1
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2024:10.1038/s41574-024-01059-8. [PMID: 39613954 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Liu Y, Ma X, Le Y, Feng J, Xu M, Wang W, Wang C. Organophosphorus Flame Retardants and Metabolic Disruption: An in Silico, in Vitro, and in Vivo Study Focusing on Adiponectin Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117003. [PMID: 39514743 PMCID: PMC11548883 DOI: 10.1289/ehp14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Environmental chemical exposures have been associated with metabolic outcomes, and typically, their binding to nuclear hormone receptors is considered the molecular initiating event (MIE) for a number of outcomes. However, more studies are needed to understand the influence of such exposures on cell membrane-bound adiponectin receptors (AdipoRs), which are critical metabolic regulators. OBJECTIVE We aimed to clarify the potential interactions between AdipoRs and environmental chemicals, specifically organophosphorus flame retardants (OPFRs), and the resultant effects. METHODS Employing in silico simulation, cell thermal shift, and noncompetitive binding assays, we screened eight OPFRs for interactions with AdipoR1 and AdipoR2. We tested two key events underlying AdipoR modulation upon OPFR exposure in a liver cell model. The Toxicological Prioritization Index (ToxPi)scoring scheme was used to rank OPFRs according to their potential to disrupt AdipoR-associated metabolism. We further examined the inhibitory effect of OPFRs on AdipoR signaling activation in mouse models. RESULTS Analyses identified pi-pi stacking and pi-sulfur interactions between the aryl-OPFRs 2-ethylhexyl diphenyl phosphate (EHDPP), triphenyl phosphate (TPhP), and tricresyl phosphate (TCP) and the transmembrane cavities of AdipoR1 and AdipoR2. Cell thermal shift assays showed a > 3 ° C rightward shift in the AdipoR proteins' melting curves upon exposure to these three compounds. Although the binding sites differed from adiponectin, results suggest that aryl-OPFRs noncompetitively inhibited the binding of the endogenous peptide ligand ADP355 to the receptors. Analyses of key events underlying AdipoR modulation revealed that glucose uptake was notably lower, whereas lipid content was higher in cells exposed to aryl-OPFRs. EHDPP, TCP, and TPhP were ranked as the top three disruptors according to the ToxPi scores. A noncompetitive binding between these aryl-OPFRs and AdipoRs was also observed in wild-type (WT) mice. In db/db mice, the finding of lower blood glucose levels after ADP355 injection was diminished in the presence of a typical aryl-OPFR (TCP). WT mice exposed to TCP demonstrated lower AdipoR1 signaling, which was marked by lower phosphorylated AMP-activated protein kinase (pAMPK) and a higher expression of gluconeogenesis-related genes. Moreover, WT mice exposed to ADP355 demonstrated higher levels of pAMPK protein and peroxisome proliferator-activated receptor-α messenger RNA. This was accompanied by higher glucose disposal and by lower levels of long-chain fatty acids and hepatic triglycerides; these metabolic improvements were negated upon TCP co-treatment. CONCLUSIONS In silico, in vitro, and in vivo assays suggest that aryl-OPFRs act as noncompetitive inhibitors of AdipoRs, preventing their activation by adiponectin, and thus function as antagonists to these receptors. Our study describes a novel MIE for chemical-induced metabolic disturbances and highlights a new pathway for environmental impact on metabolic health. https://doi.org/10.1289/EHP14634.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengting Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Feng J, Ma X, Liu Y, Shi X, Jin L, Le Y, Zhang Q, Wang C. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18190-18201. [PMID: 39364562 DOI: 10.1021/acs.est.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Epidemiological evidence links exposure to 2-ethylhexyl diphenyl phosphate (EHDPP) with lipid metabolic disruption, typically attributed to nuclear receptors, while the role of membrane receptors remains underexplored. This study explored the role of adiponectin receptor 1 (AdipoR1) in EHDPP-induced lipid metabolic disturbances. We examined EHDPP's binding affinity and transcriptional impact on AdipoR1. AdipoR1 knockdown (AdipoR1kd) human liver cells and coculture experiments with AdipoR1 activator (AdipoRon) were used to investigate the effect and the mechanism. EHDPP disrupted triglyceride and phospholipid synthesis and altered corresponding gene expression, mirroring effects in AdipoR1kd cells but diminishing in EHDPP-treated AdipoR1kd cells. RNA sequencing revealed that EHDPP primarily disrupted oxidative phosphorylation and insulin signaling dependent on AdipoR1. Mechanistically, EHDPP interacted with AdipoR1 and reduced AdipoR1 protein levels at 10-7 mol/L or higher, weakening the activation of the calmodulin dependent protein kinase β (CaMKKβ)/AMPK/acetyl CoA carboxylase pathway. Furthermore, EHDPP pretreatment blocked the increase in Ca2+ flux and the corresponding kinase CaMKKβ, as well as liver kinase B1 (LKB1) activation induced by AdipoRon, which is necessary for AMPK activation. Collectively, these findings demonstrate that EHDPP-induced lipid imbalance is partially dependent on AdipoR1, expanding the understanding of environmental metabolic disruptors beyond nuclear receptors.
Collapse
Affiliation(s)
- Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
4
|
Adam N, Desroziers E, Hanine R, Bascarane K, Naulé L, Mhaouty-Kodja S. Developmental exposure to environmentally relevant doses of phthalates alters the neural control of male and female reproduction in mice. ENVIRONMENTAL RESEARCH 2024; 258:119476. [PMID: 38909949 DOI: 10.1016/j.envres.2024.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The present study aims to analyze the effects of developmental exposure to phthalates at environmentally relevant doses on the neural control of male and female reproduction. For this purpose, C57Bl/6J mice were exposed to di-(2-ethylexyl) phthalate (DEHP) alone (5 or 50 μg/kg/d), or DEHP (5 μg/kg/d) in a phthalate mixture. Exposure through diet started 6 weeks before the first mating and lasted until weaning of litters from the second gestation (multiparous dams). Analyses of offspring born from multiparous dams exposed to DEHP alone or in a phthalate mixture showed that females experienced a delayed pubertal onset, and as adults they had prolonged estrous cyclicity and reduced Kiss1 expression in the preoptic area and mediobasal hypothalamus. Male littermates showed a reduced anogenital distance and delayed pubertal onset compared with controls. However, in adulthood the weight of androgen-sensitive organs and hypothalamic Kiss1 expression were unaffected, suggesting normal functioning of the male gonadotropic axis. Developmental exposure to DEHP alone or in a phthalate mixture reduced the ability of intact males and ovariectomized and hormonally primed females to attract a sexual partner and to express copulatory behaviors. In addition, females were unable to discriminate between male and female stimuli in the olfactory preference test. Social interaction was also impaired in females, while locomotor activity and anxiety-like behavior in both sexes were unaffected by the treatment. The sexual deficiencies were associated with reduced expression of the androgen receptor in the preoptic area and progesterone receptor in the mediobasal hypothalamus, the key regions involved in male and female sexual behavior, respectively. Thus, the neural structures controlling reproduction are vulnerable to developmental exposure to phthalates at environmentally relevant doses in male and female mice. Adult females had an impaired gonadotropic axis and showed more affected behaviors than adult males.
Collapse
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Elodie Desroziers
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Rita Hanine
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Karouna Bascarane
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
5
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, Desalegn A, Iszatt N, Schillemans T, Åkesson A, Colles A, Den Hond E, Koppen G, Van Larebeke N, Schoeters G, Govarts E, Remy S. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. TOXICS 2023; 11:711. [PMID: 37624216 PMCID: PMC10459167 DOI: 10.3390/toxics11080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.
Collapse
Affiliation(s)
- Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Antje Gerofke
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Provincial Research Centre for Environment and Health, 2023 Antwerp, Belgium;
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| |
Collapse
|
7
|
Molina-López AM, Bujalance-Reyes F, Ayala-Soldado N, Mora-Medina R, Lora-Benítez A, Moyano-Salvago R. An Overview of the Health Effects of Bisphenol A from a One Health Perspective. Animals (Basel) 2023; 13:2439. [PMID: 37570248 PMCID: PMC10417040 DOI: 10.3390/ani13152439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a chemical compound, considered as an "emerging pollutant", that appears ubiquitously, contaminating the environment and food. It is an endocrine disruptor, found in a multitude of consumer products, as it is a constituent of polycarbonate used in the manufacture of plastics and epoxy resins. Many studies have evaluated the effects of BPA, using a wide range of doses and animal models. In this work, we carried out a review of relevant research related to the effects of BPA on health, through studies performed at different doses, in different animal models, and in human monitoring studies. Numerous effects of BPA on health have been described; in different animal species, it has been reported that it interferes with fertility in both females and males and causes alterations in their offspring, as well as being associated with an increase in hormone-dependent pathologies. Similarly, exposure to BPA has been related to other diseases of great relevance in public health such as obesity, hypertension, diabetes, or neurodevelopmental disorders. Its ubiquity and nonmonotonic behavior, triggering effects at exposure levels considered "safe", make it especially relevant when both animal and human populations are constantly and inadvertently exposed to this compound. Its effects at low exposure levels make it essential to establish safe exposure levels, and research into the effects of BPA must continue and be focused from a "One Health" perspective to take into account all the factors that could intervene in the development of a disease in any exposed organism.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rafael Mora-Medina
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| |
Collapse
|
8
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Pinos H, Collado P. Genistein early in life Modifies the arcuate nucleus of the hypothalamus morphology differentially in male and female rats. Mol Cell Endocrinol 2023; 570:111933. [PMID: 37080379 DOI: 10.1016/j.mce.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 μg/g or 50 μg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28002, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain.
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| |
Collapse
|
9
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
10
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Uyar R, Yurdakok-Dikmen B, Turgut Y, Filazi A. Diethylhexyl Phthalate and Bisphenol A Promote Vincristine and Tamoxifen Resistance in Vitro. Chem Res Toxicol 2022; 35:538-546. [PMID: 35263089 DOI: 10.1021/acs.chemrestox.2c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental estrogen active compounds are strong determinants of estrogen receptor (ER)-positive breast cancers, and increased evidence indicates their contribution to chemotherapy resistance. In the current study, the efficacy of vincristine and tamoxifen, with the presence of diethylhexyl phthalate (DEHP) and bisphenol A (BPA) and the possible involvement of estrogen and estrogen receptor-related mechanisms, was evaluated in an ER+ mammary tumor cancer cell line, MCF-7. Chemotherapeutics tamoxifen as an estrogen receptor modulator and vincristine as an antimitotic compound were selected for evaluation against the presence of common endocrine disrupters. BPA and DEHP preincubation at their proliferative concentrations for 4 h was found to decrease the cytotoxicity of vincristine. mRNA and protein expression of ESR1 and ESR 2 were decreased by vincristine, while this decrease was reversed by DEHP and BPA. Both BPA and DEHP were able to interfere with the cytotoxic activity of vincristine against MCF-7 cells through ESR1 and ESR2. This study provides in vitro toxicological evidence for vincristine resistance and its relation to estrogen active environmental pollutants in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Recep Uyar
- Institute of Health Sciences, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Begum Yurdakok-Dikmen
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Yagmur Turgut
- Institute of Health Sciences, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Ayhan Filazi
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| |
Collapse
|
12
|
Adam N, Mhaouty-Kodja S. Behavioral Effects of Exposure to Phthalates in Female Rodents: Evidence for Endocrine Disruption? Int J Mol Sci 2022; 23:2559. [PMID: 35269705 PMCID: PMC8910129 DOI: 10.3390/ijms23052559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Phthalates have been widely studied for their reprotoxic effects in male rodents and in particular on testosterone production, for which reference doses were established. The female rodent brain can also represent a target for exposure to these environmental endocrine disruptors. Indeed, a large range of behaviors including reproductive behaviors, mood-related behaviors, and learning and memory are regulated by sex steroid hormones. Here we review the experimental studies addressing the effects and mechanisms of phthalate exposure on these behaviors in female rodents, paying particular attention to the experimental conditions (period of exposure, doses, estrous stage of analyses etc.). The objective of this review is to provide a clear picture of the consistent effects that can occur in female rodents and the gaps that still need to be filled in terms of effects and mode(s) of action for a better risk assessment for human health.
Collapse
Affiliation(s)
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine—Institut de Biologie Paris Seine, 7 quai Saint Bernard, 75005 Paris, France;
| |
Collapse
|
13
|
Sakali AK, Bargiota A, Fatouros IG, Jamurtas A, Macut D, Mastorakos G, Papagianni M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients 2021; 13:nu13114184. [PMID: 34836437 PMCID: PMC8622967 DOI: 10.3390/nu13114184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pesticide residues are largely found in daily consumed food because of their extensive use in farming and their long half-life, which prolongs their presence in the environment. Many of these pesticides act as endocrine-disrupting chemicals after pre- or postnatal exposure, significantly affecting, among other things, the time of puberty onset, progression, and completion. In humans, precocious or delayed puberty, and early or delayed sexual maturation, may entail several negative long-term health implications. In this review, we summarize the current evidence on the impact of endocrine-disrupting pesticides upon the timing of the landmarks of female and male puberty in both animals (vaginal opening, first estrus, and balanopreputial separation) and humans (thelarche, menarche, gonadarche). Moreover, we explore the possible mechanisms of action of the reviewed endocrine-disrupting pesticides on the human reproductive system. Access to safe, healthy, and nutritious food is fundamental for the maintenance of health and wellbeing. Eliminating the presence of hazardous chemicals in largely consumed food products may increase their nutritional value and be proven beneficial for overall health. Consequently, understanding the effects of human exposure to hazardous endocrine-disrupting pesticides, and legislating against their circulation, are of major importance for the protection of health in vulnerable populations, such as children and adolescents.
Collapse
Affiliation(s)
- Anastasia Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (A.K.S.); (A.B.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (A.K.S.); (A.B.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.J.)
| | - Athanasios Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.J.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Maria Papagianni
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
14
|
Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Sola E, Pelayo A, Del Pino J. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75 NTR signaling disruption. Food Chem Toxicol 2021; 157:112614. [PMID: 34655688 DOI: 10.1016/j.fct.2021.112614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities. However, no studies were performed in BFCN. We treated wild type or histone deacetylase (HDAC2), P75NTR or acetylcholinesterase (AChE) silenced SN56 cholinergic cells from BF with BPA (0.001 μM-100 μM) with or without recombinant nerve growth factor (NGF) and with or without acetylcholine (ACh) for one- and fourteen days in order to elucidate the mechanisms underlying these effects. BPA induced cholinergic neurotransmission disruption through reduction of ChAT activity, and produced apoptotic cell death, mediated partially through AChE-S overexpression and NGF/TrkA/P75NTR signaling dysfunction, independently of cholinergic neurotransmission disruption, following one- and fourteen days of treatment. BPA mediates these alterations, in part, through HDAC2 overexpression. These data are relevant since they may help to elucidate the neurotoxic mechanisms that trigger the cognitive disabilities induced by BPA exposure, providing a new therapeutic approach.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Lee YJ, Lin HT, Chaudhary MA, Lee YC, Wang DC. Effects of Prenatal Phthalate Exposure and Childhood Exercise on Maternal Behaviors in Female Rats at Postpartum: A Role of Oxtr Methylation in the Hypothalamus. Int J Mol Sci 2021; 22:9847. [PMID: 34576011 PMCID: PMC8465903 DOI: 10.3390/ijms22189847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Both the detrimental effect of prenatal exposure to di-(2-ethylhexyl)-phthalate (DEHP) and the beneficial effects of physical exercise on brain functions have been reported. The oxytocin pathway has been implicated in the onset of maternal behaviors. Epigenetic modification of the oxytocin receptor gene (OXTR) through DNA methylation has been associated with the pathogenesis of neuropsychiatric disorders. The purpose of this study was to investigate the effects of prenatal DEHP exposure on oxytocin-regulated maternal behaviors and to examine the protective effect of exercise. Pregnant rats (F0) were fed with vehicle or DEHP during gestation and the offspring females (F1) were assessed for their maternal behaviors by pup retrieval test at postpartum. The results showed that reduced pup retrieval activities without significant alteration of stress responses were observed in the prenatally DEHP-exposed females. Prenatal DEHP exposure decreased the expressions of oxytocin, Oxtr mRNA, and oxytocin receptor, and increased Oxtr methylation in the hypothalamus of postpartum female rats. There were no significant effects of exercise on behavioral, biochemical, and epigenetic measurements. These results suggest that prenatal DEHP exposure has a long-term adverse effect on maternal behaviors; Oxtr hyper-methylation may be a potential epigenetic mechanism for this alteration, which cannot be prevented by physical exercise during childhood.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
| | - Hwai-Ting Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
- Ph. D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Muhammad Asad Chaudhary
- Ph. D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Ching Lee
- Department of Food and Beverage Services, Tainan University of Technology, Tainan 710302, Taiwan;
| | - Dean-Chuan Wang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD +-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int J Mol Sci 2021; 22:ijms22189666. [PMID: 34575829 PMCID: PMC8467074 DOI: 10.3390/ijms22189666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 μg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.
Collapse
|
17
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
18
|
Luo X, Shu S, Feng H, Zou H, Zhang Y. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144517. [PMID: 33454488 DOI: 10.1016/j.scitotenv.2020.144517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) are endocrine-disrupting compounds that are ubiquitous in surface water. However, early studies on PAEs only focused on six species on the priority contaminant list, and the seasonal variation in the PAE distribution in Taihu Lake, China is unclear. The present study investigated the occurrence, spatial distribution, and ecological risks of 16 PAEs in Taihu Lake during the dry, normal, and wet seasons. The results showed that dibutyl phthalate, diethylhexyl phthalate (DEHP), and diisobutyl phthalate (DIBP) were the major species detected in the surface water of Taihu Lake. The summed concentration of the six priority PAEs accounted for less than 50% of the total, indicating that the contamination of the other PAE congeners was non-negligible. Significant seasonal effects were observed that the total PAE concentration was higher in the wet season than in the dry season, and there were significant positive correlations between the total PAE concentration and rainfall, the water reserve, and the water level. In the dry season, a relatively high PAE level was detected in the area close to the inflow river estuary and the tourist island in the lake. The concentrations of PAEs in the lakeshore area were higher than those in the lake center in the normal season, and were generally high in the wet season. DEHP posed high risks for fish regardless of the season, while butyl benzyl phthalate, DIBP, dihexyl phthalate, and diphenyl phthalate also showed high risks in the normal and wet seasons. These results suggest that the contamination and risks of congeners other than the priority PAEs are also of necessary concern, and seasonal variation should be considered for a comprehensive understanding of PAE contamination in surface water.
Collapse
Affiliation(s)
- Xin Luo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shu Shu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Gore AC, Thompson LM, Bell M, Mennigen JA. Transgenerational effects of polychlorinated biphenyls: 2. Hypothalamic gene expression in rats†. Biol Reprod 2021; 105:690-704. [PMID: 33824955 DOI: 10.1093/biolre/ioab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/07/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are endocrine-disrupting chemicals (EDCs) with well-established effects on reproduction and behavior in developmentally-exposed (F1) individuals. Because of evidence for transgenerational effects of EDCs on the neuroendocrine control of reproductive physiology, we tested the hypothesis that prenatal PCB exposure leads to unique hypothalamic gene-expression profiles in three generations. Pregnant Sprague-Dawley rats were treated on gestational days 16 and 18 with the PCB mixture Aroclor 1221 (A1221), vehicle (3% DMSO in sesame oil), or estradiol benzoate (EB, 50 μg/kg), the latter a positive control for estrogenic effects of A1221. Maternal- and paternal-lineage F2 and F3 generations were bred using untreated partners. The anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), involved in the hypothalamic control of reproduction, were dissected from F1 to F3 females and males, RNA extracted, and gene expression measured in a qPCR array. We detected unique gene-expression profiles in each generation, which were sex- and lineage-specific. In the AVPV, treatment significantly changed 10, 25, and 11 transcripts in F1, F2, and F3 generations, whereas 10, 1, and 12 transcripts were changed in these generations in the ARC. In the F1 AVPV and ARC, most affected transcripts were decreased by A1221. In the F2 AVPV, most effects of A1221 were observed in females of the maternal lineage, whereas only Pomc expression changed in the F2 ARC (by EB). The F3 AVPV and ARC were mainly affected by EB. It is notable that results in one generation do not predict results in another, and that lineage was a major determinant in results. Thus, transient prenatal exposure of F1 rats to A1221 or EB can alter hypothalamic gene expression across three generations in a sex- and lineage-dependent manner, leading to the conclusion that the legacy of PCBs continues for generations.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Mandee Bell
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Jan A Mennigen
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Loganathan N, McIlwraith EK, Belsham DD. Bisphenol A Induces Agrp Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology 2021; 111:678-695. [PMID: 32575098 DOI: 10.1159/000509592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical and obesogen. Although limited evidence exists of the effects of BPA on hypothalamic agouti-related peptide (AgRP) levels, the mechanisms underlying these effects remain unknown. Given that AgRP is a potent orexigenic neuropeptide, determining the mechanism by which BPA increases AgRP is critical to preventing the progression to metabolic disease. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we investigated the response of Agrp-expressing mouse hypothalamic cell lines to BPA treatment. The percentage of total BPA entering hypothalamic cells in culture was quantified using an enzyme-linked immunosorbent assay. In order to identify the mechanism underlying BPA-mediated changes in Agrp, siRNA knockdown of transcription factors, FOXO1, CHOP, ATF3, ATF4, ATF6, and small-molecule inhibitors of endoplasmic reticulum stress, JNK or MEK/ERK were used. RESULTS BPA increased mRNA levels of Agrp in six hypothalamic cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-46, mHypoE-44, and mHypoE-42). Interestingly, only 18% of the total BPA in the culture medium entered the cells after 24 h, suggesting that the exposure concentration is much lower than the treatment concentration. BPA increased pre-Agrp mRNA levels, indicating increased Agrp transcription. Knockdown of the transcription factor ATF3 prevented BPA-mediated increase in Agrp, pre-Agrp, and in part Npy mRNA levels. However, chemical chaperone, sodium phenylbutyrate, JNK inhibitor, SP600125, or the MEK/ERK inhibitor PD0352901 did not block BPA-induced Agrp upregulation. CONCLUSION Overall, these results indicate that hypothalamic Agrp is susceptible to dysregulation by BPA and implicate ATF3 as a common mediator of the orexigenic effects of BPA in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada,
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada,
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
21
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
22
|
D'Angelo S, Scafuro M, Meccariello R. BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocr Metab Immune Disord Drug Targets 2020; 19:594-604. [PMID: 30621569 PMCID: PMC7360909 DOI: 10.2174/1871530319666190101120119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background Bisphenol A (BPA) is worldwide diffused as a monomer of epoxy resins and polycarbonate plastics and has recognized activity as Endocrine Disruptor (ED). It is capable to interfere or compete with endogenous hormones in many physiological activities thus having adverse outcomes on health. Diet highly affects health status and in addition to macronutrients, provides a large number of substances with recognized pro-heath activity, and thus called nutraceuticals. Objective This mini-review aims at summarizing the possible opposite and simultaneous effects of BPA and nutraceuticals on endocrine functions. The possibility that diet may represent the first instrument to preserve health status against BPA damages has been discussed. Methods The screening of recent literature in the field has been carried out. Results The therapeutic and anti-oxidant properties of many nutraceuticals may reverse the adverse health effects of BPA. Conclusion In vitro and in vivo studies provided evidence that nutraceuticals can preserve the health. Thus, the use of nutraceuticals can be considered a support for clinical treatment. In conclusion, dietary remediation may represent a successful therapeutic approach to maintain and preserve health against BPA damage.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| | - Marika Scafuro
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Universita degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| |
Collapse
|
23
|
Shao P, Wang Y, Zhang M, Wen X, Zhang J, Xu Z, Hu M, Jiang J, Liu T. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:362-369. [PMID: 31212184 DOI: 10.1016/j.ecoenv.2019.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
DEHP is reported to cause precocious puberty of females in both humans and rodents, but the underlying mechanisms were largely unknown. This study was designed to clarify the effects and the mechanisms of DEHP on the pathogenesis of sexual precocity. Prepubertal female rats were treated with DEHP for 4 weeks. Key organs were analyzed in control conditions and after exposure to 0.2, 1, and 5 mg/kg/day DEHP in pubertal female rats. To determine the role of the IGF-1/PI3K/Akt/mTOR signaling pathway in DEHP-induced female precocious puberty, 36 rats were treated with 5 mg/kg/day DEHP to establish a model of female precocious puberty. And we investigated the expression of genes and proteins related to IGF-1 pathway in rat hypothalamus after treatment with inhibitors. In the present study, we observed that DEHP treatment resulted in earlier vaginal opening time, higher number of Nissl bodies in the hypothalamus neurons, lower apoptosis of hypothalamic cells, higher IGF-1 and GnRH levels in the serum and hypothalamus. DEHP could also upregulated the expression of IGF-1/PI3K/Akt/mTOR pathway and GnRH in the hypothalamus of adolescent female rats, and inhibition of IGF-1R and mTOR in hypothalamus could block the activation of Kiss-1, GPR54, and GnRH by DEHP. In summary, our study suggested that DEHP might activate the hypothalamic GnRH neurons prematurely through the IGF-1 signaling pathway and promote GnRH release, leading to the initiation of female sexual development. Our results provide a new molecular mechanism underlying reproductive and developmental toxicity in pubertal female rats induced by DEHP.
Collapse
Affiliation(s)
- Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzhuo Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Meng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinggui Wen
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhonghang Xu
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Ruiz-Pino F, Miceli D, Franssen D, Vazquez MJ, Farinetti A, Castellano JM, Panzica G, Tena-Sempere M. Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107011. [PMID: 31652106 PMCID: PMC6867420 DOI: 10.1289/ehp5570] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. OBJECTIVE We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. METHODS Pregnant CD1 female mice were orally administered BPA at 5, 10, or 40μg/kg body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. RESULTS Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; 5mg/kg BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses (5μg/kg BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. CONCLUSIONS Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.
Collapse
Affiliation(s)
- Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Desiree Miceli
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Alice Farinetti
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - GianCarlo Panzica
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
25
|
Falk S, Lund C, Clemmensen C. Muscarinic receptors in energy homeostasis: Physiology and pharmacology. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:66-76. [PMID: 31464050 DOI: 10.1111/bcpt.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
Despite increased awareness and intensified biomedical research efforts, the prevalence of obesity continues to rise worldwide. This is alarming, because obesity accelerates the progression of several chronic disorders, including type 2 diabetes, cancer and cardiovascular disease. Individuals who experience significant weight loss must combat powerful counter-regulatory energy homeostatic processes, and, typically, most individuals regain the lost weight. Therefore, decoding the neural mechanisms underlying the regulation of energy homeostasis is necessary for developing breakthroughs in obesity management. It has been known for decades that cholinergic neurotransmission both directly and indirectly modulates energy homeostasis and metabolic health. Despite this insight, the molecular details underlying the modulation remain ill-defined, and the potential for targeting cholinergic muscarinic receptors for treating metabolic disease is largely uncharted. In this MiniReview, we scrutinize the literature that has formed our knowledge of muscarinic acetylcholine receptors (mAChRs) in energy homeostasis. The role of mAChRs in canonical appetite-regulating circuits will be discussed as will the more indirect regulation of energy homoeostasis via neurocircuits linked to motivated behaviours and emotional states. Finally, we discuss the therapeutic prospects of targeting mAChRs for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sarah Falk
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav 2019; 111:7-22. [PMID: 30476496 PMCID: PMC6527472 DOI: 10.1016/j.yhbeh.2018.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
A contribution to SBN/ICN special issue. Endocrine-disrupting chemicals (EDCs) are pervasive in the environment. They are found in plastics and plasticizers (bisphenol A (BPA) and phthalates), in industrial chemicals such as polychlorinated biphenyls (PCBs), and include some pesticides and fungicides such as vinclozolin. These chemicals act on hormone receptors and their downstream signaling pathways, and can interfere with hormone synthesis, metabolism, and actions. Because the developing brain is particularly sensitive to endogenous hormones, disruptions by EDCs can change neural circuits that form during periods of brain organization. Here, we review the evidence that EDCs affect developing hypothalamic neuroendocrine systems, and change behavioral outcomes in juvenile, adolescent, and adult life in exposed individuals, and even in their descendants. Our focus is on social, communicative and sociosexual behaviors, as how an individual behaves with a same- or opposite-sex conspecific determines that individual's ability to exist in a community, be selected as a mate, and reproduce successfully.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Mhaouty-Kodja S, Naulé L, Capela D. Sexual Behavior: From Hormonal Regulation to Endocrine Disruption. Neuroendocrinology 2018; 107:400-416. [PMID: 30326485 DOI: 10.1159/000494558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Sexual behavior constitutes a chain of behavioral responses beginning with courtship and leading to copulation. These responses, which are exhibited in a sexually dimorphic manner by the two partners, are tightly regulated by sex steroid hormones as early as the perinatal period. Hormonal changes or exposure to exogenous factors exhibiting hormone-mimetic activities, such as endocrine disrupting compounds (EDC), can therefore interfere with their expression. Here we review the experimental studies in rodents performed to address the potential effects of exposure to EDC on sexual behavior and underlying mechanisms, with particular attention to molecules with estrogenic and/or anti-androgenic activities.
Collapse
|
28
|
Lejonklou MH, Dunder L, Bladin E, Pettersson V, Rönn M, Lind L, Waldén TB, Lind PM. Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067018. [PMID: 28657538 PMCID: PMC5743697 DOI: 10.1289/ehp505] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive. OBJECTIVES The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring. METHODS Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to 0.5 μg/kg BW/d (BPA0.5; n=21) or 50 μg/kg BW/d (BPA50; n=16), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (n=26). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring. RESULTS Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels (0.81±0.10 mmol/L compared with 0.57±0.03 mmol/L, females BPA50 p=0.04; 0.81±0.05 mmol/L compared with 0.61±0.04 mmol/L, males BPA0.5 p=0.005) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls (68.2±4.4 number of adipocytes/HPF compared with 55.9±1.5 number of adipocytes/HPF; p=0.03) and by 123% in BPA0.5 females compared with BPA50 animals (68.2±4.4 number of adipocytes/high power field (HPF) compared with 55.3±2.9 number of adipocytes/HPF; p=0.04). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals (69.9±5.1 number of adipocytes/HPF compared with 54.0±3.4 number of adipocytes/HPF; p=0.03). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed animals and controls depending on the tissue, dose, and sex. CONCLUSIONS Developmental exposure to 0.5 μg/kg BW/d of BPA, which is 8-10 times lower than the current preliminary EFSA (European Food Safety Authority) tolerable daily intake (TDI) of 4 μg/kg BW/d and is within the range of environmentally relevant levels, was associated with sex-specific differences in the expression of genes in adipose tissue plasma triglyceride levels in males and adipocyte cell density in females when F344 rat offspring of dams exposed to BPA at 0.5 μg/kg BW/d were compared with the offspring of unexposed controls. https://doi.org/10.1289/EHP505.
Collapse
Affiliation(s)
- Margareta H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Emelie Bladin
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Vendela Pettersson
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Monika Rönn
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University , Uppsala, Sweden
| | - Tomas B Waldén
- Department of Medical Cell Biology, Uppsala University , Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| |
Collapse
|