with selenium and molybdenum exerting negative effects and copper-related ratios exerting positive effects. Additional studies are warranted to confirm these relationships in other human populations.
Collapse
Affiliation(s)
- Roberto Gonzalez-Martin
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Andrea Palomar
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Silvia Perez-Deben
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Stefania Salsano
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Alicia Quiñonero
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Laura Caracena
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Rocio Fernandez-Saavedra
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Rodolfo Fernandez-Martinez
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Estefania Conde-Vilda
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Alberto J. Quejido
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Juan Giles
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Carmen Vidal
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Jose Bellver
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine of Valencia, 46010 Valencia, Spain
| | - Francisco Dominguez
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| |
Collapse
|
2
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
3
|
Kuraś R, Stępnik M, Grobelny J, Tomaszewska E, Stanisławska M, Domeradzka-Gajda K, Wąsowicz W, Janasik B. Distribution of molybdenum in soft tissues and blood of rats after intratracheal instillation of molybdenum(IV) sulfide nano- and microparticles. Toxicol Res 2024; 40:163-177. [PMID: 38223673 PMCID: PMC10786813 DOI: 10.1007/s43188-023-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
There is still little literature data on the toxicity and safety of the commonly used molybdenum (Mo) disulfide which is present in the working as well as living environments. Thus, an experiment was carried out involving rats, with single and repeated intratracheal exposure (in the latter case, 7 administrations at 2-week intervals with the analysis performed after 90 days) to lower (1.5 mg Mo kg-1 b.w.) and higher (5 mg Mo kg-1 b.w.) doses of molybdenum(IV) sulfide nanoparticles (MoS2-NPs) and microparticles (MoS2-MPs). The analysis of Mo concentrations in the tail and heart blood as well as in soft tissues (lung, liver, spleen, brain), after mineralization and bioimaging, was meant to facilitate an assessment of its accumulation and potential effects on the body following short- and long-term exposure. The multi-compartment model with an exponential curve of Mo concentration over time with different half-lives for the distribution and elimination phases of MoS2-MPs and MoS2-NPs was observed. After 24 h of exposure, a slight increase in Mo concentration in blood was observed. Next, Mo concentration indicated a decrease in blood concentration from 24 h to day 14 (the Mo concentration before the second administration), below the pre-exposure concentration. The next phase was linear, less abrupt and practically flat, but with an increasing trend towards the end of the experiment. Significantly higher Mo concentrations in MoS2-NPs and MoS2-MPs was found in the lungs of repeatedly exposed rats compared to those exposed to a single dose. The analysis of Mo content in the liver and the spleen tissue showed a slightly higher concentration for MoS2-NPs compared to MoS2-MPs. The results for the brain were below the calculated detection limit. Results were consistent with results obtained by bioimaging technique.
Collapse
Affiliation(s)
- Renata Kuraś
- Central Laboratory, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| | - Maciej Stępnik
- QSAR LAB Ltd, 3 Lipy St., 80-172 Gdańsk, Poland
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St., 90-236 Łódź, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska St., 90-236 Łódź, Poland
| | - Magdalena Stanisławska
- Central Laboratory, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| | - Katarzyna Domeradzka-Gajda
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| | - Wojciech Wąsowicz
- Professor Emeritus, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| | - Beata Janasik
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Łódź, Poland
| |
Collapse
|
4
|
Gonzalez-Martin R, Palomar A, Quiñonero A, Pellicer N, Fernandez-Saavedra R, Conde-Vilda E, Quejido AJ, Whitehead C, Scott RT, Dominguez F. The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer. Int J Mol Sci 2023; 24:10968. [PMID: 37446146 DOI: 10.3390/ijms241310968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Essential trace elements are required in extremely small amounts and obtained through diet. This research focuses on detecting major trace elements in different biofluids of sixty women undergoing ICSI with PGT-A and SET/FET at IVI-RMA, New Jersey, and assessing their impact on their IVF outcomes. Urine, plasma, and follicular fluid samples were collected on the vaginal oocyte retrieval day to measure the concentrations of eight essential trace elements (copper, zinc, molybdenum, lithium, selenium, manganese, chromium, and iron) using ICP-MS. After analysis, ovarian response and preimplantation outcomes had significant positive associations with both copper alone and the copper/zinc ratio in the follicular fluid and plasma, in addition to plasma manganese. Alternatively, elevated follicular fluid lithium concentrations were significantly associated with poor preimplantation outcomes while the urinary molybdenum concentration was significantly associated with a lower probability of implantation, clinical pregnancy, and live birth. Urinary lithium and chromium concentrations were significantly associated with a lower probability of achieving a live birth. Our results suggest that the essential trace elements present in follicular fluid, plasma, and urine of women are directly associated with their reproductive outcomes, with copper and manganese exerting positive effects and lithium and molybdenum exerting negative effects.
Collapse
Affiliation(s)
- Roberto Gonzalez-Martin
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Andrea Palomar
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Alicia Quiñonero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rocio Fernandez-Saavedra
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, CIEMAT, 28040 Madrid, Spain
| | - Estefania Conde-Vilda
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, CIEMAT, 28040 Madrid, Spain
| | - Alberto J Quejido
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, CIEMAT, 28040 Madrid, Spain
| | - Christine Whitehead
- IVIRMA Global Research Alliance, IVI-RMA New Jersey, Basking Ridge, New Jersey, NJ 07920, USA
| | - Richard T Scott
- IVIRMA Global Research Alliance, IVI-RMA New Jersey, Basking Ridge, New Jersey, NJ 07920, USA
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19044, USA
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| |
Collapse
|
5
|
Sethi M, Shah N, Mohanty TK, Bhakat M, Baithalu RK. New dimensions on maternal and prepubertal nutritional disruption on bull fertility: A review. Anim Reprod Sci 2022; 247:107151. [DOI: 10.1016/j.anireprosci.2022.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
|
6
|
Analyzing the Therapeutic Efficacy of Bis-Choline-Tetrathiomolybdate in the Atp7b-/- Copper Overload Mouse Model. Biomedicines 2021; 9:biomedicines9121861. [PMID: 34944677 PMCID: PMC8698685 DOI: 10.3390/biomedicines9121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Bis-choline-tetrathiomolybdate, introduced as WTX101 (now known as ALXN1840), is a first-in-class copper-protein-binding agent for oral therapy of Wilson’s disease. In contrast to other decoppering agents such as trientine or D-penicillamine it acts by forming a tripartite complex with copper and albumin, thereby detoxifying excess liver and blood copper through biliary excretion. Preclinical animal experimentation with this drug was typically done with the alternative ammonium salt of tetrathiomolybdate, which is expected to have identical properties in terms of copper binding. Here, we comparatively analyzed the therapeutic efficacy of ALXN1840, D-penicillamine and trientine in lowering hepatic copper content in Atp7b−/− mouse. Liver specimens were subjected to laser ablation inductively conductively plasma mass spectrometry and electron microscopic analysis. We found that ALXN1840 caused a massive increase of hepatic copper and molybdenum during early stages of therapy. Prolonged treatment with ALXN1840 reduced hepatic copper to an extent that was similar to that observed after administration of D-penicillamine and trientine. Electron microscopic analysis showed a significant increase of lysosomal electron-dense particles in the liver confirming the proposed excretory pathway of ALXN1840. Ultrastructural analysis of mice treated with dosages comparable to the bis-choline-tetrathiomolybdate dosage used in an ongoing phase III trial in Wilson’s disease patients, as well as D-penicillamine and trientine, did not show relevant mitochondrial damage. In contrast, a high dose of ALXN1840 applied for four weeks triggered dramatic structural changes in mitochondria, which were notably characterized by the formation of holes with variable sizes. Although these experimental results may not be applicable to patients with Wilson’s disease, the data suggests that ALXN1840 should be administered at low concentrations to prevent mitochondrial dysfunction and overload of hepatic excretory pathways.
Collapse
|
7
|
Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, Shukor MY. Microbiological Reduction of Molybdenum to Molybdenum Blue as a Sustainable Remediation Tool for Molybdenum: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5731. [PMID: 34071757 PMCID: PMC8198738 DOI: 10.3390/ijerph18115731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.
Collapse
Affiliation(s)
- Hafeez Muhammad Yakasai
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University, Kano PMB 3011, Nigeria
| | - Mohd Fadhil Rahman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Mohd Arif Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nor Aripin Shamaan
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| |
Collapse
|
8
|
Zeng F, Chen Y, Guo C, Li C, Wei H, Li L, Meng L, Zhang S. Analysis of differentially abundant proteins related to boar fertility in seminal plasma using iTRAQ-based quantitative proteomics. J Proteomics 2021; 236:104120. [PMID: 33540064 DOI: 10.1016/j.jprot.2021.104120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Animal fertility is one of the most important characteristics for the livestock breeding industry. Conventional semen analysis provides basic information on sperm quality, but the predictive value of such analysis with regard to fertility remains questionable. Therefore, it is important to determine and predict male fertility more accurately in the clinic. To identify seminal plasma proteins involved in fertility, isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography with tandem mass spectrometry (quantitative proteomic analysis) were used to identify differentially abundant proteins (DAPs) in seminal plasma between high- and low-reproductive-efficiency Landrace boars. A total of 141 DAPs were identified, of which 125 upregulated and 16 downregulated proteins were subjected to bioinformatics analysis. These DAPs were found to be mainly involved in proteolysis, ATP binding, and energy metabolism. We investigated the relevance of three DAPs-ceruloplasmin, carboxypeptidase E (CPE), and serpin family A member 12 (SERPINA12)-in an in vitro fertility assay. This assay revealed that the inhibition of these proteins with antibodies can reduce or increase the fertilization rate. These results indicate possible biomarkers for the selection of high-fertility boars and provide a theoretical basis for the use of protein biomarkers in the livestock breeding industry. SIGNIFICANCE: Our study identified differentially abundant proteins in the seminal plasma of high-reproductive-efficiency and low-reproductive-efficiency Landrace boars. These proteins may be used as biomarkers to screen out high-fertility boars. The study can provide not only a new method for improving the effects of artificial insemination and reproductive efficiency of boars but also an important reference for boar breeding. Meanwhile, because pigs and humans have similar physiological parameters and organ sizes, our findings can also serve as a reference for human reproduction research.
Collapse
Affiliation(s)
- Fanwen Zeng
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Yuming Chen
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China; Guangdong Kaiping Guangsanbao Pig Industry Co., Ltd, Jiangmen 529300, China
| | - Conghui Guo
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Chengde Li
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Li Meng
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industryg, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Luo J, Hao S, Zhao L, Shi F, Ye G, He C, Lin J, Zhang W, Liang H, Wang X, Guo H, He R, Tang H, Li Y. Oral exposure of pregnant rats to copper nanoparticles caused nutritional imbalance and liver dysfunction in fetus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111206. [PMID: 32889309 DOI: 10.1016/j.ecoenv.2020.111206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Copper nanoparticles (Cu NPs) are increasingly used as an animal feed additive in China. In previous studies, it was determined that Cu NPs can penetrate the placental barrier, however, its toxic effects on the fetus have not yet been elucidated. Therefore, in this study, we investigated the potential fetal toxic effects of Cu NPs. Cu NPs were orally administered to pregnant Sprague-Dawley rats from gestation days (GDs) 3-18 at a dose of 60, 120, and 180 mg/kg/day. Cesarean sections were conducted on GD 19. During fetal examination, no toxicities were observed regarding general clinical signs, however, Cu NPs significantly decreased fetal body weight, body length, and liver weights. Cu ions and Cu MPs exhibited similar effects on the fetal development. Cu NPs increased the liver concentration of Cu, and decreased protein levels and Fe in fetuses. Cu NPs also increased oxidative stress and inflammation in the fetus after pregnant rats were exposed to high doses of Cu NPs. Oral exposure to Cu NPs during pregnancy increased Cu concentrations in the fetus, which not only affected fetal development, but also significantly induced oxidative stress and inflammatory responses in fetal liver. Taken together, these findings are valuable to evaluate fetal risk assessment after oral exposure of Cu NPs during pregnancy. Additional comprehensive toxicity studies are deemed necessary to clarify the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, 554300, China
| | - Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Liang
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, 554300, China
| | - Xun Wang
- College of Animal Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Herman S, Lipiński P, Ogórek M, Starzyński R, Grzmil P, Bednarz A, Lenartowicz M. Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis. Int J Mol Sci 2020; 21:ijms21239053. [PMID: 33260507 PMCID: PMC7730223 DOI: 10.3390/ijms21239053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.
Collapse
Affiliation(s)
- Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
- Correspondence:
| |
Collapse
|
11
|
Calderón B, Gómez-Martín JM, Cuadrado-Ayuso M, Cobeta P, Vega-Piñero B, Mateo R, Galindo J, Botella-Carretero JI. Circulating Zinc and Copper Levels are Associated with Sperm Quality in Obese Men after Metabolic Surgery: A Pilot Study. Nutrients 2020; 12:nu12113354. [PMID: 33143218 PMCID: PMC7692370 DOI: 10.3390/nu12113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Inadequate levels of several trace elements and vitamins may impair spermatogenesis in men. Although weight loss after metabolic surgery normalizes male reproductive hormones, sperm quality seems to not improve. We hypothesized that circulating concentrations of zinc, copper and other trace elements and vitamins might be involved. (2) Methods: We studied 20 men submitted to metabolic surgery at baseline and after two years. Hormone profiles, serum trace elements and vitamins were studied together with sperm analysis. (3) Results: At follow-up, serum testosterone, follicle-stimulating hormone and inhibin B concentrations increased showing a beneficial hormonal response for spermatogenesis. Conversely, serum copper, zinc and ferritin showed a decline after surgery. In total, 33% of men showed zinc deficiency, 27% copper deficiency and 20% iron deficiency, among others. Sperm analysis showed that all revaluated patients had at least one abnormal parameter. Serum zinc concentrations showed a positive correlation with progressive motility (r = 0.577, p = 0.031), and serum ferritin a positive correlation with sperm volume (ρ = 0.535, p = 0.049). Serum copper showed a weak and near significant correlation with motility (r = 0.115, p = 0.051). (4) Conclusions: The lack of improvement in sperm quality in obese men after metabolic surgery may be related to nutrient malabsorption, especially zinc, copper and iron.
Collapse
Affiliation(s)
- Berniza Calderón
- Instituto Tecnológico de Santo Domingo (INTEC), 10602 Santo Domingo, Dominican Republic;
- Affinis, 10131 Santo Domingo, Dominican Republic
| | - Jesús M. Gómez-Martín
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
| | - Marta Cuadrado-Ayuso
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.C.-A.); (P.C.); (J.G.)
| | - Pilar Cobeta
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Belén Vega-Piñero
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
| | - Raquel Mateo
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
| | - Julio Galindo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.C.-A.); (P.C.); (J.G.)
| | - José I. Botella-Carretero
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), 28034 Madrid, Spain; (J.M.G.-M.); (B.V.-P.); (R.M.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-91-336-8343 or +34-91-336-8342
| |
Collapse
|
12
|
Ogórek M, Herman S, Pierzchała O, Bednarz A, Rajfur Z, Baster Z, Grzmil P, Starzyński RR, Szudzik M, Jończy A, Lipiński P, Lenartowicz M. Molecular machinery providing copper bioavailability for spermatozoa along the epididymial tubule in mouse. Biol Reprod 2020; 100:1505-1520. [PMID: 30997485 DOI: 10.1093/biolre/ioz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
Progressive functional maturation of spermatozoa is completed during the transit of these cells through the epididymis, a tubule structure connecting a testicle to a vas deferens. Epididymal epithelial cells by means of their secretory and absorptive functions determine a highly specialized luminal microenvironment containing multiple organic and inorganic components. The latter include copper ions, which due to their redox properties are indispensable for critical homeostatic processes occurring in spermatozoa floating in different part of epididymis but can be potentially toxic. Main purpose of our study was to determine epididymal region-dependent expression and localization of copper transporters ensuring a tight control of copper concentration in epididymal fluid. We also aimed at identifying proteins responsible for copper uptake by spermatozoa and verifying whether this process is coordinated with copper supply to superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Our study identifies two ATPases-ATP7A, ATP7B and Slc31a1, major copper importers/exporters depending on their differential expression on epididymal polarized epithelial cells of the caput, corpus, and cauda. Next, ceruloplasmin seems to be a chief protein transporting copper in the epididymal fluid and providing this biometal to spermatozoa. The entry of copper to germ cells is mediated by Slc31a1 and is correlated with both expressions of copper chaperone for superoxide dismutase (CCS), copper chaperone directly providing copper ions to SOD1 and with the expression and activity of the latter. Our results outline a network of cooperating copper binding proteins expressed in epididymal epithelium and in spermatozoa that orchestrate bioavailability of this microelement for gametes and protect them against copper toxicity.
Collapse
Affiliation(s)
- M Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - S Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - O Pierzchała
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - A Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Z Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - P Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - R R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - A Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - P Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Ghaffari R, Di Bona KR, Riley CL, Richburg JH. Copper transporter 1 (CTR1) expression by mouse testicular germ cells, but not Sertoli cells, is essential for functional spermatogenesis. PLoS One 2019; 14:e0215522. [PMID: 31002737 PMCID: PMC6474593 DOI: 10.1371/journal.pone.0215522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
An imbalance in copper (Cu) tissue homeostasis has a degenerative effect on spermatogenesis and male fertility. The high-affinity Cu transporter 1 (CTR1; SLC31A1) is the major protein responsible for Cu acquisition in eukaryotes and is highly expressed in mouse testes. Studies on yeast and Drosophila have demonstrated the conserved essential function of Cu and CTR1 for meiosis and fertility, implying that CTR1 may play an essential function in mammalian spermatogenesis. In mice, spermatogenesis takes place within the seminiferous epithelium, where tight junctions between somatic Sertoli cells (SCs) create a specialized microenvironment for the development of meiotic germ cells (GCs) by tightly regulating the free transport of metabolites and ions to reach these cells. Here, it is demonstrated that within the seminiferous epithelium, CTR1 is expressed on the membrane of primary pachytene spermatocytes and SCs. To examine the physiological significance of CTR1 in spermatogenesis, mice with a GC-specific (Ctr1ΔGC) and SC-specific (Ctr1ΔSC) disruption of the Ctr1 gene were generated. The testis of Ctr1ΔGC mice exhibits a severe progressive loss of GCs starting at postnatal day (PND) 28 leading to testis hypoplasia by adulthood. No spermatogenic recovery was observed in Ctr1ΔGC testis beyond PND 41, despite the presence of FOXO-1 expressing undifferentiated spermatogonial cells. However, Ctr1ΔSC mice displayed functional spermatogenesis and were fertile, even though testicular Cu levels and Cu-dependent cellular activities were significantly reduced. These results reveal, for the first time, the importance of CTR1 expression by GCs for maintaining functional spermatogenesis.
Collapse
Affiliation(s)
- Rashin Ghaffari
- Institute of Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Kristin R. Di Bona
- The Center for Molecular Carcinogenesis and Toxicology, Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Christopher L. Riley
- Institute of Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - John H. Richburg
- Institute of Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
- The Center for Molecular Carcinogenesis and Toxicology, Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
14
|
Murray FJ, Sullivan FM, Hubbard SA, Hoberman AM, Carey S. A two-generation reproductive toxicity study of sodium molybdate dihydrate administered in drinking water or diet to Sprague-Dawley rats. Reprod Toxicol 2019; 84:75-92. [DOI: 10.1016/j.reprotox.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 11/29/2022]
|
15
|
Ogórek M, Lenartowicz M, Starzyński R, Jończy A, Staroń R, Doniec A, Krzeptowski W, Bednarz A, Pierzchała O, Lipiński P, Rajfur Z, Baster Z, Gibas-Tybur P, Grzmil P. Atp7a and Atp7b regulate copper homeostasis in developing male germ cells in mice. Metallomics 2018; 9:1288-1303. [PMID: 28820536 DOI: 10.1039/c7mt00134g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of copper homeostasis is critical for all cells. As learned from mice with disturbed copper metabolism, this trace element is also important for spermatogenesis. The experiments conducted in yeasts have demonstrated that appropriate copper level must be preserved to enable meiosis progression; however, increased copper level is toxic for cells. This study aims to analyze the expression profile of Atp7a and Atp7b and other genes encoding copper-related proteins during spermatogenesis in mice. Using the transcripts and protein detection techniques, we demonstrate that within seminiferous tubuli, ATP7A is mainly present in early meiotic germ cells (leptotene to pachytene spermatocytes) and in Sertoli cells (SCs). During spermatogenesis, the progression Atp7a expression profile corresponds to Slc31a1 (encoding copper importer CTR1) and Atox1 (encoding chaperon protein, which delivers copper from CTR1 to ATP7A and ATP7B) expression, suggesting that male germ cells retrieve copper and ATP7A protects them from copper overdose. In contrast, ATP7B protein is observed in SCs and near elongated spermatids; thus, its function seems to be related to copper extraction during spermiogenesis. This is the first study to give a comprehensive view on the activity of copper-related genes during spermatogenesis in mice.
Collapse
Affiliation(s)
- Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University Kraków, Gronostajowa 9, 30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang YX, Wang P, Feng W, Liu C, Yang P, Chen YJ, Sun L, Sun Y, Yue J, Gu LJ, Zeng Q, Lu WQ. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:224-234. [PMID: 28274591 DOI: 10.1016/j.envpol.2017.01.083] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 05/22/2023]
Abstract
This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all Ptrend<0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Wuhan, Hubei, PR China
| | - Long-Jie Gu
- Reproductive Medicine Center, Tongji Hospital, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Anchordoquy JP, Anchordoquy JM, Pascua AM, Nikoloff N, Peral-García P, Furnus CC. The copper transporter (SLC31A1/CTR1) is expressed in bovine spermatozoa and oocytes: Copper in IVF medium improves sperm quality. Theriogenology 2017; 97:124-133. [PMID: 28583595 DOI: 10.1016/j.theriogenology.2017.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023]
Abstract
Adequate dietary intake of copper (Cu) is required for normal reproductive performance in cattle. The objective of this study was to investigate the pregnancy rates from cattle with deficient, marginal and adequate Cu plasma concentration at the beginning of artificial insemination protocol. Moreover, we determined Cu concentrations present in bovine oviductal fluid (OF), and the effects of Cu on fertilizing ability of bovine spermatozoa. Also, the presence of Cu transporter, SLC31A1 (also known as CTR1), in spermatozoa and in vitro matured oocyte were investigated. We found no differences in pregnancy rates among animals with adequate, marginal, and deficient Cu concentrations measured in plasma at the beginning of fixed-time artificial insemination (FTAI) protocol. Copper concentrations in OF were 38.3 ± 2.17 μg/dL (mean ± SEM) regardless of cupremia levels. The addition of 40 μg/dL Cu to IVF medium enhanced total and progressive motility, sperm viability, functional sperm membrane integrity (HOST), sperm-zona binding, and pronuclear formation. On the other hand, the presence of Cu in IVF medium did not modify acrosome integrity and cleavage rates after IVF, but impaired blastocyst rates. Cu transporter SLC31A1 was detected in bovine spermatozoa in the apical segment of acrosome, and in the oocyte matured in vitro. In conclusion, the results obtained in the present study determined that cupremia levels at the beginning of FTAI protocol did not influence the pregnancy rates at 60 d after insemination. The presence of CTR1 in bovine mature oocyte and spermatozoa, as well as the beneficial effect of Cu on sperm quality would suggest an important role of this mineral during the fertilization process.
Collapse
Affiliation(s)
- J P Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - J M Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - A M Pascua
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - N Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - P Peral-García
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - C C Furnus
- IGEVET - Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina; Cátedra de Citología, Histología y Embriología "A", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calle 60 y 120 s/n, CP 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4650182. [PMID: 28164122 PMCID: PMC5253172 DOI: 10.1155/2017/4650182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be prescribed. Infection, inflammation, and/or increased oxidative stress often require a specific treatment with antibiotics, anti-inflammatory drugs, and/or antioxidants. Combined therapies can contribute to improve sperm quality.
Collapse
|
19
|
Wang YX, Sun Y, Huang Z, Wang P, Feng W, Li J, Yang P, Wang M, Sun L, Chen YJ, Liu C, Yue J, Gu LJ, Zeng Q, Lu WQ. Associations of urinary metal levels with serum hormones, spermatozoa apoptosis and sperm DNA damage in a Chinese population. ENVIRONMENT INTERNATIONAL 2016; 94:177-188. [PMID: 27258659 DOI: 10.1016/j.envint.2016.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exposure to metals, including essential and nonessential elements, is widespread and may be associated with male reproductive health. OBJECTIVE To examine whether environmental exposure to metals contributes to reproductive hormone changes, spermatozoa apoptosis and sperm DNA damage in a Chinese population. METHODS Eighteen metals (aluminum, arsenic, antimony, chromium, cobalt, copper, cadmium, iron, lead, manganese, molybdenum, nickel, selenium, tin, tungsten, thallium, uranium and zinc) were analyzed in two urine samples collected a few hours apart from male partners of couples attending an infertility clinic. Multivariable linear regression models were used to assess the cross-sectional associations of average urinary metal levels with serum hormones (n=511), spermatozoa apoptosis measures (n=460) and sperm DNA damage parameters (n=516). RESULTS We found significant inverse dose-dependent trends of urinary tin quartiles with total testosterone (T), and tin, nickel, zinc and molybdenum with the ratio of total T to luteinizing hormone (total T/LH ratio) (all Ptrend<0.05). Additionally, we found significantly dose-dependent trends of increasing urinary manganese quartiles with increasing percentage of Annexin V+/PI- spermatozoa and increasing iron with decreasing percentage of PI+ spermatozoa (both Ptrend<0.05). These dose-dependent trends remained suggestive or significant after controlling for multiple testing and other metals, and they persisted when the metals were modeled as continuous variables in a cubic spline analysis. There were no significant associations between urinary metals and sperm DNA damage after adjustment for multiple testing. CONCLUSION Environmental exposure to tin, nickel, zinc and molybdenum may be associated decreased total T or total T/LH ratio; manganese may induce spermatozoa apoptosis, while iron may be important for living spermatozoa. However, additional prospective research is needed to corroborate these findings in the general population.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of Biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Jie Gu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
20
|
Wang YX, Sun Y, Feng W, Wang P, Yang P, Li J, Huang Z, Chen YJ, Liu C, Sun L, Yue J, Gu LJ, Zeng Q, Lu WQ. Association of urinary metal levels with human semen quality: A cross-sectional study in China. ENVIRONMENT INTERNATIONAL 2016; 91:51-59. [PMID: 26908166 DOI: 10.1016/j.envint.2016.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Exposure to metals, including essential and nonessential elements, has been linked to male reproductive health in animals. However, findings from human studies are inconsistent. OBJECTIVE To examine the associations between metal exposure at environmental levels and semen quality in a Chinese population by performing repeated measurements of urinary metals to estimate individual-level exposure. METHODS From March to June 2013, 1052 men seeking semen evaluation were recruited from the Reproductive Center of Tongji Hospital in Wuhan, China. Each man provided one semen sample and two urine sample. Semen quality parameters and urinary levels of 18 metals were determined. Associations between the urinary metal levels and semen quality parameters were assessed using confounder adjusted linear and logistic regressions. Restricted cubic spline analysis was performed to assess dose-response relationships between continuous metal measurements and outcomes. RESULTS Urinary levels of cadmium were significantly inversely associated with progressive sperm motility and total motility (both P<0.02) based on multivariable linear regression models, consistent with the trends of increased odds ratios for below-reference semen quality parameters observed in the logistic models (both P<0.05). Additionally, we found significant inverse associations of urinary molybdenum and lead with percentages of normal sperm morphology (both P<0.05). These associations remained suggestive or significant after adjustment for multiple testing. They were also robust to the simultaneous consideration of multiple metals, and curves of restricted cubic spline showed clear dose-response relationships. CONCLUSION Our findings suggest that environmental exposure to cadmium, molybdenum and lead may contribute to a decline in human semen quality.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Jie Gu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Pandey G, Jain GC. Assessment of Molybdenum Induced Alteration in Oxidative Indices, Biochemical Parameters and Sperm Quality in Testis of Wistar Male Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajb.2015.267.280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Tvrda E, Peer R, Sikka SC, Agarwal A. Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet 2015; 32:3-16. [PMID: 25245929 PMCID: PMC4294866 DOI: 10.1007/s10815-014-0344-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
Iron and copper are essential trace nutrients playing important roles in general health and fertility. However, both elements are highly toxic when accumulating in large quantities. Their direct or indirect impact on the structure and function of male gonads and gametes is not completely understood yet. Excess or deficiency of either element may lead to defective spermatogenesis, reduced libido, and oxidative damage to the testicular tissue and spermatozoa, ultimately leading to fertility impairment. This review will detail the complex information currently available on the dual roles iron and copper play in male reproduction.
Collapse
Affiliation(s)
- Eva Tvrda
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
- />Department of Animal Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Rohan Peer
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Suresh C. Sikka
- />Department of Urology, Tulane University School of Medicine, New Orleans, LA USA
| | - Ashok Agarwal
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
23
|
Lewis RC, Meeker JD. Biomarkers of exposure to molybdenum and other metals in relation to testosterone among men from the United States National Health and Nutrition Examination Survey 2011-2012. Fertil Steril 2014; 103:172-8. [PMID: 25439796 DOI: 10.1016/j.fertnstert.2014.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To examine the potential associations between biomarkers of metal exposure and serum testosterone in men of reproductive age in the general US population. DESIGN Cross-sectional epidemiology study with adjustment for potential confounders. SETTING Not applicable. PATIENT(S) Men recruited in the United States National Health and Nutrition Examination Survey (NHANES). INTERVENTION(S) Metal concentrations measured in whole blood, urine, and/or serum samples collected from 484 men. MAIN OUTCOME MEASURE(S) Serum T concentration. RESULT(S) Concentrations of the metals were detected in 69%-100% of the samples. In adjusted analyses where metals were modeled as a continuous variable, we found significant inverse associations between urinary molybdenum and serum copper and serum T, whereas there were significant positive associations between blood lead and cadmium and serum T. When metals were categorized into quartiles, analyses for serum copper and blood lead and cadmium produced significant associations in the same direction as the continuous measures. A suggestive inverse association was observed between quartiles of urinary molybdenum and serum T, but the association was statistically significant when molybdenum was categorized into quintiles. Significant positive associations were also observed for quartiles of blood Se and serum Zn and serum T. CONCLUSION(S) These findings add to the limited human evidence that exposure to molybdenum and other metals is associated with altered T in men, which may have important implications for male health. More research is needed to confirm the findings of our study.
Collapse
Affiliation(s)
- Ryan C Lewis
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
24
|
Miska-Schramm A, Kruczek M, Kapusta J. Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1546-1554. [PMID: 25098774 DOI: 10.1007/s10646-014-1295-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
The amount of copper in natural ecosystems is steadily increasing, due to human activities. It accumulates in plants, posing a threat to herbivores. In polluted areas the population density of small rodents is observed to be lower. The decline in rodent numbers may be caused by increased mortality or diminished fertility. This study examined the effect of copper on the reproductive activity of the bank vole (Myodes glareolus), a small rodent which during foraging often wanders into fields where it might be exposed to pollution. The animals were treated with solutions of 0, 150 or 600 ppm Cu. After 12 weeks of exposure the quality and quantity of the male's sperm was tested. To assess morphological development we compared the experimental groups for body weight, the weight of the male's testes and accessory sex glands, the female's uterus, and the number of matured ovary follicles in tested females. At both doses, copper administration led to lower sperm count and caused sperm head anomalies. The higher dose compromised sperm tail membrane integrity, viability and motility. No effect of copper on morphological development was observed in males, and only the lower dose increased testes weight. In females the higher dose had a negative effect on morphological development, and the lower dose increased uterus weight. No effect of copper on ovarian follicle number was found. For the first time, the morphology of the most typical ovarian follicles of the bank vole is presented.
Collapse
Affiliation(s)
- Agata Miska-Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland,
| | | | | |
Collapse
|
25
|
Elsamanoudy AZ, Shaalan D, Gaballah MA, El-Atta HMA, Helaly AMN. Possible effects of metallosis on spermatozoal apoptotic genes expression in individuals with intramedullary nailing prosthesis. Biol Trace Elem Res 2014; 158:334-41. [PMID: 24723216 DOI: 10.1007/s12011-014-9965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
Seminal quality could be affected by metallosis caused by intramedullary nailing (IMN). Our objectives were to estimate metal ion levels in the seminal plasma of subjects with IMN, to determine their effects on semen parameters and on spermatozoal apoptotic gene expression, and to determine whether these expressed genes could be used as candidate biomarkers of seminal deterioration in individuals with IMN or not. Semen samples were collected from 60 subjects with IMN and 30 age-matched healthy controls. Seminal plasma contents of cobalt (Co), chromium (Cr), and molybdenum (Mo) were assayed. Spermatozoal Bcl-2 and Bax gene expressions were determined. Studied semen parameters were significantly lower in subjects with IMN for ≥5 years in relation to controls while the concentrations of Co, Cr, and Mo in the seminal plasma samples were significantly higher. There were significantly lower spermatozoal Bcl-2 expression, higher Bax expression, and lower Bcl-2/Bax ratio in subjects with IMN for ≥5 years than in controls. In subjects with IMN for ≥5 years, receiver operating characteristic (ROC) curve analysis of studied gene expressions and Bcl-2/Bax ratio were done showing priority of the ratio with 86.7 % sensitivity, 100 % specificity, 100 % positive predictive value, and 93.8 % negative predictive value at cutoff values ≤0.777. Co, Cr, and Mo metals are found at high concentrations in the seminal plasma of individuals with IMN leading to increased spermatozoal apoptotic activity. Spermatozoal Bcl-2/Bax ratio could be used as a candidate biomarker of reproductive disorders in individuals with intramedullary nailing.
Collapse
Affiliation(s)
- Ayman Z Elsamanoudy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Egypt,
| | | | | | | | | |
Collapse
|
26
|
The Influence of Environmental Contaminants and Lifestyle on Testicular Damage and Male Fertility. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/7653_2014_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Zhang YL, Liu FJ, Chen XL, Zhang ZQ, Shu RZ, Yu XL, Zhai XW, Jin LJ, Ma XG, Qi Q, Liu ZJ. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med 2013; 59:312-8. [PMID: 23947923 DOI: 10.3109/19396368.2013.826296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A sub-acute toxicity test was performed to investigate the effects of molybdenum (Mo) on ovarian function. ICR adult female mice were exposed to Mo by free access to distilled water containing the Mo at 5, 10, 20, and 40 mg/L for 14 days. Compared to the control group, M II oocyte morphology, ovary index, and ovulation improved within the 5 mg/L Mo group, but were negatively affected by Mo at 40 mg/L. Morphologically abnormal ovarian mitochondria were observed at ≥ 20 mg/L. These alterations accompanied the changes in superoxide dismutase (SOD), glutathione peroxidise (GPx), and malondialdehyde (MDA) levels in ovaries. In conclusion, Mo affects oocyte quality possibly through regulating ovarian oxidative stress in a dose-dependent manner. It appears that Mo may improve ovarian function at a suitable concentration, which might be a candidate for the treatment of female infertility.
Collapse
Affiliation(s)
- Yu-Ling Zhang
- College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhai XW, Zhang YL, Qi Q, Bai Y, Chen XL, Jin LJ, Ma XG, Shu RZ, Yang ZJ, Liu FJ. Effects of molybdenum on sperm quality and testis oxidative stress. Syst Biol Reprod Med 2013; 59:251-5. [DOI: 10.3109/19396368.2013.791347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Induction of ferroxidase enzymatic activity by copper reduces MPP+-evoked neurotoxicity in rats. Neurosci Res 2013; 75:250-5. [DOI: 10.1016/j.neures.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022]
|
30
|
Bi CM, Zhang YL, Liu FJ, Zhou TZ, Yang ZJ, Gao SY, Wang SD, Chen XL, Zhai XW, Ma XG, Jin LJ, Wang S. The effect of molybdenum on thein vitrodevelopment of mouse preimplantation embryos. Syst Biol Reprod Med 2012; 59:69-73. [DOI: 10.3109/19396368.2012.743198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Sakhaee E, Emadi L, Abshenas J, Kheirandish R, Azari O, Amiri E. Evaluation of epididymal sperm quality following experimentally induced copper poisoning in male rats. Andrologia 2011; 44 Suppl 1:110-6. [DOI: 10.1111/j.1439-0272.2010.01147.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Meeker JD, Rossano MG, Protas B, Padmanahban V, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ. Environmental exposure to metals and male reproductive hormones: circulating testosterone is inversely associated with blood molybdenum. Fertil Steril 2010; 93:130-40. [PMID: 18990371 PMCID: PMC2823119 DOI: 10.1016/j.fertnstert.2008.09.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To explore associations between exposure to metals and male reproductive hormone levels. DESIGN Cross-sectional epidemiology study with adjustment for potential confounders. SETTING University Medical Center. PATIENT(S) Men recruited through two infertility clinics in Michigan. INTERVENTION(S) Metal concentrations and reproductive hormone levels were measured in blood samples collected from 219 men. MAIN OUTCOME MEASURE(S) Serum FSH, LH, inhibin B, T, and sex hormone-binding globulin levels. RESULT(S) Cadmium, copper, and lead were all significantly or suggestively positively associated with T when modeled individually, findings that are consistent with limited previous human and animal studies. Conversely, molybdenum was associated with reduced T. A significant inverse trend between molybdenum and T remained when additionally considering other metals in the model, and a positive association between T and zinc was also found. Finally, in exploratory analysis there was evidence for an interaction between molybdenum and zinc, whereby high molybdenum was associated with a 37% reduction in T (relative to the population median level) among men with low zinc. CONCLUSION(S) Although reductions in T and reproductive toxicity after molybdenum exposure have been previously demonstrated in animal studies, more research is needed to determine whether molybdenum poses a risk to human reproductive health.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ramamoorthi RV, Rossano MG, Paneth N, Gardiner JC, Diamond MP, Puscheck E, Daly DC, Potter RC, Wirth JJ. An application of multivariate ranks to assess effects from combining factors: metal exposures and semen analysis outcomes. Stat Med 2008; 27:3503-14. [PMID: 18314933 DOI: 10.1002/sim.3236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In studies of environmental effects on human health outcomes, it is often difficult to assess the effects of a group of exposure variables when the individual exposures do not appear to have statistically significant effects. To address this situation, we propose a method of U-scores applied to subsets of multivariate data. We illustrate the usefulness of this approach by applying it to data collected as part of a study on the effects of metal exposure on human semen parameters. In this analysis, profiles (pairs) of metals containing copper and/or manganese were negatively correlated with total motile sperm and profiles containing copper were negatively correlated with sperm morphology; profiles containing selenium and chromium were positively correlated with total motile sperm.
Collapse
Affiliation(s)
- R V Ramamoorthi
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ. Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1473-9. [PMID: 19057699 PMCID: PMC2592266 DOI: 10.1289/ehp.11490] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 07/01/2008] [Indexed: 05/03/2023]
Abstract
BACKGROUND Evidence on human semen quality as it relates to exposure to various metals, both essential (e.g., zinc, copper) and nonessential (e.g., cadmium, lead), is inconsistent. Most studies to date used small sample sizes and were unable to account for important covariates. OBJECTIVES Our goal in this study was to assess relationships between exposure to multiple metals at environmental levels and human semen-quality parameters. METHODS We measured semen quality and metals in blood (arsenic, Cd, chromium, Cu, Pb, manganese, mercury, molybdenum, selenium, and Zn) among 219 men recruited through two infertility clinics. We used multiple statistical approaches to assess relationships between metals and semen quality while accounting for important covariates and various metals. RESULTS Among a number of notable findings, the associations involving Mo were the most consistent over the various statistical approaches. We found dose-dependent trends between Mo and declined sperm concentration and normal morphology, even when considering potential confounders and other metals. For example, adjusted odds ratios (ORs) for below-reference semen-quality parameters in the low, medium, and high Mo groups were 1.0 (reference), 1.4 [95% confidence interval (CI), 0.5-3.7], and 3.5 (95% CI, 1.1-11) for sperm concentration and 1.0 (reference), 0.8 (95% CI, 0.3-1.9), and 2.6 (95% CI, 1.0-7.0) for morphology. We also found preliminary evidence for interactions between Mo and low Cu or Zn. In stratified analyses, the adjusted ORs in the high Mo/low Cu group were 14.4 (1.6, 132) and 13.7 (1.6, 114) for below-reference sperm concentration and morphology, respectively. CONCLUSIONS Our findings represent the first human evidence for an inverse association between Mo and semen quality. These relationships are consistent with animal data, but additional human and mechanistic studies are needed.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, Tuyen BC, Miura T. Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: monitoring at Mekong Delta area and in vitro experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:43-51. [PMID: 17448548 DOI: 10.1016/j.aquatox.2007.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 05/15/2023]
Abstract
To estimate the influence of water contaminants on fish reproduction in the Mekong Delta area, we sampled cultivated male catfish (Pangasianodon hypophthalmus), investigated testicular development, and measured persistent organic pollutants (POPs) and trace element levels in muscle and liver, respectively. Various testes sizes were observed although sampling took place during a short period. Histological analysis revealed that all developmental stages of germ cells were observed in catfish with large testis, whereas only necrotic spermatogonia but no other germ cells were observed in catfish with small testis. In small testis, furthermore, vacuolization and hypertrophy of Sertoli cells were observed. Measurement of POPs in muscle and trace elements in liver demonstrated that there were negative correlations between GSI and the concentrations of Pb, Mo, Rb and As. To clarify possible direct effects of Pb, Mo, Rb and As on spermatogenesis in fish, we investigated the effects of these trace elements on spermatogenesis using in vitro testicular organ culture of Japanese eel (Anguilla japonica). Treatment with each of the trace elements alone did not affect spermatogenesis. However, treatment with 10(-7)M of Pb, 10(-5) and 10(-4)M of Mo, 10(-5)-10(-3)M of Rb or 10(-5)M of As inhibited the spermatogenesis induced by 11-ketotestosterone (11KT). Furthermore, treatment with 10(-4)M of As in combination with 11KT caused necrosis of testicular fragments. Taken together, these results are consistent with the hypothesis that Pb, Mo, Rb and As can exert inhibitory effects on spermatogenesis in catfish inhabiting the Mekong Delta area.
Collapse
Affiliation(s)
- Sonoko Yamaguchi
- Laboratory of Fish Reproductive Physiology, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|