1
|
Schmid PJ, Forstner P, Kittinger C. Sliding motility of Bacillus cereus mediates vancomycin pseudo-resistance during antimicrobial susceptibility testing. J Antimicrob Chemother 2024; 79:1628-1636. [PMID: 38785365 PMCID: PMC11215547 DOI: 10.1093/jac/dkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The glycopeptide vancomycin is the antimicrobial agent-of-choice for the treatment of severe non-gastrointestinal infections with members of Bacillus cereus sensu lato (s.l.). Recently, sporadic detection of vancomycin-resistant phenotypes emerged, mostly for agar diffusion testing such as the disc diffusion method or gradient test (e.g. Etest®) method. RESULTS In this work, we were able to disprove a preliminarily assumed high resistance to vancomycin in an isolate of B. cereus s.l. using broth microdilution and agar dilution. Microscopic imaging during vancomycin susceptibility testing showed spreading towards the inhibition zone, which strongly suggested sliding motility. Furthermore, transcriptomic analysis using RNA-Seq on the nanopore platform revealed several key genes of biofilm formation (e.g. calY, tasA, krsEABC) to be up-regulated in pseudo-resistant cells, substantiating that bacterial sliding is responsible for the observed mobility. Down-regulation of virulence (e.g. hblABCD, nheABC, plcR) and flagellar genes compared with swarming cells also confirmed the non-swarming phenotype of the pseudo-resistant isolate. CONCLUSIONS The results highlight an insufficiency of agar diffusion testing for vancomycin susceptibility in the B. cereus group, and reference methods like broth microdilution are strongly recommended. As currently no guideline mentions interfering phenotypes in antimicrobial susceptibility testing of B. cereus s.l., this knowledge is essential to obtain reliable results on vancomycin susceptibility. In addition, this is the first report of sliding motility undermining accurate antimicrobial susceptibility testing in B. cereus s.l. and may serve as a basis for future studies on bacterial motility in susceptibility testing and its potential impact on treatment efficacy.
Collapse
Affiliation(s)
- Paul J Schmid
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Wang M, Zheng J, Sun S, Wu Z, Shao Y, Xiang J, Yin C, Sedjoah RCAA, Xin Z. An Integrated Pipeline and Overexpression of a Novel Efflux Transporter, YoeA, Significantly Increases Plipastatin Production in Bacillus subtilis. Foods 2024; 13:1785. [PMID: 38891014 PMCID: PMC11171584 DOI: 10.3390/foods13111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (J.Z.); (S.S.); (Z.W.); (Y.S.); (J.X.); (C.Y.); (R.C.A.A.S.)
| |
Collapse
|
3
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
4
|
Sun Y, Shuai W, Nie L, Li X, Jiang L. Investigating the Role of OrbF in Biofilm Biosynthesis and Regulation of Biofilm-Associated Genes in Bacillus cereus BC1. Foods 2024; 13:638. [PMID: 38472751 DOI: 10.3390/foods13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Bacillus cereus (B. cereus), a prevalent foodborne pathogen, constitutes a substantial risk to food safety due to its pronounced resilience under adverse environmental conditions such as elevated temperatures and ultraviolet radiation. This resilience can be attributed to its capacity for biofilm synthesis and sustained high viability. Our research aimed to elucidate the mechanisms governing biofilm biosynthesis in B. cereus. To this end, we constructed a 5088-mutant library of the B. cereus strain BC1 utilizing the transposon TnYLB-1. Systematic screening of this library yielded mutants exhibiting diminished biofilm formation capabilities. Twenty-four genes associated with the biofilm synthesis were identified by reverse PCR in these mutants, notably revealing a significant reduction in biofilm synthesis upon disruption of the orbF gene in B. cereus BC1. Comparative analysis between the wild type and orbF-deficient BC1 strains (BC1ΔorbF) indicated a marked downregulation (decreased by 11.7% to 96.7%) in the expression of genes implicated in biofilm formation, flagellar assembly, and bacterial chemotaxis in the BC1ΔorbF. Electrophoretic mobility shift assay (EMSA) further corroborated the role of OrbF, demonstrating its binding to the promoter region of the biofilm gene cluster, subsequently leading to the suppression of transcriptional activity of biofilm-associated genes in B. cereus BC1. Our findings underscore the pivotal role of orbF in biofilm biosynthesis in B. cereus, highlighting its potential as a target for strategies aimed at mitigating biofilm formation in this pathogen.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjing Shuai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lanmengya Nie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Nevers A, Kranzler M, Perchat S, Gohar M, Sorokin A, Lereclus D, Ehling-Schulz M, Sanchis-Borja V. Plasmid - Chromosome interplay in natural and non-natural hosts: global transcription study of three Bacillus cereus group strains carrying pCER270 plasmid. Res Microbiol 2023; 174:104074. [PMID: 37149076 DOI: 10.1016/j.resmic.2023.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The Bacillus cereus group comprises genetically related Gram-positive spore-forming bacteria that colonize a wide range of ecological niches and hosts. Despite their high degree of genome conservation, extrachromosomal genetic material diverges between these species. The discriminating properties of the B. cereus group strains are mainly due to plasmid-borne toxins, reflecting the importance of horizontal gene transfers in bacterial evolution and species definition. To investigate how a newly acquired megaplasmid can impact the transcriptome of its host, we transferred the pCER270 from the emetic B. cereus strains to phylogenetically distant B. cereus group strains. RNA-sequencing experiments allowed us to determine the transcriptional influence of the plasmid on host gene expression and the impact of the host genomic background on the pCER270 gene expression. Our results show a transcriptional cross-regulation between the megaplasmid and the host genome. pCER270 impacted carbohydrate metabolism and sporulation genes expression, with a higher effect in the natural host of the plasmid, suggesting a role of the plasmid in the adaptation of the carrying strain to its environment. In addition, the host genomes also modulated the expression of pCER270 genes. Altogether, these results provide an example of the involvement of megaplasmids in the emergence of new pathogenic strains.
Collapse
Affiliation(s)
- Alicia Nevers
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria
| | - Stéphane Perchat
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria.
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Yu YY, Zhang YY, Wang T, Huang TX, Tang SY, Jin Y, Mi DD, Zheng Y, Niu DD, Guo JH, Jiang CH. Kurstakin Triggers Multicellular Behaviors in Bacillus cereus AR156 and Enhances Disease Control Efficacy Against Rice Sheath Blight. PLANT DISEASE 2023:PDIS01220078RE. [PMID: 36205689 DOI: 10.1094/pdis-01-22-0078-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Kurstakin is the latest discovered family of lipopeptides secreted by Bacillus spp. In this study, the effects of kurstakin on the direct antagonism, multicellularity, and disease control ability of Bacillus cereus AR156 were explored. An insertion mutation in the nonribosomal peptide synthase responsible for kurstakin synthesis led to a significant reduction of antagonistic ability of AR156 against the plant-pathogenic fungi Rhizoctonia solani, Ascochyta citrullina, Fusarium graminearum, and F. oxysporum f. sp. cubense. The loss of kurstakin synthesis ability significantly impaired the swarming motility of AR156 and reduced biofilm formation and amyloid protein accumulation. Although the loss of kurstakin synthesis ability did not reduce the competitiveness of AR156 under laboratory conditions, the colonization and environmental adaptability of the mutant was significantly weaker than that of wild-type AR156 on rice leaves. The cell surface of wild-type AR156 colonizing the leaf surface was covered by a thick biofilm matrix under a scanning electron microscope, but not the mutant. The colonization ability on rice roots and control efficacy against rice sheath blight disease of the mutant were also impaired. Thus, kurstakin participates in the control of plant diseases by B. cereus AR156 through directly inhibiting the growth of pathogenic fungi and improving long-term environmental adaptability and colonization of AR156 on the host surface by triggering multicellularity. This study explored the multiple functions of kurstakin in plant disease control by B. cereus.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yi-Yuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Tao-Xiang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Shu-Ya Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yu Jin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dan-Dan Mi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dong-Dong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| |
Collapse
|
7
|
Lin Y, Briandet R, Kovács ÁT. Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm 2022; 4:100070. [PMID: 35243332 PMCID: PMC8861577 DOI: 10.1016/j.bioflm.2022.100070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Biofilm formation is a ubiquitous process of bacterial communities that enables them to survive and persist in various environmental niches. The Bacillus cereus group includes phenotypically diversified species that are widely distributed in the environment. Often, B. cereus is considered a soil inhabitant, but it is also commonly isolated from plant roots, nematodes, and food products. Biofilms differ in their architecture and developmental processes, reflecting adaptations to specific niches. Importantly, some B. cereus strains are foodborne pathogens responsible for two types of gastrointestinal diseases, diarrhea and emesis, caused by distinct toxins. Thus, the persistency of biofilms is of particular concern for the food industry, and understanding the underlying mechanisms of biofilm formation contributes to cleaning procedures. This review focuses on the genetic background underpinning the regulation of biofilm development, as well as the matrix components associated with biofilms. We also reflect on the correlation between biofilm formation and the development of highly resistant spores. Finally, advances in our understanding of the ecological importance and evolution of biofilm formation in the B. cereus group are discussed.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
8
|
Antimicrobial Susceptibility Profile and Whole-Genome Analysis of a Strong Biofilm-Forming Bacillus Sp. B87 Strain Isolated from Food. Microorganisms 2022; 10:microorganisms10020252. [PMID: 35208707 PMCID: PMC8876208 DOI: 10.3390/microorganisms10020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Members of the Bacillus cereus group are considered to be foodborne pathogens commonly associated with diarrheal and emetic gastrointestinal syndromes. Biofilm formation is a major virulence determinant of various pathogenic bacteria, including the B. cereus strains, since it can protect the bacteria against antimicrobial agents and the host immune response. Moreover, a biofilm allows the exchange of genetic material, such as antimicrobial resistance genes, among the different bacterial strains inside the matrix. The aim of the current study was to genotypically and phenotypically characterize Bacillus sp. B87, a strain that was isolated from food and which exhibited strong biofilm-forming capacity. Based on the analysis of the phylogenetic relationship, the isolate was phylogenetically mapped close to Bacillus pacificus. Antimicrobial susceptibility testing revealed that the isolate was resistant to tetracycline and β-lactam antimicrobial agents, which corresponded with the genotypic characterization using the whole-genome analysis. The genome of Bacillus sp. B87 carried the three-component non-hemolytic enterotoxin (NHE), which is a type of enterotoxin that causes diarrheal symptoms. In addition, the genome also contained several genes that participate in biofilm formation, including the pelDEADAFG operon. These findings expand our understanding of antimicrobial resistance and virulence in Bacillus species based on the link between genotypic and phenotypic characterization.
Collapse
|
9
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
10
|
Diallo MM, Vural C, Şahar U, Ozdemir G. Kurstakin molecules facilitate diesel oil assimilation by Acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes. ENVIRONMENTAL TECHNOLOGY 2021; 42:2031-2045. [PMID: 31752596 DOI: 10.1080/09593330.2019.1689301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation is a cost-effective process commonly used to eliminate many xenobiotic hydrocarbons such as diesel oils. However, their hydrophobic character reduces the biodegradation efficiency. In order to overcome this hurdle, kurstakins isolated from Bacillus thuringiensis strain 7SA were used as emulsifying agents. The influence of kurstakin molecules on diesel oil degradation by Acinetobacter haemolyticus strain 2SA was evaluated in the presence and absence of the aforementioned lipopeptide. The degradation rates and gene expressions of alkane hydroxylases were evaluated at days 4, 10, 14 and 21. Results showed that kurstakin molecules increased the hydrophobicity of 2SA. Moreover, diesel oil degradation activities were higher in the presence of kurstakin with 29%, 35%, 29% and 23% improvement at 4th, 10th, 14th and 21st day respectively. Statistical analysis indicated that the difference between the degradation rates in the presence and absence of kurstakin was significant with p = 0.03. The detection of three different hydroxylase genes namely alkB, almA and cyp153 in 2SA genome, might have allowed more efficient degradability of alkanes. According to the real-time PCR results, cyp153 was the most induced gene during diesel oil degradation in the presence and absence of kurstakin. Yet, the three genes demonstrated higher levels of expression in the presence of kurstakin when compared to its absence. This study showed that kurstakins enhance the diesel oil biodegradation rate by increasing the hydrophobicity of 2SA. In addition to their anti-fungal activities, kurstakins can be used as biosurfactant to increase biodegradation of diesel oil.
Collapse
Affiliation(s)
- Mamadou Malick Diallo
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Caner Vural
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Umut Şahar
- Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Guven Ozdemir
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| |
Collapse
|
11
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
12
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
The Alternative Sigma Factor SigB Is Required for the Pathogenicity of Bacillus thuringiensis. J Bacteriol 2020; 202:JB.00265-20. [PMID: 32817096 DOI: 10.1128/jb.00265-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
To adapt to changing and potentially hostile environments, bacteria can activate the transcription of genes under the control of alternative sigma factors, such as SigB, a master regulator of the general stress response in several Gram-positive species. Bacillus thuringiensis is a Gram-positive spore-forming invertebrate pathogen whose life cycle includes a variety of environments, including plants and the insect hemocoel or gut. Here, we assessed the role of SigB during the infectious cycle of B. thuringiensis in a Galleria mellonella insect model. We used a fluorescent reporter coupled to flow cytometry and showed that SigB was activated in vivo We also showed that the pathogenicity of the ΔsigB mutant was severely affected when inoculated via the oral route, suggesting that SigB is critical for B. thuringiensis adaptation to the gut environment of the insect. We could not detect an effect of the sigB deletion on the survival of the bacteria or on their sporulation efficiency in the cadavers. However, the gene encoding the pleiotropic regulator Spo0A was upregulated in the ΔsigB mutant cells during the infectious process.IMPORTANCE Pathogenic bacteria often need to transition between different ecosystems, and their ability to cope with such variations is critical for their survival. Several Gram-positive species have developed an adaptive response mediated by the general stress response alternative sigma factor SigB. In order to understand the ecophysiological role of this regulator in Bacillus thuringiensis, an entomopathogenic bacterium widely used as a biopesticide, we sought to examine the fate of a ΔsigB mutant during its life cycle in the natural setting of an insect larva. This allowed us, in particular, to show that SigB was activated during infection and that it was required for the pathogenicity of B. thuringiensis via the oral route of infection.
Collapse
|
14
|
Miljaković D, Marinković J, Balešević-Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020; 8:microorganisms8071037. [PMID: 32668676 PMCID: PMC7409232 DOI: 10.3390/microorganisms8071037] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Svetlana Balešević-Tubić
- Soybean Department, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| |
Collapse
|
15
|
Heterologous Expression of Sfp-Type Phosphopantetheinyl Transferase is Indispensable in the Biosynthesis of Lipopeptide Biosurfactant. Mol Biotechnol 2020; 61:836-851. [PMID: 31482467 DOI: 10.1007/s12033-019-00209-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphopantetheinyl transferases are of tremendous enthusiasm inferable from their fundamental parts in activating polyketide, fatty acid, and non-ribosomal peptide synthetase enzymes and additionally an increasing number of biotechnological applications. The present study reports the identification of sfp gene from the Paenibacillus sp. D9, which encompasses 693 bp encoding a 230-amino acid protein with a molecular weight of 25.3 kDa. The amino acid sequence Paenibacillus sp. D9 Sfp revealed more than 90% sequence identity to other Sfp proteins from other Paenibacillus. The sfp gene was cloned and recovered efficiently using affinity chromatography with maximal specific phosphopantetheinyl transferase activity at an optimal pH of 8.0 and temperature of 30 °C. The enzyme also exhibited stability under a wide-ranging pH and temperature. The presence of Zn2+, Cu2+, and Fe2+ ions improved the enzymatic activity, while other metals such as Ni2+, Co2+, and Mg2+ had inhibitory effects. The introduction of EDTA also displayed no inhibition. Kinetic parameters were obtained having values of 4.52 mg/mL, 35.33 U/mg, 3.64 s-1, and 0.104 mM-1 s-1 for Km, Vmax, kcat, and kcat/Km, respectively. The biosurfactant synthesized by the recombinant BioSp was found to be surface active, reducing the surface tension to 33.7 mN/m on the glucose substrate after 5 days of incubation at 37 °C. The recombinant Escherichia coli strain also exhibited an improvement in biosurfactant yield (1.11 g/L) when contrasted with 0.52 g/L from Paenibacillus sp. D9. High esterase activity of 2.55 IU/mL using p-nitrophenyl acetate was observed on the recombinant strain, as the protein connected with the release of the biosurfactant was observed to be an esterase. The characteristics of improved biosurfactant and esterase synthesis by hyper-producing recombinant strain possess numerous values from biotechnology standpoint.
Collapse
|
16
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
17
|
Horak I, Engelbrecht G, Rensburg PJ, Claassens S. Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizingBacillusspecies as bionematicides. J Appl Microbiol 2019; 127:326-343. [PMID: 30739384 DOI: 10.1111/jam.14218] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- I. Horak
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - G. Engelbrecht
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | | | - S. Claassens
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| |
Collapse
|
18
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
19
|
Candela T, Fagerlund A, Buisson C, Gilois N, Kolstø AB, Økstad OA, Aymerich S, Nielsen-Leroux C, Lereclus D, Gohar M. CalY is a major virulence factor and a biofilm matrix protein. Mol Microbiol 2019; 111:1416-1429. [PMID: 30548239 DOI: 10.1111/mmi.14184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
The extracellular biofilm matrix often contains a network of amyloid fibers which, in the human opportunistic pathogen Bacillus cereus, includes the two homologous proteins TasA and CalY. We show here, in the closely related entomopathogenic species Bacillus thuringiensis, that CalY also displays a second function. In the early stationary phase of planktonic cultures, CalY was located at the bacterial cell-surface, as shown by immunodetection. Deletion of calY revealed that this protein plays a major role in adhesion to HeLa epithelial cells, to the insect Galleria mellonella hemocytes and in the bacterial virulence against larvae of this insect, suggesting that CalY is a cell-surface adhesin. In mid-stationary phase and in biofilms, the location of CalY shifted from the cell surface to the extracellular medium, where it was found as fibers. The transcription study and the deletion of sipW suggested that CalY change of location is due to a delayed activity of the SipW signal peptidase. Using purified CalY, we found that the protein polymerization occurred only in the presence of cell-surface components. CalY is, therefore, a bifunctional protein, which switches from a cell-surface adhesin activity in early stationary phase, to the production of fibers in mid-stationary phase and in biofilms.
Collapse
Affiliation(s)
- Thomas Candela
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Annette Fagerlund
- Laboratory for Microbial Dynamics, School of Pharmacy and Centre for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
| | - Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Nathalie Gilois
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics, School of Pharmacy and Centre for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics, School of Pharmacy and Centre for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
20
|
Ikram S, Heikal A, Finke S, Hofgaard A, Rehman Y, Sabri AN, Økstad OA. Bacillus cereus biofilm formation on central venous catheters of hospitalised cardiac patients. BIOFOULING 2019; 35:204-216. [PMID: 30950292 DOI: 10.1080/08927014.2019.1586889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Formation of bacterial biofilms is a risk with many in situ medical devices. Biofilm-forming Bacillus species are associated with potentially life-threatening catheter-related blood stream infections in immunocompromised patients. Here, bacteria were isolated from biofilm-like structures within the lumen of central venous catheters (CVCs) from two patients admitted to cardiac hospital wards. Isolates belonged to the Bacillus cereus group, exhibited strong biofilm formation propensity, and mapped phylogenetically close to the B. cereus emetic cluster. Together, whole genome sequencing and quantitative PCR confirmed that the isolates constituted the same strain and possessed a range of genes important for and up-regulated during biofilm formation. Antimicrobial susceptibility testing demonstrated resistance to trimethoprim-sulphamethoxazole, clindamycin, penicillin and ampicillin. Inspection of the genome revealed several chromosomal β-lactamase genes and a sulphonamide resistant variant of folP. This study clearly shows that B. cereus persisting in hospital ward environments may constitute a risk factor from repeated contamination of CVCs.
Collapse
Affiliation(s)
- Samman Ikram
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Adam Heikal
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Sarah Finke
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Antje Hofgaard
- c Department of Biosciences , University of Oslo , Oslo , Norway
| | - Yasir Rehman
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
| | - Anjum Nasim Sabri
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
| | - Ole Andreas Økstad
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| |
Collapse
|
21
|
Zhang QX, Zhang Y, He LL, Ji ZL, Tong YH. Identification of a small antimycotic peptide produced by Bacillus amyloliquefaciens 6256. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:78-82. [PMID: 30195391 DOI: 10.1016/j.pestbp.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Bacillus sp. 6256 is a good biocontrol agent against Botrytis cinerea which caused tomato gray mold disease. Strain 6256 was identified as B. amyloliquefaciens by analysis of its partial gyrB gene sequence. To identify and characterize the antimycotic peptides from the culture broth of the bacterium, the antimicrobial substances produced by B. amyloliquefaciens 6256 were isolated by ammonium sulfate precipitation, Superdex 200 gel filtration chromatography and DEAE anion exchange chromatography. The purified compound was designated as P657. The biological activity of P657 was stable at as high as 100 °C for 20 min and in pH value ranged from 5 to 10. The antimycotic compound was resistant to trypsin and proteinase K, and could completely inhibit spore germination of Botrytis cinerea in vitro. MALDI-TOF-MS analysis results showed the presence of fengycins A (C16-C17) and fengycins B (C15-C17) isoforms in P657.
Collapse
Affiliation(s)
- Qing Xia Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Ying Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ling Ling He
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhao Lin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yun Hui Tong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol 2017; 33:181. [DOI: 10.1007/s11274-017-2348-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
23
|
Hassan KA, Fagerlund A, Elbourne LDH, Vörös A, Kroeger JK, Simm R, Tourasse NJ, Finke S, Henderson PJF, Økstad OA, Paulsen IT, Kolstø AB. The putative drug efflux systems of the Bacillus cereus group. PLoS One 2017; 12:e0176188. [PMID: 28472044 PMCID: PMC5417439 DOI: 10.1371/journal.pone.0176188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps.
Collapse
Affiliation(s)
- Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Annette Fagerlund
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Liam D. H. Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jasmin K. Kroeger
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Freiburg, Germany
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nicolas J. Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Sarah Finke
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Peter J. F. Henderson
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
- * E-mail: (ABK); (ITP)
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- * E-mail: (ABK); (ITP)
| |
Collapse
|
24
|
Broussolle V, Carlin F, Lereclus D, Nielsen-LeRoux C, Sanchis V. Beneficial and detrimental spore-formers: a world of diversity. Res Microbiol 2016; 168:307-308. [PMID: 27965152 DOI: 10.1016/j.resmic.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | - Frédéric Carlin
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Vincent Sanchis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
25
|
Correction: Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis. PLoS Pathog 2016; 12:e1006049. [PMID: 27898733 PMCID: PMC5127582 DOI: 10.1371/journal.ppat.1006049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus Biofilms-Same, Only Different. Front Microbiol 2016; 7:1054. [PMID: 27458448 PMCID: PMC4935679 DOI: 10.3389/fmicb.2016.01054] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area.
Collapse
Affiliation(s)
- Racha Majed
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| | - Christine Faille
- UMR UMET: Unité Matériaux et Transformations, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lille Villeneuve d'Ascq, France
| | - Mireille Kallassy
- Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-Joseph Beirut, Lebanon
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| |
Collapse
|