1
|
Yang R, Zhang B, Wang Y, Zhang Y, Zhao Y, Jiang D, Chen L, Tang B, Zhang X. H3K9me3 Levels Affect the Proliferation of Bovine Spermatogonial Stem Cells. Int J Mol Sci 2024; 25:9215. [PMID: 39273164 PMCID: PMC11394725 DOI: 10.3390/ijms25179215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yansen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lanxin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Matoba S, Shikata D, Shirai F, Tatebe T, Hirose M, Nakata A, Watanabe N, Hasegawa A, Ito A, Yoshida M, Ogura A. Reduction of H3K9 methylation by G9a inhibitors improves the development of mouse SCNT embryos. Stem Cell Reports 2024; 19:906-921. [PMID: 38729154 PMCID: PMC11390627 DOI: 10.1016/j.stemcr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.
Collapse
Affiliation(s)
- Shogo Matoba
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takaki Tatebe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Bioresource Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Vazquez-Avendaño JR, Cortez-Romero C, Bravo-Vinaja Á, Ambríz-García DA, Trejo-Córdova A, Navarro-Maldonado MDC. Reproduction of Sheep through Nuclear Transfer of Somatic Cells: A Bibliometric Approach. Animals (Basel) 2023; 13:1839. [PMID: 37889773 PMCID: PMC10251971 DOI: 10.3390/ani13111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 10/29/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a reproductive biotechnology with great potential in the reproduction of different species of zootechnical interest, including sheep. This study aimed to carry out a bibliometric analysis of scientific papers published on the application of SCNT in sheep reproduction during the period 1997-2023. The search involved the Science Citation Index Expanded and Social Sciences Citation Index databases of the main collection of the Web of Sciences with different descriptors. A total of 124 scientific papers were analyzed for different bibliometric indicators using the VOSviewer software. Since 2001, the number of SCNT-related papers that have been published concerning sheep reproduction has increased and it has fluctuated in ensuing years. The main authors, research groups, institutions, countries, papers, and journals with the highest number of papers related to the application of SCNT in sheep reproduction were identified, as well as the topics that address the research papers according to the terms: somatic cell, embryo, oocyte, gene expression, SCNT, and sheep.
Collapse
Affiliation(s)
- José Roberto Vazquez-Avendaño
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México C.P. 3855, Mexico;
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México C.P. 09310, Mexico; (D.A.A.-G.); (A.T.-C.)
| | - César Cortez-Romero
- Program in Genetic Resources and Productivity-Livestock, Campus Montecillo, Colegio de Postgraduados, Montecillo, Texcoco C.P. 56264, Mexico;
- Program in Innovation in Natural Resources Management, Campus San Luis Potosí, Colegio de Postgraduados, Salinas de Hidalgo, San Luis Potosí C.P. 78600, Mexico;
| | - Ángel Bravo-Vinaja
- Program in Innovation in Natural Resources Management, Campus San Luis Potosí, Colegio de Postgraduados, Salinas de Hidalgo, San Luis Potosí C.P. 78600, Mexico;
| | - Demetrio Alonso Ambríz-García
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México C.P. 09310, Mexico; (D.A.A.-G.); (A.T.-C.)
| | - Alfredo Trejo-Córdova
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México C.P. 09310, Mexico; (D.A.A.-G.); (A.T.-C.)
| | - María del Carmen Navarro-Maldonado
- Department of Biology of Reproduction, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México C.P. 09310, Mexico; (D.A.A.-G.); (A.T.-C.)
| |
Collapse
|
4
|
Han L, Lee JB, Indermaur EW, Keung AJ. Chaetocin disrupts the SUV39H1-HP1 interaction independent of SUV39H1 methyltransferase activity. Biochem J 2023; 480:421-432. [PMID: 36896918 PMCID: PMC11127023 DOI: 10.1042/bcj20220528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 03/11/2023]
Abstract
Chemical tools to control the activities and interactions of chromatin components have broad impact on our understanding of cellular and disease processes. It is important to accurately identify their molecular effects to inform clinical efforts and interpretations of scientific studies. Chaetocin is a widely used chemical that decreases H3K9 methylation in cells. It is frequently attributed as a specific inhibitor of the histone methyltransferase activities of SUV39H1/SU(VAR)3-9, although prior observations showed chaetocin likely inhibits methyltransferase activity through covalent mechanisms involving its epipolythiodixopiperazine disulfide 'warhead' functionality. The continued use of chaetocin in scientific studies may derive from the net effect of reduced H3K9 methylation, irrespective of a direct or indirect mechanism. However, there may be other molecular impacts of chaetocin on SUV39H1 besides inhibition of H3K9 methylation levels that could confound the interpretation of past and future experimental studies. Here, we test a new hypothesis that chaetocin may have an additional downstream impact aside from inhibition of methyltransferase activity. Using a combination of truncation mutants, a yeast two-hybrid system, and direct in vitro binding assays, we show that the human SUV39H1 chromodomain (CD) and HP1 chromoshadow domain (CSD) directly interact. Chaetocin inhibits this binding interaction through its disulfide functionality with some specificity by covalently binding with the CD of SUV39H1, whereas the histone H3-HP1 interaction is not inhibited. Given the key role of HP1 dimers in driving a feedback cascade to recruit SUV39H1 and to establish and stabilize constitutive heterochromatin, this additional molecular consequence of chaetocin should be broadly considered.
Collapse
Affiliation(s)
- Linna Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695-7905, U.S.A
| | - Jessica B. Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695-7905, U.S.A
| | - Elaine W. Indermaur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695-7905, U.S.A
| | - Albert J. Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695-7905, U.S.A
| |
Collapse
|
5
|
Kang Y, Bi Y, Tang Q, Xu H, Lan X, Zhang Q, Pan C. A 7-nt nucleotide sequence variant within the sheep KDM3B gene affects female reproduction traits. Anim Biotechnol 2022; 33:1661-1667. [PMID: 34081570 DOI: 10.1080/10495398.2021.1929270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysine demethylase 3B (KDM3B) gene is a histone demethylase, demonstrating specific demethylation of the histone H3 lysine 9. It was detected as a sheep reproductive candidate gene by genome-wide scans, and related studies also showed its significance in female reproductive process. However, rare study researched its polymorphism. Herein, we hypothesized that the polymorphisms of KDM3B gene were associated with sheep reproduction traits. A 7-nt nucleotide sequence variant (rs1088697156) within KDM3B gene was identified in a total of 888 individuals, including the Australian White (AUW) sheep and Lanzhou Fat-tailed (LFT) sheep. II (insertion/insertion) and ID (insertion/deletion) genotypes of 7-nt variant were detected, which were at Hardy-Weinberg equilibrium (HWE) in detected breeds. Association analysis illustrated the 7-nt variant was significantly associated with the litter size, duration of pregnancy, live lamb number, live lamb rate, stillbirth number, stillbirth rate of average and different parity (P < 0.05) in AUW sheep. Moreover, 'ID' was the dominant genotype with excellent consistency in reproductive traits. It is instrumental to select individuals with ID genotype for improving the sheep reproduction traits. These findings suggest that the 7-nt variant within KDM3B gene can be used as a candidate marker of reproduction traits for sheep breeding improvement by marker-assisted selection.
Collapse
Affiliation(s)
- Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd, Tianjin, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246-254. [DOI: 10.1016/j.theriogenology.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
7
|
Vazquez-Avendaño JR, Ambriz-García DA, Cortez-Romero C, Trejo-Córdova A, del Carmen Navarro-Maldonado M. Current state of the efficiency of sheep embryo production through somatic cell nuclear transfer. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics 2022; 14:5. [PMID: 34996497 PMCID: PMC8742467 DOI: 10.1186/s13148-021-01223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs.
Results We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. Conclusion Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01223-1.
Collapse
|
9
|
Jeong PS, Yang HJ, Park SH, Gwon MA, Joo YE, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Combined Chaetocin/Trichostatin A Treatment Improves the Epigenetic Modification and Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos. Front Cell Dev Biol 2021; 9:709574. [PMID: 34692674 PMCID: PMC8526721 DOI: 10.3389/fcell.2021.709574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Soo-Hyun Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ah Gwon
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
10
|
Lian B, Lin Q, Tang W, Qi X, Li J. SUV39H1 is a New Client Protein of Hsp90 Degradated by Chaetocin as a Novel C-Terminal Inhibitor of Hsp90. Biomol Ther (Seoul) 2021; 29:73-82. [PMID: 33162400 PMCID: PMC7771846 DOI: 10.4062/biomolther.2020.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/02/2022] Open
Abstract
Hsp90 is often overexpressed with activated form in cancer cells, and many key cellular proteins are dependent upon the Hsp90 machinery (these proteins are called “client protein”). Nowadays, more client proteins and more inhibitors of Hsp90 are being discovered. Chaetocin has been identified as an inhibitor of histone methyl transferase SUV39H1. Herein, we find that Chaetocin is an inhibitor of Hsp90 which binds to the C-terminal of Hsp90α. Chaetocin inhibited a variety of Hsp90 client proteins including AMl1-ETO and BCL-ABL, the mutant fusion-protein in the K562 and HL-60 cells. SUV39H1 mediates epigenetic events in the pathophysiology of hematopoietic disorders. We found that inhibition of Hsp90 by Chaetocin and 17-AAG had ability to induce degradation of SUV39H1 through proteasome pathway. In addition, SUV39H1 interacted with Hsp90 through co-chaperone HOP. These results suggest that SUV39H1 belongs to a client protein of Hsp90. Moreover, Chaetocin was able to induce cell differentiation in the two cells in the concentration range of Hsp90 inhibition. Altogether, our results demonstrate that SUV39H1 is a new client protein of Hsp90 degradated by Chaetocin as a novel C-terminal inhibitor of Hsp90. The study establishes a new relationship of Chaetocin and SUV39H1, and paves an avenue for exploring a new strategy to target SUV39H1 by inhibition of Hsp90 in leukemia.
Collapse
Affiliation(s)
- Bin Lian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Lin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,Open Studio for Drugability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
11
|
Damasceno Teixeira TV, Fry RC, McKinnon A, Fry KL, Kelly JM, Verma PJ, Burden C, Salamone DF, Gambini A. Targeting epigenetic nuclear reprogramming in aggregated cloned equine embryos. Reprod Fertil Dev 2020; 31:1885-1893. [PMID: 31581975 DOI: 10.1071/rd19239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
Epigenetic perturbations during the reprogramming process have been described as the primary cause of the low efficiency of somatic cell nuclear transfer (SCNT). In this study, we tested three strategies targeting nuclear reprogramming to investigate effects on equine SCNT. First, we evaluated the effect of treating somatic cells with chetomin, a fungal secondary metabolite reported to inhibit the trimethylation on histone 3 lysine 9 (H3K9 me3). Second, caffeine was added to the culture medium during the enucleation of oocytes and before activation of reconstructed embryos as a protein phosphatase inhibitor to improve nuclear reprogramming. Third, we tested the effects of the histone deacetylase inhibitor trichostatin A (TSA) added during both activation and early embryo culture. Although none of these treatments significantly improved the developmental rates of the invitro aggregated cloned equine embryos, the first equine cloned foal born in Australia was produced with somatic cells treated with chetomin. The present study describes the use of chetomin, caffeine and TSA for the first time in horses, serving as a starting point for the establishment of future protocols to target epigenetic reprogramming for improving the efficiency of equine cloning. Cloning is an expensive and inefficient process, but has gained particular interest in the equine industry. In this study we explored different strategies to improve cloning efficiency and produced the first cloned foal born in Australia. Our data serve as a starting point for the establishment of future protocols for improving equine cloning efficiency.
Collapse
Affiliation(s)
- Thiago V Damasceno Teixeira
- Laboratory of Animal and Meat Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Richard C Fry
- Laboratory of Animal and Meat Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Angus McKinnon
- Goulburn Valley Equine Hospital, 905 Goulburn Valley Highway, Congupna, Victoria 3633, Australia
| | - Kerri L Fry
- Laboratory of Animal and Meat Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Jennifer M Kelly
- South Australian Research and Development Institute (SARDI), Turretfield Research Centre, Holland Road, Rosedale, 5350, South Australia, Australia
| | - Paul J Verma
- South Australian Research and Development Institute (SARDI), Turretfield Research Centre, Holland Road, Rosedale, 5350, South Australia, Australia
| | - Chelsie Burden
- Goulburn Valley Equine Hospital, 905 Goulburn Valley Highway, Congupna, Victoria 3633, Australia
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomia, Universidad de Buenos Aires, Av. San Martin 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Gambini
- Laboratorio de Biotecnología Animal, Facultad de Agronomia, Universidad de Buenos Aires, Av. San Martin 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina; and Corresponding author.
| |
Collapse
|
12
|
Jeong PS, Sim BW, Park SH, Kim MJ, Kang HG, Nanjidsuren T, Lee S, Song BS, Koo DB, Kim SU. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity. Int J Mol Sci 2020; 21:ijms21144836. [PMID: 32650566 PMCID: PMC7402317 DOI: 10.3390/ijms21144836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Efficient epigenetic reprogramming is crucial for the in vitro development of mammalian somatic cell nuclear transfer (SCNT) embryos. The aberrant levels of histone H3 lysine 9 trimethylation (H3K9me3) is an epigenetic barrier. In this study, we evaluated the effects of chaetocin, an H3K9me3-specific methyltransferase inhibitor, on the epigenetic reprogramming and developmental competence of porcine SCNT embryos. The SCNT embryos showed abnormal levels of H3K9me3 at the pronuclear, two-cell, and four-cell stages compared to in vitro fertilized embryos. Moreover, the expression levels of H3K9me3-specific methyltransferases (suv39h1 and suv39h2) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) were higher in SCNT embryos. Treatment with 0.5 nM chaetocin for 24 h after activation significantly increased the developmental competence of SCNT embryos in terms of the cleavage rate, blastocyst formation rate, hatching rate, cell number, expression of pluripotency-related genes, and cell survival rate. In particular, chaetocin enhanced epigenetic reprogramming by reducing the H3K9me3 and 5-methylcytosine levels and restoring the abnormal expression of H3K9me3-specific methyltransferases and DNA methyltransferases. Chaetocin induced autophagic activity, leading to a significant reduction in maternal mRNA levels in embryos at the pronuclear and two-cell stages. These findings revealed that chaetocin enhanced the developmental competence of porcine SCNT embryos by regulating epigenetic reprogramming and autophagic activity and so could be used to enhance the production of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Soo-Hyun Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Tsevelmaa Nanjidsuren
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea
- Correspondence: (D.-B.K.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (D.-B.K.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| |
Collapse
|
13
|
Jury N, Abarzua S, Diaz I, Guerra MV, Ampuero E, Cubillos P, Martinez P, Herrera-Soto A, Arredondo C, Rojas F, Manterola M, Rojas A, Montecino M, Varela-Nallar L, van Zundert B. Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice. Clin Epigenetics 2020; 12:32. [PMID: 32070418 PMCID: PMC7029485 DOI: 10.1186/s13148-020-0816-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). Results Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. Conclusions Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD.
Collapse
Affiliation(s)
- Nur Jury
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Abarzua
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ivan Diaz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel V Guerra
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Current address: Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Paula Cubillos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Martinez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabiola Rojas
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Manterola
- Program of Human Genetics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adriana Rojas
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Martín Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile. .,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Weng XG, Cai MM, Zhang YT, Liu Y, Liu C, Liu ZH. Improvement in the in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment. Theriogenology 2019; 146:162-170. [PMID: 31791612 DOI: 10.1016/j.theriogenology.2019.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/06/2019] [Accepted: 11/24/2019] [Indexed: 01/26/2023]
Abstract
Aberrant epigenetic reprogramming is a major cause of the developmental failure of embryos after somatic cell nuclear transfer (SCNT). Histone H3 lysine 9 trimethylation (H3K9me3), a histone marker of transcriptional repression, is considered a key barrier to the development of cloned embryos. In the present study, H3K9me3 levels were much higher in SCNT embryos than IVF embryos at the 4-cell and 2-cell stages. The microinjection of the kdm4a mRNA encoding an H3K9me3 demethylase significantly increased the developmental efficiency of cloned porcine embryos. Moreover, we evaluated the effect of chaetocin, an inhibitor of histone methyltransferases suv39h1/2, on SCNT embryo development. Chaetocin did not suppress the H3K9me3 modification in porcine embryonic fibroblast (PEF) but downregulated the expression of suv39h1, suv39h2, and kdm4d. However, 10 nM chaetocin treatment efficiently decreased the H3K9me3 level in cloned embryos. Importantly, a chaetocin treatment at the 4-cell stage for 6 h significantly increased the blastocyst rate and total cell numbers. Furthermore, the inhibitor treatment upregulated the expression of related developmental genes. In summary, both overexpression of kdm4a and treatment with a suv39h1/2 inhibitor improve the epigenetic reprogramming of cloned embryos and further improve the developmental competence in vitro.
Collapse
Affiliation(s)
- Xiao-Gang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Ming-Ming Cai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yu-Ting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Cong Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
15
|
Comparison of pregnancy rates with transfer of in vivo produced embryos derived using multiple ovulation and embryo transfer (MOET) with in vitro produced embryos by somatic cell nuclear transfer (SCNT) in the dromedary camel (Camelus dromedaries). Anim Reprod Sci 2019; 209:106132. [PMID: 31514928 DOI: 10.1016/j.anireprosci.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
In the present study, there was comparison of pregnancy rates with transfer of in vivo-produced embryos using multiple ovulation and embryo transfer (MOET) with in vitro-produced embryos by somatic cell nuclear transfer (SCNT) in dromedary camels. In vivo-produced embryos were collected from donors after super-stimulation of follicular development on day 7 after ovulation, while in vitro-derived embryos were produced using SCNT from in vivo-matured oocytes collected from camels after follicular development super-stimulation. As a result of estrous synchronization, all recipient camels for both groups were 1 day earlier in stage of estrous cycle than developmental status of embryos at the time of transfer. The animals into which embryos were transferred were monitored at 7-day intervals after embryo transfer for signs of pregnancy based on response to presence of a male and there was ultrasonic confirmation on days 35 and 60 subsequent to day of estrus in recipient animals. A greater proportion of recipients (P < 0.05) were considered pregnant based on response to male presence when there was transfer of MOET-(76.8 ± 3.2) compared with SCNT- (26.4 ± 2.4) derived embryos on day 14. There was no difference in pregnancy losses in subsequent weeks until day 60 between groups. There were also no differences in calving rates of females in which MOET- (91.7%) and SCNT- (93.3%) derived embryos were transferred. These results indicate pregnancies at day 60 with SCNT-derived embryos are sustained for the remainder of gestation periods similar to when there was transfer of MOET-derived embryos in dromedary camels.
Collapse
|
16
|
Cao H, Li L, Yang D, Zeng L, Yewei X, Yu B, Liao G, Chen J. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur J Med Chem 2019; 179:537-546. [PMID: 31276898 DOI: 10.1016/j.ejmech.2019.06.072] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression without changing the DNA sequence - a change in phenotype without a change in genotype. Epigenetic abnormalities can lead to serious diseases such as cancer in organisms. Histone methylation is one of the several manifestations of epigenetics, and requires specific enzymes to catalyze, for example, G9a, which is a histone methyl transferase. G9a catalyzes the methylation of histone 3 lysine 9 (H3K9) and histone 3 lysine 27 (H3K27). In addition, G9a also plays an essential role in DNA replication, damage and repair, and gene expression by regulating DNA methylation. Moreover, G9a has been found to be overexpressed in many tumor cells and is associated with the occurrence and development of tumors. Because of its unique characteristics, G9a has become a very promising target for anti-cancer agents. Over the last decade, dozens of G9a inhibitors have been discovered as potential anticancer therapeutic agents. In this review, we summarize and classify current G9a inhibitors, the challenges and future direction are also discussed in detail.
Collapse
Affiliation(s)
- Hao Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liming Zeng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xie Yewei
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|