1
|
Khan SA, Nurulain SM, Qureshi RN, Zafar A, Riaz Z, Shoukat A, Muneer Z, Bibi N, Raza S, Hussain S, Shah STA. Exposure to heavy metals, antioxidant status, and the interaction of single nucleotide polymorphisms in the genes CAT rs7943316, GSTP1 rs1695, as well as GSTM1 and GSTT1 genes, among workers in occupational settings. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104452. [PMID: 38663648 DOI: 10.1016/j.etap.2024.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Individuals working in diverse fields are consistently exposed to work-related pollutants that can impact their overall health. The current study investigated the presence of pollutants in seven different occupational groups and their impact on human health. Biochemical and genetic approaches were employed. Heavy metals were determined by ICP-MS technique. Oxidative stress biochemical markers and molecular analysis of the glutathione transferases gene SNPs (GSTT1, GSTM1, GSTP1), catalase (CAT, rs7943316), and superoxide dismutase (SOD, rs17880487) was carried out. The results revealed a significantly higher quantity of Cd among five occupational groups. Catalase, malonaldehyde, and glutathione was significantly dysregulated. Molecular analysis of the gene SNPs suggests a probable relationship between the antioxidants and the phenotypic expression of the CAT, GSTP1, GSTT1, and GSTM1 SNPs. It is concluded that chronic exposure to occupational contaminants like Cd affects human health through oxidative stress in association with some of their gene SNPs.
Collapse
Affiliation(s)
- Sosan Andleeb Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Syed Muhammad Nurulain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan; Department of Biosciences, Grand Asian University Sialkot, Pakistan.
| | - Rashid Nazir Qureshi
- Central Analytical Facility Division, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Pakistan
| | - Amina Zafar
- Central Analytical Facility Division, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Pakistan
| | - Zarish Riaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Aneela Shoukat
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Saqlain Raza
- Respiratory Care Department, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Sabir Hussain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad 45550, Pakistan
| |
Collapse
|
2
|
Chatterjee N, González-Durruthy M, Costa MD, Ribeiro AR, Vilas-Boas V, Vilasboas-Campos D, Maciel P, Alfaro-Moreno E. Differential impact of diesel exhaust particles on glutamatergic and dopaminergic neurons in Caenorhabditis elegans: A neurodegenerative perspective. ENVIRONMENT INTERNATIONAL 2024; 186:108597. [PMID: 38579453 DOI: 10.1016/j.envint.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 μg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 μg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | | | - Marta Daniela Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ana R Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Vânia Vilas-Boas
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ernesto Alfaro-Moreno
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
3
|
Li J, Tu F, Wan Y, Qian X, Mahai G, Wang A, Ma J, Yang Z, Xia W, Xu S, Zheng T, Li Y. Associations of Trimester-Specific Exposure to Perchlorate, Thiocyanate, and Nitrate with Childhood Neurodevelopment: A Birth Cohort Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20480-20493. [PMID: 38015815 DOI: 10.1021/acs.est.3c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Studies about the impacts of maternal exposure to perchlorate, thiocyanate, and nitrate on offspring neurodevelopment are scarce. Based on a birth cohort in China, 1,028 mothers provided urine samples at three trimesters for determination of the three target analytes, and their offspring neurodevelopment was evaluated at 2 years old. Associations of maternal exposure to the three chemicals with offspring neurodevelopment were estimated using three statistical methods. Trimester-specific analyses using generalized estimating equation models showed that double increment of thiocyanate and nitrate during the first trimester was associated with 1.56 (95% CI: -2.82, -0.30) and 1.22 (-2.40, -0.03) point decreases in the offspring mental development index (MDI), respectively. Weighted quantile sum (WQS) regression analyses showed that the mixture exposure at the first and second trimesters was negatively associated with the offspring MDI (β = -2.39, 95% CI: -3.85, -0.93; β = -1.75, 95% CI: -3.04, -0.47, respectively) and thiocyanate contributed the most to the association (65.0 and 91.6%, respectively). Bayesian kernel machine regression analyses suggested an inverted U-shape relationship of maternal urinary thiocyanate with the offspring MDI. These findings suggested that prenatal exposure to the three chemicals (at current levels), especially thiocyanate and nitrate, may impair neurodevelopment. Early pregnancy seems to be the sensitive window.
Collapse
Affiliation(s)
- Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Fengqin Tu
- Wuhan Institute for Food and Cosmetic Control, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430040, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiaolong Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
4
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
5
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
6
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Evtyugina MG, Gonçalves C, Alves C, Corrêa SM, Daemme LC, de Arruda Penteado Neto R. Exhaust emissions of gaseous and particle size-segregated water-soluble organic compounds from diesel-biodiesel blends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63738-63753. [PMID: 37059947 PMCID: PMC10172243 DOI: 10.1007/s11356-023-26819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
This study assessed the emissions of gaseous pollutants and particle size distributed water-soluble organics (WSO) from a diesel vehicle fuelled with ultralow sulphur diesel (B0) and 10 (B10), 20 (B20), and 30% (B30) biodiesel blends in a chassis dynamometer tested under transient mode. Particulate emission sampling was carried out in an ultraviolet (UV) test chamber using a 10-stage impactor. Samples were grouped into three size fractions and analysed by gas chromatography-mass spectrometry. Increasing the biofuel ratio up to 30% in the fuel reduced WSO emissions by 20.9% in comparison with conventional diesel. Organic acids accounted for 82-89% of WSO in all tested fuels. Dicarboxylic acids were the most abundant compound class, followed by hydroxy, aromatic, and linear alkanoic acids. Correlations between compounds demonstrated that adding biodiesel to diesel fuel reduces the emissions of nitrogen oxides (NOx), benzene, toluene, ethylbenzene and xylenes (BTEX), methane (CH4), total and nonmethane hydrocarbons (THC and NMHC), and dicarboxylic and hydroxy acids, but increases emissions of carbon dioxide (CO2) and alkanoic and aromatic acids. Emissions of dicarboxylic and hydroxy acids were strongly correlated with the biodiesel content. WSO emissions of coarse and fine (1.0-10 μm) particles decreased with the increasing biofuel content in fuel blend. The total share of ultrafine (0.18-1.0 μm) and nanoparticles (< 0.18 μm) increased in WSOs emissions from B20 and B30 blends, when compared with petrodiesel. The biodiesel content also affected the chemical profile of WSO size fractions.
Collapse
Affiliation(s)
- Margarita G Evtyugina
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Gonçalves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sérgio M Corrêa
- Faculty of Technology, Rio de Janeiro State University, Resende, RJ, 27537-000, Brazil
| | - Luiz Carlos Daemme
- LACTEC - Technology Institute for Development, Curitiba, PR, 80210-170, Brazil
| | | |
Collapse
|
8
|
Diesel particulate matter aggravates cyclophosphamide-induced testicular toxicity in mice via elevating oxidative damage. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Mehta R, Kuhad A, Bhandari R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin Ther Targets 2022; 26:659-679. [DOI: 10.1080/14728222.2022.2100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| |
Collapse
|
10
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|
11
|
Sudakov NP, Klimenkov IV, Bedoshvili YD, Arsent'ev KY, Gorshkov AG, Izosimova ON, Yakhnenko VM, Kupchinskii AB, Didorenko SI, Likhoshway YV. Early structural and functional changes in Baikal Sculpin gills exposed to suspended soot microparticles in experiment. CHEMOSPHERE 2022; 290:133241. [PMID: 34896428 DOI: 10.1016/j.chemosphere.2021.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874. The soot samples used in the experiment were composed of small (10-100 nm) particles and larger (up to 20 μm) aggregates. The dominant fractions of the polycyclic aromatic hydrocarbons of these microparticles were phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzopyrenes, indeno[1,2,3-c,d]pyrenes, and benzo[ghi]perylene. Trace element analysis of the soot detected the presence of C, S, Si, Al, Ca, K, Mg, P, and Fe. The gill condition was assessed with electron scanning, transmission, and laser confocal microscopy. Soot induces degenerative changes in the macrostructure and surface of secondary lamellae and increases mucus production in fish gills. A decrease in mitochondrial activity, an increase in reactive oxygen species production, and an increase in the frequency of programmed cell death in gill epithelium were observed under the influence of soot. In chloride cells, an induction of macroautophagy was detected. In general, the changes in fish gills after the short-term influence of soot microparticles indicate the stress of respiratory and osmotic regulation systems in fish. The data obtained are important for forming a coherent picture of the impact of soot on hydrobionts and for developing bioindication methods for evaluating the risks of their influence on aquatic ecosystems.
Collapse
Affiliation(s)
- Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia.
| | - Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Yekaterina D Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Kirill Yu Arsent'ev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexander G Gorshkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Oksana N Izosimova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Vera M Yakhnenko
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexandr B Kupchinskii
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Sergei I Didorenko
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| |
Collapse
|
12
|
Rangel MA, Tomé R. Health and the Megacity: Urban Congestion, Air Pollution, and Birth Outcomes in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031151. [PMID: 35162175 PMCID: PMC8835072 DOI: 10.3390/ijerph19031151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
We studied the health effects of economic development in heavily urbanized areas, where congestion poses a challenge to environmental conditions. We employed detailed data from air pollution and birth records around the metropolitan area of São Paulo, Brazil, between 2002 and 2009. During this period, the megacity experienced sustained growth marked by the increases in employment rates and ownership of durable goods, including automobiles. While better economic conditions are expected to improve infant health, air pollution that accompanies it is expected to do the opposite. To untangle these two effects, we focused on episodes of thermal inversion—meteorological phenomena that exogenously lock pollutants closer to the ground—to estimate the causal effects of in utero exposure to air pollution. Auxiliary results confirmed a positive relationship between thermal inversions and several air pollutants, and we ultimately found that exposure to inversion episodes during the last three months of pregnancy led to sizable reductions in birth weight and increases in the incidence of preterm births. Increased pollution exposure induced by inversions also has a significant impact over fetal survival as measured by the size of live-birth cohorts.
Collapse
Affiliation(s)
- Marcos A. Rangel
- Sanford School of Public Policy, Duke University, Durham, NC 27708, USA;
| | - Romina Tomé
- American Institutes for Research, Arlington, VA 22202, USA
- Correspondence: ; Tel.: +1-202-403-5029
| |
Collapse
|
13
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Mueller W, Tantrakarnapa K, Johnston HJ, Loh M, Steinle S, Vardoulakis S, Cherrie JW. Exposure to ambient particulate matter and biomass burning during pregnancy: associations with birth weight in Thailand. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:672-682. [PMID: 33603098 PMCID: PMC8263346 DOI: 10.1038/s41370-021-00295-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND There is a growing evidence that exposure to ambient particulate air pollution during pregnancy is associated with adverse birth outcomes, including reduced birth weight (BW). The objective of this study was to quantify associations between BW and exposure to particulate matter (PM) and biomass burning during pregnancy in Thailand. METHODS We collected hourly ambient air pollutant data from ground-based monitors (PM with diameter of <10 µm [PM10], Ozone [O3], and nitrogen dioxide [NO2]), biomass burning from satellite remote sensing data, and individual birth weight data during 2015-2018. We performed a semi-ecological analysis to evaluate the association between mean trimester exposure to air pollutants and biomass burning with BW and low-birth weight (LBW) (<2500 g), adjusting for gestation age, sex, previous pregnancies, mother's age, heat index, season, year, gaseous pollutant concentrations, and province. We examined potential effect modification of PM10 and biomass burning exposures by sex. RESULTS There were 83,931 eligible births with a mean pregnancy PM10 exposure of 39.7 µg/m3 (standard deviation [SD] = 7.7). The entire pregnancy exposure was associated with reduced BW both for PM10 (-6.81 g per 10 µg/m3 increase in PM10 [95% CI = -12.52 to -1.10]) and biomass burning (-6.34 g per 1 SD increase in fires/km2 [95% CI = -11.35 to -1.34]) only after adjustment for NO2. In contrast with these findings, a reduced odds ratio (OR) of LBW was associated with PM10 exposure only in trimesters one and two, with no relationship across the entire pregnancy period. Associations with biomass burning were limited to increased ORs of LBW with exposure in trimester three, but only for male births. CONCLUSION Based on our results, we encourage further investigation of air pollution, biomass burning and BW in Thailand and other low-income and middle-income countries.
Collapse
Affiliation(s)
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Helinor Jane Johnston
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | | | - Sotiris Vardoulakis
- Institute of Occupational Medicine, Edinburgh, UK
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - John W Cherrie
- Institute of Occupational Medicine, Edinburgh, UK.
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK.
| |
Collapse
|
15
|
Steinle S, Johnston HJ, Loh M, Mueller W, Vardoulakis S, Tantrakarnapa K, Cherrie JW. In Utero Exposure to Particulate Air Pollution during Pregnancy: Impact on Birth Weight and Health through the Life Course. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8948. [PMID: 33271938 PMCID: PMC7730886 DOI: 10.3390/ijerph17238948] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In high-income countries, and increasingly in lower- and middle-income countries, chronic non-communicable diseases (NCDs) have become the primary health burden. It is possible that in utero exposure to environmental pollutants such as particulate matter (PM) may have an impact on health later in life, including the development of NCDs. Due to a lack of data on foetal growth, birth weight is often used in epidemiologic studies as a proxy to assess impacts on foetal development and adverse birth outcomes since it is commonly recorded at birth. There are no research studies with humans that directly link PM exposure in utero to birth weight (BW) and subsequently, the effects of lower BW on health outcomes in old age. It is, however, plausible that such associations exist, and it is thus important to assess the potential public health impacts of PM across the life course, and it is plausible to use birth weight as an indicator of risk. We therefore split this narrative review into two parts. In the first part, we evaluated the strength of the evidence on the impact of PM exposure during the entire pregnancy on birth weight outcomes in ten meta-analyses. In the second part, we reviewed the literature linking lower birth weight to childhood and adult chronic cardiovascular disease to explore the potential implications of PM exposure in utero on health later in life. Within the reviewed meta-studies on birth weight, there is sufficient evidence that PM pollution is associated with lower birth weight, i.e., the majority of meta-studies found statistically significant reductions in birth weight. From the second part of the review, it is evident that there is good evidence of associations between lower birth weight and subsequent cardiovascular disease risk. It is thus plausible that in utero exposure to PM is associated with lower birth weight and persisting biological changes that could be associated with adverse health effects in adulthood. Based on the reviewed evidence, however, the magnitude of later life cardiovascular health impacts from in utero exposure and its impact on BW are likely to be small compared to health effects from exposure to particulate air pollution over a whole lifetime.
Collapse
Affiliation(s)
- Susanne Steinle
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - Helinor J. Johnston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK;
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - William Mueller
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
| | - Sotiris Vardoulakis
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra ACT 2601, Australia
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, MAHIDOL University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand;
| | - John W. Cherrie
- Institute of Occupational Medicine, Research Avenue North, Edinburgh EH14 4AP, UK; (S.S.); (M.L.); (W.M.); (S.V.)
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK;
| |
Collapse
|
16
|
Kozubek A, Katarzyńska-Banasik D, Grzegorzewska AK, Kowalik K, Hrabia A, Sechman A. Nitrophenols are negative modulators of steroidogenesis in preovulatory follicles of the hen (Gallus domesticus) ovary: An in vitro and in vivo study. Theriogenology 2020; 157:162-175. [PMID: 32810793 DOI: 10.1016/j.theriogenology.2020.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
This study assessed the effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on steroidogenesis in the granulosa layers (GLs) and theca layers (TLs) of chicken preovulatory follicles in vitro and in vivo. In the in vitro experiment, three of the largest yellow preovulatory follicles (F3 < F2 < F1) were exposed to PNP or PNMC (10-8-10-4 M), ovine luteinising hormone (oLH; 10 ng/mL), and combinations of oLH and PNP or PNMC (10-6 M). In the in vivo experiment, laying hens were treated for 6 days with PNP or PNMC (10 mg/kg). In vitro experiments revealed that PNP and PNMC decreased basal and oLH-stimulated P4 secretion from the GL as well as T and E2 secretion from the TLs of F3-F1 follicles. Treatment of laying hens with nitrophenols lowered plasma concentrations of luteinising hormone and all three steroids. The reduction of steroid secretion was associated with decrease in LHR, HSD3B1 and CYP19A1 mRNA expression in the GL and/or TLs of the preovulatory follicles, both in vitro and in vivo. Moreover, PNP decreased HSD3B protein expression in the GL of F2 follicles in vitro and in vivo, while PNMC diminished its expression in the GL of F1 follicles in vivo. In vitro, nitrophenols did not affect CYP19A1 protein expression; however, nitrophenols inhibited its expression in the TLs of F3 and F2 follicles in vivo. The results obtained clearly demonstrate that nitrophenols are negative modulators of steroidogenesis in chicken preovulatory follicles and, in consequence, may not only impair ovulation process, but also affect function of the hypothalamic-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Anna Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Dorota Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Kinga Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
17
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
18
|
Huang H, Zhang X, Xiao X, Ye S. Influence of negative corona discharge on the Zeta potential of diesel particles. Sci Prog 2020; 103:36850420946164. [PMID: 32758018 PMCID: PMC10451043 DOI: 10.1177/0036850420946164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrical agglomeration as a pretreatment means can reduce the exhaust particle number concentration of diesel engine. The charge of particle is an important factor affecting the coagulation process. Therefore, an experiment was carried out to study the charging characteristic of diesel particles. Zeta potential for diesel particle was used to represent the charged state and the charge of particles could be calculated according to the value of Zeta potential. Influences of various factors on the charge of particle were investigated by changing the charged voltage, internal temperature of charging zone, and the load of engine. Experimental results show that the increase of charged voltage can improve the charge and the absolute value of diesel particles. With increase of charging zone temperature, corona inception voltage declines and the charge of particle increases. The load of engine has a positive effect on the charge of particles which reaches its peak at full load.
Collapse
Affiliation(s)
- He Huang
- School of Traffic Engineering, Nanjing Institute of Industry Technology, Nanjing, China
| | - Xiao Zhang
- Zhenjiang Campus, Army Military Transportation University of PLA, Zhenjiang, China
| | - Xue Xiao
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
| | - Song Ye
- SAIC Volkswagen Automotive Co., Ltd., Shanghai, China
| |
Collapse
|
19
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Weitekamp CA, Kerr LB, Dishaw L, Nichols J, Lein M, Stewart MJ. A systematic review of the health effects associated with the inhalation of particle-filtered and whole diesel exhaust. Inhal Toxicol 2020; 32:1-13. [PMID: 32100584 DOI: 10.1080/08958378.2020.1725187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Diesel exhaust is a complex mixture comprised of gases and particulate matter and is a contributor to ambient air pollution. To reduce health risks, recent changes in diesel engine technology have significantly altered the composition of diesel exhaust, primarily by lowering emissions of particulate matter. However, animal toxicological studies continue to report health effects following exposure to diesel exhaust from engines employing particulate filters. The cause of these effects remains unclear.Objective and methods: To gain an understanding of the role of both particle-filtered and whole diesel exhaust on specific health outcomes, we conducted a systematic review in which we examined animal toxicological and controlled human exposure studies that included a comparison between inhalation of particle-filtered and whole diesel exhaust on any health endpoint.Results: We identified 26 studies that met both the inclusion and study evaluation criteria. For most health outcomes, the particle filtration methods employed in the included studies did not appreciably attenuate the health effects associated with exposure to whole diesel exhaust. There were also several health endpoints for which significant effects were associated with exposure to either particle-filtered or whole diesel exhaust, but not to both.Conclusions: Overall, the results from this systematic review demonstrate that exposure to different components in diesel exhaust can have distinct and independent health effects. Thus, to better inform human health risk assessments, future studies aimed at elucidating the health effects from diesel exhaust should include exposure to both particle-filtered and whole diesel exhaust.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Lukas B Kerr
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Laura Dishaw
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Jennifer Nichols
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - McKayla Lein
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Michael J Stewart
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
21
|
Sechman A, Grzegorzewska AK, Grzesiak M, Kozubek A, Katarzyńska-Banasik D, Kowalik K, Hrabia A. Nitrophenols suppress steroidogenesis in prehierarchical chicken ovarian follicles by targeting STAR, HSD3B1, and CYP19A1 and downregulating LH and estrogen receptor expression. Domest Anim Endocrinol 2020; 70:106378. [PMID: 31514021 DOI: 10.1016/j.domaniend.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
To assess the effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on steroidogenesis in the chicken ovary, white (WF, 1-4 mm) and yellowish (YF, 4-8 mm) prehierarchical follicles were incubated in a medium supplemented with PNP or PNMC (10-8-10-4 M), ovine LH (oLH; 10 ng/mL), and combinations of oLH with PNP or PNMC (10-6 M). Testosterone (T) and estradiol (E2) concentrations in media and mRNA expression for steroidogenic proteins (STAR, HSD3B1, and CYP19A1), and LH receptors (LHR), estrogen receptor α (ESR1) and β (ESR2) in follicles were determined by RIA and real-time qPCR, respectively. PNP and PNMC decreased T and E2 secretion by the WF and YF, and oLH-stimulated T secretion from these follicles. PNP decreased basal STAR and HSD3B1 mRNA levels both in the WF and YF, and CYP19A1 mRNAs in the WF. PNP reduced oLH-affected mRNA expression of these genes in the YF. PNMC inhibited basal STAR, HSD3B1, and CYP19A1 mRNA expression in the WF, but not in the YF. PNMC reduced oLH-stimulated STAR and CYP19A1 expression in the YF and WF, respectively. PNP decreased basal mRNA expression of LHR, ESR1, and ESR2 in the WF, but it increased ESR1 and ESR2 mRNA levels in the YF. PNMC reduced both basal and oLH-affected LHR, ESR1, and ESR2 mRNA expression in the WF; however, it did not influence expression of these genes in the YF. We suggest that nitrophenols by influencing sex steroid synthesis and transcription of LH and estrogen receptors in prehierarchical ovarian follicles may impair their development and selection to the preovulatory hierarchy.
Collapse
Affiliation(s)
- A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
22
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
23
|
Numerical assessment of respiratory airway exposure risks to diesel exhaust particles. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42757-019-0005-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Association Between Air Pollution Exposure, Cognitive and Adaptive Function, and ASD Severity Among Children with Autism Spectrum Disorder. J Autism Dev Disord 2019; 48:137-150. [PMID: 28921105 DOI: 10.1007/s10803-017-3304-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prenatal exposure to air pollution has been associated with autism spectrum disorder (ASD) risk but no study has examined associations with ASD severity or functioning. Cognitive ability, adaptive functioning, and ASD severity were assessed in 327 children with ASD from the Childhood Autism Risks from Genetics and the Environment study using the Mullen Scales of Early Learning (MSEL), the Vineland Adaptive Behavior Scales (VABS), and the Autism Diagnostic Observation Schedule calibrated severity score. Estimates of nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10), ozone, and near-roadway air pollution were assigned to each trimester of pregnancy and first year of life. Increasing prenatal and first year NO2 exposures were associated with decreased MSEL and VABS scores. Increasing PM10 exposure in the third trimester was paradoxically associated with improved performance on the VABS. ASD severity was not associated with air pollution exposure.
Collapse
|
25
|
Bernal-Meléndez E, Lacroix MC, Bouillaud P, Callebert J, Olivier B, Persuy MA, Durieux D, Rousseau-Ralliard D, Aioun J, Cassee F, Couturier-Tarrade A, Valentino S, Chavatte-Palmer P, Schroeder H, Baly C. Repeated gestational exposure to diesel engine exhaust affects the fetal olfactory system and alters olfactory-based behavior in rabbit offspring. Part Fibre Toxicol 2019; 16:5. [PMID: 30654819 PMCID: PMC6335688 DOI: 10.1186/s12989-018-0288-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Airborne pollution, especially from diesel exhaust (DE), is known to have a negative effect on the central nervous system in exposed human populations. However, the consequences of gestational exposure to DE on the fetal brain remain poorly explored, with various effects depending on the conditions of exposure, as well as little information on early developmental stages. We investigated the short-term effects of indirect DE exposure throughout gestation on the developing brain using a rabbit model. We analyzed fetal olfactory tissues at the end of gestation and tested behaviors relevant to pups' survival at birth. Pregnant dams were exposed by nose-only inhalation to either clean air or DE with a content of particles (DEP) adjusted to 1 mg/m3 by diluting engine exhaust, for 2 h/day, 5 days/week, from gestational day 3 (GD3) to day 27 (GD27). At GD28, fetal olfactory mucosa, olfactory bulbs and whole brains were collected for anatomical and neurochemical measurements. At postnatal day 2 (PND2), pups born from another group of exposed or control female were examined for their odor-guided behavior in response to the presentation of the rabbit mammary pheromone 2-methyl-3-butyn-2-ol (2MB2). RESULTS At GD28, nano-sized particles were observed in cilia and cytoplasm of the olfactory sensory neurons in the olfactory mucosa and in the cytoplasm of periglomerular cells in the olfactory bulbs of exposed fetuses. Moreover, cellular and axonal hypertrophies were observed throughout olfactory tissues. Concomitantly, fetal serotoninergic and dopaminergic systems were affected in the olfactory bulbs. Moreover, the neuromodulatory homeostasis was disturbed in a sex-dependent manner in olfactory tissues. At birth, the olfactory sensitivity to 2MB2 was reduced in exposed PND2 pups. CONCLUSION Gestational exposure to DE alters olfactory tissues and affects monoaminergic neurotransmission in fetuses' olfactory bulbs, resulting in an alteration of olfactory-based behaviors at birth. Considering the anatomical and functional continuum between the olfactory system and other brain structures, and due to the importance of monoamine neurotransmission in the plasticity of neural circuits, such alterations could participate to disturbances in higher integrative structures, with possible long-term neurobehavioral consequences.
Collapse
Affiliation(s)
- Estefanía Bernal-Meléndez
- NeuroBiologie de l’Olfaction, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- CALBINOTOX, Université de Lorraine, EA7488 Vandœuvre-lès-Nancy, France
| | | | | | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | - Benoit Olivier
- CALBINOTOX, Université de Lorraine, EA7488 Vandœuvre-lès-Nancy, France
| | - Marie-Annick Persuy
- NeuroBiologie de l’Olfaction, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Didier Durieux
- NeuroBiologie de l’Olfaction, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Josiane Aioun
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Flemming Cassee
- Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Sarah Valentino
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | | | - Henri Schroeder
- CALBINOTOX, Université de Lorraine, EA7488 Vandœuvre-lès-Nancy, France
| | - Christine Baly
- NeuroBiologie de l’Olfaction, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
26
|
Zhang M, Liu W, Zhou Y, Li Y, Qin Y, Xu Y. Neurodevelopmental toxicity induced by maternal PM2.5 exposure and protective effects of quercetin and Vitamin C. CHEMOSPHERE 2018; 213:182-196. [PMID: 30218877 DOI: 10.1016/j.chemosphere.2018.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 05/05/2023]
Abstract
Epidemiological studies show that maternal exposure to PM2.5 affects the neurodevelopment of the offspring, especially the neurocognitive function. However, no relevant experimental researches have been published on toxic mechanism and diet intervention. We evaluated the effects of exposure to different doses of PM2.5 on the behavioral development of offspring via a PM2.5 exposure model established by intratracheal instillation, explored its mechanism and the protective effects of quercetin and VC intervention, and focused on the protein expression of CREB/BDNF signaling pathway. Specifically, Exposure to PM2.5 during gestation and lactation period caused maternal oxidative stress. Maternal exposure to PM2.5 changed postnatal open-field behaviors in both gender, impaired spatial learning and memory in the female offspring, increased the level of IL-1β, IL-6, down-regulated p-CREB/CREB, BDNF, TrkB, p-CaMKII/CaMKII, p-CaMKIV/CaMKIV, up-regulated p-Akt/Akt and p-ERK1/2/ERK1/2 in the offspring. In addition, maternal supplementation with quercetin ameliorate the maternal oxidative stress, improved progeny inflammatory response, regulated BDNF, TrkB, p-Akt/Akt, p-ERK1/2/ERK1/2 in female offspring, regulated TrkB, p-CREB/CREB and p-Akt/Akt in male offspring. Maternal supplementation with VC increased the levels of CAT in maternal mice, up-regulated BDNF in female offspring, regulated p-CREB/CREB and p-ERK1/2/ERK1/2 in male offspring. Our findings indicate that PM2.5 exposure during pregnancy and lactation could impair behavioral development of offspring. Quercetin shows more protective effects than VC. The mechanism of neurodevelopmental toxicity induced by PM2.5 may be related to oxidative stress, inflammatory response and modulation of the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Minjia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China.
| |
Collapse
|
27
|
Impact of a gestational exposure to diesel exhaust on offspring gonadal development: experimental study in the rabbit. J Dev Orig Health Dis 2018; 9:519-529. [PMID: 29909796 DOI: 10.1017/s2040174418000351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of the present work was to address experimentally the possible impact of exposure to air pollution during gestation on the differentiation and function of the gonads of the offspring using a rabbit model. Rabbits were exposed daily to diluted diesel exhaust gas or filtered air from the 3rd until the 27th day of gestation, during which time germ cells migrate in genital ridges and divide, and fetal sex is determined. Offspring gonads were collected shortly before birth (28th day of gestation) or after puberty (7.5 months after birth). The structure of the gonads was analyzed by histological and immunohistological methods. Serum concentrations of testosterone and anti-Müllerian hormone were determined using ELISA. The morphology and the endocrine function of the gonads collected just at the arrest of the exposure were similar in polluted and control animals in both sexes. No differences were observed as well in gonads collected after puberty. Sperm was collected at the head of the epididymis in adults. Sperm motility and DNA fragmentation were measured. Among all parameters analyzed, only the sperm DNA fragmentation rate was increased three-fold in exposed males. Mechanisms responsible for these modifications and their physiological consequences are to be further clarified.
Collapse
|
28
|
Hime NJ, Marks GB, Cowie CT. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1206. [PMID: 29890638 PMCID: PMC6024892 DOI: 10.3390/ijerph15061206] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.
Collapse
Affiliation(s)
- Neil J Hime
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- The Sydney School of Public Health, University of Sydney Medical School, Sydney, NSW 2006, Australia.
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| | - Christine T Cowie
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| |
Collapse
|
29
|
Nassan FL, Chavarro JE, Mínguez-Alarcón L, Williams PL, Tanrikut C, Ford JB, Dadd R, Perry MJ, Hauser R, Gaskins AJ. Residential distance to major roadways and semen quality, sperm DNA integrity, chromosomal disomy, and serum reproductive hormones among men attending a fertility clinic. Int J Hyg Environ Health 2018; 221:830-837. [PMID: 29801984 PMCID: PMC5997566 DOI: 10.1016/j.ijheh.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We examined associations of residential distance to major roadways, as a proxy for traffic-related air pollution exposures, with sperm characteristics and male reproductive hormones. DESIGN The cohort included 797 men recruited from Massachusetts General Hospital Fertility Center between 2000 and 2015 to participate in fertility research studies. MATERIALS AND METHODS Men reported their residential addresses at enrollment and provided 1-6 semen samples and a blood sample during follow-up. We estimated the Euclidean distance to major roadways (e.g. interstates and highways: limited access highways, multi-lane highways (not limited access), other numbered routes, and major roads) using information from the Massachusetts Department of Geographic Information Systems. Semen parameters (1238 semen samples), sperm DNA integrity (389 semen samples), chromosomal disomy (101 semen samples), and serum reproductive hormones (405 serum samples) were assessed following standard procedures. RESULTS Men in this cohort were primarily Caucasian (86%), not current smokers (92%), with a college or higher education (88%), and had an average age of 36 years and BMI of 27.7 kg/m2. The median (interquartile range) residential distance to a major roadway was 111 (37, 248) meters. Residential proximity to major roadways was not associated with semen parameters, sperm DNA integrity, chromosomal disomy, or serum reproductive hormone concentrations. The adjusted percent change (95% CI) in semen quality parameters associated with a 500 m increase in residential distance to a major roadway was -1.0% (-6.3, 4.5) for semen volume, 4.3% (-5.8, 15.7) for sperm concentration, 3.1% (-7.2, 14.5) for sperm count, 1.1% (-1.2, 3.4) for % total motile sperm, and 0.1% (-0.3, 0.5) for % morphologically normal sperm. Results were consistent when we modeled the semen parameters dichotomized according to WHO 2010 reference values. CONCLUSION Residential distance to major roadways, as a proxy for traffic-related air pollution exposure, was not related to sperm characteristics or serum reproductive hormones among men attending a fertility clinic in Massachusetts.
Collapse
Affiliation(s)
- Feiby L Nassan
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States.
| | - Jorge E Chavarro
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Paige L Williams
- Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Cigdem Tanrikut
- Department of Urology, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer B Ford
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Ramace Dadd
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Russ Hauser
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Audrey J Gaskins
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
30
|
Park CG, Cho HK, Shin HJ, Park KH, Lim HB. Comparison of Mutagenic Activities of Various Ultra-Fine Particles. Toxicol Res 2018; 34:163-172. [PMID: 29686778 PMCID: PMC5903137 DOI: 10.5487/tr.2018.34.2.163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 01/25/2023] Open
Abstract
Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.
Collapse
Affiliation(s)
- Chang Gyun Park
- College of Agriculture, Life & Environment Sciences, Chungbuk National University, Cheongju,
Korea
| | - Hyun Ki Cho
- College of Agriculture, Life & Environment Sciences, Chungbuk National University, Cheongju,
Korea
| | | | - Ki Hong Park
- National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju,
Korea
| | - Heung Bin Lim
- College of Agriculture, Life & Environment Sciences, Chungbuk National University, Cheongju,
Korea
| |
Collapse
|
31
|
Liu X, Jin X, Su R, Li Z. The reproductive toxicology of male SD rats after PM 2.5 exposure mediated by the stimulation of endoplasmic reticulum stress. CHEMOSPHERE 2017; 189:547-555. [PMID: 28961540 DOI: 10.1016/j.chemosphere.2017.09.082] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Evidence has shown that exposure to fine particulate matter (PM) contributed to poor semen quality in males. However, the reproductive toxicity and relevant molecular mechanisms of Particular Matter 2.5 (PM2.5) from different seasons are not well understood. In the present work, we intend to investigate the toxic effects of PM2.5 during summer and winter on reproductive cells and tissues and focus on endoplasmic reticulum stress (ERS) to illustrate the possible molecular mechanisms. Sprague Dawley (SD) rats were exposed to PM2.5 from the summer season (0.2, 0.6, and 1.5 mg/kg b. w.) and winter (0.3, 1.5, and 2.7 mg/kg b. w.) through intratracheal instillation. The exposure was performed once every 3 days and continued for 2 months. Sperm and reproductive organs (testis and epididymis) were collected from the animals to conduct toxicity evaluation and mechanism analysis. The data showed that sperm relative motility rates were remarkably decreased, while sperm malformation rates were significantly increased with exposure to the summer and winter PM2.5. In particular, the reproductive toxicity of winter PM2.5 in the highest dose group was significantly greater than that in the other PM2.5 exposure groups. The pathological results also showed that the rats in the winter PM2.5 group of 2.7 mg/kg b. w. had severe testicular tissue injury, as determined by haematoxylin and eosin (HE) staining. The apoptotic results obtained by terminal dUTP nick-end labelling (TUNEL) further suggested that summer and winter PM2.5 exposure promoted the testicular germ cell apoptosis. The reproductive toxicity of winter PM2.5 in the testis was stronger than that of summer PM2.5. In addition, the expressions of GRP78 and XBP-1, biomarkers of ERS, was enhanced under the conditions of PM2.5 exposure, and ERS-mediated apoptosis through the upregulation of CHOP and Caspase-12 in the epididymis and testis was activated. In conclusion, PM2.5 exposure induced reproductive toxicity in male SD rats by the stimulation of ERS.
Collapse
Affiliation(s)
- Xiaona Liu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
32
|
Does increased traffic flow around unconventional resource development activities represent the major respiratory hazard to neighboring communities?: knowns and unknowns. Curr Opin Pulm Med 2017; 23:161-166. [PMID: 28030372 DOI: 10.1097/mcp.0000000000000361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to demonstrate that the focus on air emissions causing respiratory effects and associated with gas development may be misplaced by attributing those exposures mainly to well pad activities. RECENT FINDINGS The most recent publications on the health effects of hydraulic fracturing operations seem to parallel findings from studies of diesel particulate exposure near roadways and the health effects associated with those exposures. It seems at least possible that some, if not all, of the respiratory effects associated with unconventional resource development may be traffic-related. Road traffic generated by hydraulic fracturing operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature with 4000 to 6000 vehicles visiting the well pad. SUMMARY Exposures from well pads diminish rapidly with distances of only a few kilometers but there is evidence showing disease risk multiple kilometers from well pads. This leaves open the possibility that the several thousand vehicle trips per well pad create traffic emissions over wide areas away from the pad. This alternative source of exposure has not previously been well studied but is being more seriously considered.
Collapse
|
33
|
EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles. Cell Biochem Biophys 2017; 75:359-367. [PMID: 28849322 DOI: 10.1007/s12013-017-0823-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Exogenous factors can cause an imbalance in the redox state of biological systems, promoting the development of oxidative stress, especially reactive oxygen species (ROS). To monitor the intensity of ROS production in secondary keratinocytes (HaCaT) by diesel exhaust particles and thermoresponsive nanogels (tNG), electron paramagnetic resonance (EPR) spectroscopy after 1 and 24 h of incubation, respectively, was applied. Their cytotoxicity was analyzed by a cell viability assay (XTT). For tNG an increase in the cell viability and ROS production of 10% was visible after 24 h, whereas 1 h showed no effect. A ten times lower concentration of diesel exhaust particles exhibited no significant toxic effects on HaCaT cells for both incubation times, thus normal adult human keratinocytes (NHK) were additionally analyzed by XTT and EPR spectroscopy. Here, after 24 h a slight increase of 18% in metabolic activity was observed. However, this effect could not be explained by the ROS formation. A slight increase in the ROS production was only visible after 1 h of incubation time for HaCaT (9%) and NHK (14%).
Collapse
|
34
|
Costa LG, Chang YC, Cole TB. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr Environ Health Rep 2017; 4:156-165. [PMID: 28417440 PMCID: PMC5952375 DOI: 10.1007/s40572-017-0135-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. RECENT FINDINGS Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Department of Neuroscience, University of Parma, Parma, Italy.
| | - Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Corrêa AXR, Testolin RC, Torres MM, Cotelle S, Schwartz JJ, Millet M, Radetski CM. Ecotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles: influence of leaching conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9399-9406. [PMID: 28233212 DOI: 10.1007/s11356-017-8521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Concerns regarding the environmental impact of diesel exhaust particulate matter (DPM) have increased in recent years. Following emission to the atmosphere, these fine materials can sorb many contaminants at their surface, which can subsequently be released, for instance, due to physicochemical environmental changes. The desorption of contaminants from particulate matter will increase the environmental pollution and can promote ecotoxicological effects. In this context, the objective of this study was to assess the aquatic ecotoxicity profile of extracts of DPM obtained at two different pH values. Thus, after collecting particulate matter from the diesel exhaust of heavy engines, extracts were obtained with pure water (at pH 2.00 and 5.00) and with a mixture of three organic solvents (dichloromethane, n-hexane, and acetone). To assess the environmental impact of DPM, the exhaust extracts were used in a battery of aquatic bioassays including key organisms of the food chain: bacteria (Aliivibrio fischeri), algae (Scenedesmus subspicatus), daphnids (Daphnia magna), and fishes (Danio rerio). The aqueous leachate at natural pH (2.0) and solvent extracts were extremely ecotoxic, while the aqueous leachate at pH = 5.0 showed the lowest ecotoxicity. The global ranking of sensitivity for the biotests tested was daphnids > algae > bacteria > fishes. Thus, the use of this bioassay battery could improve our understanding of the impact of DPM on aquatic environments, which is dependent on the pH of the leaching process.
Collapse
Affiliation(s)
- Albertina X R Corrêa
- Laboratório de Remediação Ambiental, UNIVALI Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí SC, Santa Catarina, 88302-202, Brazil
| | - Renan C Testolin
- Laboratório de Remediação Ambiental, UNIVALI Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí SC, Santa Catarina, 88302-202, Brazil
| | - Mariana M Torres
- Laboratório de Remediação Ambiental, UNIVALI Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí SC, Santa Catarina, 88302-202, Brazil
| | - Sylvie Cotelle
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, CNRS UMR 7360, rue du Général Delestraint, 57070, Metz Cedex, France
| | - Jean-Jacques Schwartz
- Université de Strasbourg, ICPEES, CNRS UMR 7515, 1 rue Blessig, 67084, Strasbourg Cedex, France
| | - Maurice Millet
- Université de Strasbourg, ICPEES, CNRS UMR 7515, 1 rue Blessig, 67084, Strasbourg Cedex, France
| | - Claudemir M Radetski
- Laboratório de Remediação Ambiental, UNIVALI Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí SC, Santa Catarina, 88302-202, Brazil.
| |
Collapse
|
36
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Pamela J Roqué
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril 2016; 106:880-96. [PMID: 27565259 DOI: 10.1016/j.fertnstert.2016.08.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. PROSPERO REGISTRATION NUMBER CRD42015007175.
Collapse
Affiliation(s)
- Rafael Lafuente
- Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine, and Public Health, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Infertilidad y Reproducción Humana, EUGIN, Barcelona, Spain
| | - Núria García-Blàquez
- Universitat Pompeu Fabra, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bénédicte Jacquemin
- Universitat Pompeu Fabra, Barcelona, Spain; VIMA: Aging and Chronic Diseases, Epidemiological and Public Health Approaches), U1168, Institut Médical de Santé et Recherche Médicale, Villejuif, France; Unité mixte de recherche (UMR)-S1168, Université Versailles St-Quentin-en-Yvelines, Versailles, France; ISGlobal (Barcelona Institute for Global Health)-Centre for Research in Environmental Epidemiology, Barcelona, Spain; Univerity Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud Pública, Barcelona, Spain; Barcelona Research Infertility Group, Barcelona, Spain
| | - Miguel Angel Checa
- Centro de Infertilidad y Reproducción Humana, EUGIN, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Research Infertility Group, Barcelona, Spain; Department of Obstetrics and Gynecology, Parc de Salut Mar, Barcelona, Spain.
| |
Collapse
|
38
|
Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 2016; 10:1188-202. [DOI: 10.1080/17435390.2016.1202348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon, Republic of Korea,
| | - Je Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea,
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea, and
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C, Dahirel M, Rousseau-Ralliard D, Fournier N, Aubrière MC, Lallemand MS, Camous S, Guinot M, Charlier M, Aujean E, Al Adhami H, Fokkens PH, Agier L, Boere JA, Cassee FR, Slama R, Chavatte-Palmer P. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol 2016; 13:39. [PMID: 27460165 PMCID: PMC4962477 DOI: 10.1186/s12989-016-0151-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model. Pregnant females were exposed to diluted (1 mg/m(3)), filtered DE (NP diameter ≈ 69 nm) or clean air (controls) for 2 h/day, 5 days/week by nose-only exposure (total exposure: 20 days in a 31-day gestation). RESULTS DE exposure induced early signs of growth retardation at mid gestation with decreased head length (p = 0.04) and umbilical pulse (p = 0.018). Near term, fetal head length (p = 0.029) and plasma insulin and IGF1 concentrations (p = 0.05 and p = 0.019) were reduced. Placental function was also affected, with reduced placental efficiency (fetal/placental weight) (p = 0.049), decreased placental blood flow (p = 0.009) and fetal vessel volume (p = 0.002). Non-aggregated and "fingerprint" NP were observed at various locations, in maternal blood space, in trophoblastic cells and in the fetal blood, demonstrating transplacental transfer. Adult female offspring were bred with control males. Although fetoplacental biometry was not affected near term, second generation fetal metabolism was modified by grand-dam exposure with decreased plasma cholesterol (p = 0.008) and increased triglyceride concentrations (p = 0.015). CONCLUSIONS Repeated daily gestational exposure to DE at levels close to urban pollution can affect feto-placental development in the first and second generation.
Collapse
Affiliation(s)
- Sarah A. Valentino
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Anne Tarrade
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Josiane Aioun
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Eve Mourier
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Christophe Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Michèle Dahirel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Delphine Rousseau-Ralliard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Natalie Fournier
- UFR de Pharmacie, Univ Paris-Sud, EA 4041/4529 Lip (Sys), Châtenay-Malabry, France
- Hôpital Européen Georges Pompidou (AP-HP), Laboratoire de Biochimie, UF Cardio-Vasculaire, Paris, France
| | - Marie-Christine Aubrière
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Marie-Sylvie Lallemand
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Sylvaine Camous
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Marine Guinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Madia Charlier
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy en Josas, France
| | - Etienne Aujean
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy en Josas, France
| | - Hala Al Adhami
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Paul H. Fokkens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Lydiane Agier
- Inserm and Univ. Grenoble Alpes, U823, IAB Research Center, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - John A. Boere
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Rémy Slama
- Inserm and Univ. Grenoble Alpes, U823, IAB Research Center, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Pascale Chavatte-Palmer
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| |
Collapse
|
40
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
41
|
Stingone JA, McVeigh KH, Claudio L. Association between prenatal exposure to ambient diesel particulate matter and perchloroethylene with children's 3rd grade standardized test scores. ENVIRONMENTAL RESEARCH 2016; 148:144-153. [PMID: 27058443 PMCID: PMC4874864 DOI: 10.1016/j.envres.2016.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/07/2016] [Accepted: 03/25/2016] [Indexed: 05/06/2023]
Abstract
UNLABELLED The objective of this research was to determine if prenatal exposure to two common urban air pollutants, diesel and perchloroethylene, affects children's 3rd grade standardized test scores in mathematics and English language arts (ELA). Exposure estimates consisted of annual average ambient concentrations of diesel particulate matter and perchloroethylene obtained from the Environmental Protection Agency's 1996 National Air Toxics Assessment for the residential census tract at birth. Outcome data consisted of linked birth and educational records for 201,559 singleton, non-anomalous children born between 1994 and 1998 who attended New York City public schools. Quantile regression models were used to estimate the effects of these exposures on multiple points within the continuous distribution of standardized test scores. Modified Poisson regression models were used to calculate risk ratios (RR) and 95% confidence intervals (CI) of failing to meet curricula standards, an indicator derived from test scores. Models were adjusted for a number of maternal, neighborhood and childhood factors. Results showed that math scores were approximately 6% of a standard deviation lower for children exposed to the highest levels of both pollutants as compared to children with low levels of both pollutants. Children exposed to high levels of both pollutants also had the largest risk of failing to meet math test standards when compared to children with low levels of exposure to the pollutants (RR 1.10 95%CI 1.07,1.12 RR high perchloroethylene only 1.03 95%CI 1.00,1.06; RR high diesel PM only 1.02 95%CI 0.99,1.06). There was no association observed between exposure to the pollutants and failing to meet ELA standards. This study provides preliminary evidence of associations between prenatal exposure to urban air pollutants and lower academic outcomes. Additionally, these findings suggest that individual pollutants may additively impact health and point to the need to study the collective effects of air pollutant mixtures. KEY WORDS air toxics, academic outcomes, urban health, tetrachloroethylene, air pollutant mixtures.
Collapse
Affiliation(s)
- Jeanette A Stingone
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1057, New York, NY 10029, United States.
| | - Katharine H McVeigh
- Division of Family and Child Health, New York City Department of Health and Mental Hygiene, Queens, NY United States
| | - Luz Claudio
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1057, New York, NY 10029, United States
| |
Collapse
|
42
|
Corrêa AXR, Cotelle S, Millet M, Somensi CA, Wagner TM, Radetski CM. Genotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles using the in vivo Vicia faba L. micronucleus test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:199-204. [PMID: 26866755 DOI: 10.1016/j.ecoenv.2016.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Diesel exhaust particulate matter (PM) can have an impact on the environment due to its chemical constitution. A large number of substances such as organic compounds, sulfates, nitrogen derivatives and metals are adsorbed to the particles and desorption of these contaminants could promote genotoxic effects. The objective of this study was to assess the in vivo genotoxicity profile of diesel exhaust PM from heavy-duty engines. Extracts were obtained through leaching with pure water and chemical extraction using three organic solvents (dichloromethane, hexane, and acetone). The in vivo Vicia faba micronucleus test (ISO 29200 protocol) was used to assess the environmental impact of the samples collected from diesel exhaust PM. The solid diesel PM (soot) dissolved in water, and the different extracts, showed positive results for micronucleus formation. After the addition of EDTA, the aqueous extracts did not show a genotoxic effect. The absence of metals in the organic solvent extract indicated that organic compounds also had a genotoxic effect, which was not observed for a similar sample cleaned in a C18 column. Thus, considering the ecological importance of higher plants in relation to ecosystems (in contrast to Salmonella spp., which are commonly used in mutagenicity studies), the Vicia micronucleus test was demonstrated to be appropriate for complementing prokaryotic or in vitro tests on diesel exhaust particulate matter included in risk assessments.
Collapse
Affiliation(s)
- Albertina X R Corrêa
- Universidade do Vale do Itajaí, Laboratório de Remediação Ambiental, Rua Uruguai, 458, Itajaí, SC 88302-202, Brazil
| | - Sylvie Cotelle
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Rue du General Delestraint, Metz F-57070, France
| | - Maurice Millet
- Université de Strasbourg, EPCA - CNRS UMR 7515 1, Rue du Blessig, Strasbourg Cedex 67084, France
| | - Cleder A Somensi
- Instituto Federal Catarinense, Laboratório de Microbiologia, Rodovia BR 280, km 27, Araquari, SC 89245-000, Brazil
| | - Theodoro M Wagner
- Universidade do Vale do Itajaí, Laboratório de Remediação Ambiental, Rua Uruguai, 458, Itajaí, SC 88302-202, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí, Laboratório de Remediação Ambiental, Rua Uruguai, 458, Itajaí, SC 88302-202, Brazil.
| |
Collapse
|
43
|
Wu B, Shen X, Cao X, Yao Z, Wu Y. Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:579-589. [PMID: 26897401 DOI: 10.1016/j.scitotenv.2016.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/07/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
The composition of diesel exhaust fine particulate matter (PM2.5) is of growing interest because of its impacts on health and climatic factors and its application in source apportionment and aerosol modeling. We characterized the detailed chemical composition of the PM2.5, including the organic carbon (OC), elemental carbon (EC), water-soluble ions (WSIs), and elemental contents, emitted from China III and China IV diesel trucks (nine each) based on real-world measurements in Beijing using a portable emissions measurement system (PEMS). Carbonaceous compounds were the dominant components (totaling approximately 87%) of the PM2.5, similar to the results (greater than 80% of the PM2.5) of our previous study of on-road China III diesel trucks. In general, the amounts of individual component groups (carbonaceous compounds, WSIs, and elements) and PM2.5 emissions for China IV diesel trucks were lower than those of China III diesel trucks of the same size, except for the WSIs and elements for the light- and medium-duty diesel trucks. The EC/OC mass ratios were strongly dependent on the emission standards, and the ratios of China IV diesel trucks were higher than those of China III diesel trucks of the same size. The chemical species in the PM2.5 were significantly affected by the driving conditions. Overall, the emission factors (EFs) of the PM2.5 and OC under non-highway (NHW) driving conditions were higher than those under highway (HW) driving conditions, and the EC/OC mass ratios presented an increasing trend, with decreasing OC/PM2.5 and increasing EC/PM2.5 from NHW to HW driving conditions; similar trends were reported in our previous study. In addition, Pearson's correlation coefficients among the PM2.5 species were analyzed to determine the relationships among the various chemical components.
Collapse
Affiliation(s)
- Bobo Wu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyue Cao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunong Wu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
44
|
Yang L, Ma S, Wan Y, Duan S, Ye S, Du S, Ruan X, Sheng X, Weng Q, Taya K, Xu M. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production. J Immunotoxicol 2016; 13:548-56. [DOI: 10.3109/1547691x.2016.1140853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lubing Yang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Sihui Ma
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Yifang Wan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shuqi Duan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Siyan Ye
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shengjie Du
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xinwei Ruan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xia Sheng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Kazuyoshi Taya
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
45
|
Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress. PLoS One 2015; 10:e0142492. [PMID: 26544967 PMCID: PMC4636293 DOI: 10.1371/journal.pone.0142492] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
Background Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. Objectives To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children’s memory and learning. Methods Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Results Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). Conclusion The associations between prenatal exposure to black carbon and stress with children’s memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups.
Collapse
|
46
|
Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 2015; 10:391-412. [DOI: 10.3109/17435390.2015.1073811] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 2015; 56:118-40. [PMID: 26050605 DOI: 10.1016/j.reprotox.2015.05.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
This paper aimed to clarify whether maternal inhalation of engineered nanoparticles (NP) may constitute a hazard to pregnancy and fetal development, primarily based on experimental animal studies of NP and air pollution particles. Overall, it is plausible that NP may translocate from the respiratory tract to the placenta and fetus, but also that adverse effects may occur secondarily to maternal inflammatory responses. The limited database describes several organ systems in the offspring to be potentially sensitive to maternal inhalation of particles, but large uncertainties exist about the implications for embryo-fetal development and health later in life. Clearly, the potential for hazard remains to be characterized. Considering the increased production and application of nanomaterials and related consumer products a testing strategy for NP should be established. Due to large gaps in data, significant amounts of groundwork are warranted for a testing strategy to be established on a sound scientific basis.
Collapse
|
48
|
Pajnič M, Drašler B, Šuštar V, Krek JL, Štukelj R, Šimundić M, Kononenko V, Makovec D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. J Nanobiotechnology 2015; 13:28. [PMID: 25886274 PMCID: PMC4391140 DOI: 10.1186/s12951-015-0087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. RESULTS We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CONCLUSIONS CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable methods for the study of effects of various substances on biological membranes and therefrom derived effects on organisms.
Collapse
Affiliation(s)
- Manca Pajnič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Barbara Drašler
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Vid Šuštar
- Lymphocyte Cytoskeleton Group, Institute of Biomedicine/Pathology, BioCity, University of Turku, Tykistökatu 6B, Turku, SF-20520, Finland.
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Metka Šimundić
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Veno Kononenko
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Darko Makovec
- J. Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Henry Hägerstrand
- Department of Biosciences, BioCity, Åbo Akademi University, BioCity, Artillerigatan 6, Åbo/Turku, SF-20520, Finland.
| | - Damjana Drobne
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
49
|
Peixe TS, Souza Nascimento ED, Schofield KL, Arcuri ASA, Bulcão RP. Nanotoxicology and Exposure in the Occupational Setting. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/odem.2015.33005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Pierdominici M, Maselli A, Cecchetti S, Tinari A, Mastrofrancesco A, Alfè M, Gargiulo V, Beatrice C, Di Blasio G, Carpinelli G, Ortona E, Giovannetti A, Fiorito S. Diesel exhaust particle exposure in vitro impacts T lymphocyte phenotype and function. Part Fibre Toxicol 2014; 11:74. [PMID: 25498254 PMCID: PMC4271360 DOI: 10.1186/s12989-014-0074-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
Background Diesel exhaust particles (DEP) are major constituents of ambient air pollution and their adverse health effect is an area of intensive investigations. With respect to the immune system, DEP have attracted significant research attention as a factor that could influence allergic diseases interfering with cytokine production and chemokine expression. With this exception, scant data are available on the impact of DEP on lymphocyte homeostasis. Here, the effects of nanoparticles from Euro 4 (E4) and Euro 5 (E5) light duty diesel engines on the phenotype and function of T lymphocytes from healthy donors were evaluated. Methods T lymphocytes were isolated from peripheral blood obtained from healthy volunteers and subsequently stimulated with different concentration (from 0.15 to 60 μg/ml) and at different time points (from 24 h to 9 days) of either E4 or E5 particles. Immunological parameters, including apoptosis, autophagy, proliferation levels, mitochondrial function, expression of activation markers and cytokine production were evaluated by cellular and molecular analyses. Results DEP exposure caused a pronounced autophagic-lysosomal blockade, thus interfering with a key mechanism involved in the maintaining of T cell homeostasis. Moreover, DEP decreased mitochondrial membrane potential but, unexpectedly, this effect did not result in changes of the apoptosis and/or necrosis levels, as well as of intracellular content of adenosine triphosphate (ATP). Finally, a down-regulation of the expression of the alpha chain of the interleukin (IL)-2 receptor (i.e., the CD25 molecule) as well as an abnormal Th1 cytokine expression profile (i.e., a decrease of IL-2 and interferon (IFN)-γ production) were observed after DEP exposure. No differences between the two compounds were detected in all studied parameters. Conclusions Overall, our data identify functional and phenotypic T lymphocyte parameters as relevant targets for DEP cytotoxicity, whose impairment could be detrimental, at least in the long run, for human health, favouring the development or the progression of diseases such as autoimmunity and cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0074-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Angela Maselli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Antonella Tinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Arianna Mastrofrancesco
- San Gallicano Dermatologic Institute, IRCCS-IFO, Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, Rome, Italy.
| | - Michela Alfè
- Istituto di Ricerche sulla Combustione (IRC), CNR- Naples, Italy.
| | | | | | | | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Elena Ortona
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy. .,Istituto San Raffaele Sulmona, Sulmona, Italy.
| | - Antonello Giovannetti
- Department of Clinical Medicine, Division of Clinical Immunology, Sapienza University of Rome, Rome, Italy.
| | - Silvana Fiorito
- Department of Clinical Medicine, Division of Clinical Immunology, Sapienza University of Rome, Rome, Italy. .,Institute of Translational Pharmacology, CNR-Rome, Italy. .,Research Center for Nanotechnologies applied to Engineering-CNIS, Rome, Italy.
| |
Collapse
|