1
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Gardner JJ, Cushen SC, Oliveira da Silva RDN, Bradshaw JL, Hula N, Gorham IK, Tucker SM, Zhou Z, Cunningham RL, Phillips NR, Goulopoulou S. Oxidative stress induces release of mitochondrial DNA into the extracellular space in human placental villous trophoblast BeWo cells. Am J Physiol Cell Physiol 2024; 326:C1776-C1788. [PMID: 38738304 PMCID: PMC11371324 DOI: 10.1152/ajpcell.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.
Collapse
Affiliation(s)
- Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Reneé de Nazaré Oliveira da Silva
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nataliia Hula
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Isabelle K Gorham
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Zhengyang Zhou
- Department of Population & Community Health, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
4
|
Biose IJ, Bakare AB, Wang H, Gressett TE, Bix GJ. Sleep apnea and ischemic stroke- a perspective for translational preclinical modelling. Sleep Med Rev 2024; 75:101929. [PMID: 38581800 DOI: 10.1016/j.smrv.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Obstructive sleep apnea (OSA) is associated with ischemic stroke. There is, however, a lack of knowledge on the exact cause-effect relationship, and preclinical models of OSA for experimental ischemic stroke investigations are not well characterized. In this review, we discuss sleep apnea and its relationship with stroke risk factors. We consider how OSA may lead to ischemic stroke and how OSA-induced metabolic syndrome and hypothalamic-pituitary axis (HPA) dysfunction could serve as therapeutic targets to prevent ischemic stroke. Further, we examine the translational potential of established preclinical models of OSA. We conclude that metabolic syndrome and HPA dysfunction, which are often overlooked in the context of experimental stroke and OSA studies, are crucial for experimental consideration to improve the body of knowledge as well as the translational potential of investigative efforts.
Collapse
Affiliation(s)
- I J Biose
- Department of Pharmacology, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - A B Bakare
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - H Wang
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - T E Gressett
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA; Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - G J Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70122, USA.
| |
Collapse
|
5
|
Gardner JJ, Cushen SC, Oliveira da Silva RDN, Bradshaw JL, Hula N, Gorham IK, Tucker SM, Zhou Z, Cunningham RL, Phillips NR, Goulopoulou S. Oxidative stress induces release of mitochondrial DNA into the extracellular space in human placental villous trophoblast BeWo cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578433. [PMID: 38352590 PMCID: PMC10862877 DOI: 10.1101/2024.02.02.578433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA differs in pregnancies with placental dysfunction from healthy pregnancies and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA from non-placental cells; yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 μM) or rotenone (0.2-50 μM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane bound, non-membrane bound, and vesicular-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (p<0.0001), induced cell necrosis (p=0.0004) but not apoptosis (p=0.6471) and was positively associated with release of membrane-bound and non-membrane bound mtDNA (p<0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicular-bound form; p=0.0019) and reduced autophagy marker expression (LC3A/B, p=0.0002; p62, p<0.001). Rotenone treatment did not influence mtDNA release or cell death (p>0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes non-apoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress. NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mitochondrial DNA in preclinical experimental models and humans.
Collapse
|
6
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
8
|
Song J, Sundar KM, Horvathova M, Gangaraju R, Indrak K, Christensen RD, Genzor S, Lundby C, Divoky V, Ganz T, Prchal JT. Increased blood reactive oxygen species and hepcidin in obstructive sleep apnea precludes expected erythrocytosis. Am J Hematol 2023; 98:1265-1276. [PMID: 37350302 DOI: 10.1002/ajh.26992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
Obstructive sleep apnea (OSA) causes intermittent hypoxia during sleep. Hypoxia predictably initiates an increase in the blood hemoglobin concentration (Hb); yet in our analysis of 527 patients with OSA, >98% did not have an elevated Hb. To understand why patients with OSA do not develop secondary erythrocytosis due to intermittent hypoxia, we first hypothesized that erythrocytosis occurs in these patients, but is masked by a concomitant increase in plasma volume. However, we excluded that explanation by finding that the red cell mass was normal (measured by radionuclide labeling of erythrocytes and carbon monoxide inhalation). We next studied 45 patients with OSA before and after applying continuous positive airway pressure (CPAP). We found accelerated erythropoiesis in these patients (increased erythropoietin and reticulocytosis), but it was offset by neocytolysis (lysis of erythrocytes newly generated in hypoxia upon return to normoxia). Parameters of neocytolysis included increased reactive oxygen species from expanded reticulocytes' mitochondria. The antioxidant catalase was also downregulated in these cells from hypoxia-stimulated microRNA-21. In addition, inflammation-induced hepcidin limited iron availability for erythropoiesis. After CPAP, some of these intermediaries diminished but Hb did not change. We conclude that in OSA, the absence of significant increase in red cell mass is integral to the pathogenesis, and results from hemolysis via neocytolysis combined with inflammation-mediated suppression of erythropoiesis.
Collapse
Affiliation(s)
- Jihyun Song
- Division of Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Krishna M Sundar
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Monika Horvathova
- Department of Biology, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Radhika Gangaraju
- Division of Hematology, University of Utah, Salt Lake City, Utah, USA
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karel Indrak
- Department of Hemato-Oncology, Palacky University and University Hospital Olomouc (PUUHO), Olomouc, Czech Republic
| | | | - Samuel Genzor
- Department of Pulmonary Diseases and Tuberculosis, Faculty of Medicine and Dentistry, PUUHO, Olomouc, Czech Republic
| | - Carsten Lundby
- Centre for Physical Activity Research, Copenhagen, Denmark
| | - Vladimir Divoky
- Department of Biology, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tomas Ganz
- Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Josef T Prchal
- Division of Hematology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Level of urinary catecholamine in children with Sleep Disordered Breathing: A systematic review and meta-analysis. Sleep Med 2022; 100:565-572. [PMID: 36327585 DOI: 10.1016/j.sleep.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To compare the levels of different urinary catecholamines amongst paediatric patients with and without sleep-disordered breathing (SDB). METHODS Literature searches were conducted on PubMed and EMBASE until 25/06/2022. Inclusion criteria were original human studies, English language, paediatric subjects diagnosed with SDB/obstructive sleep apnoea (OSA). The quality of studies was assessed by the Newcastle-Ottawa Quality Assessment (NOSGEN). The registered number of this study on the International Prospective Register of Systematic Reviews (PROSPERO) is CRD42022332939. The main outcome measured was standardised mean difference (SMD) of urinary catecholamine between subjects with and without SDB, between those with and without OSA, and also between subjects with mild OSA and those with moderate/ severe OSA. Sensitivity analyses were performed to avoid bias. RESULTS 9 studies (8 cross-sectional and 1 cohort study) with a total of 838 subjects, were included in the quantitative analysis. Urine level of noradrenaline was higher in patients with SDB, which included primary snoring (PS), when compared to controls: SMD = 0.86 (95%CI=0.32-1.41; I2=85%, P=0.002). The levels of urinary noradrenaline and adrenaline were higher in children with OSA when compared to controls: SMD = 1.45 (95%CI=0.91-2.00; I2=75%, P < 0.001); SMD = 1.84 (0.00-3.67; I2=97%, P=0.05). Urine level of noradrenaline was higher in subjects with moderate/severe OSA compared to the mild OSA: SMD = 0.55 (95%CI=0.10-1.00; I2=0%, P=0.02). Urinary dopamine was not associated with SDB regardless of severity. CONCLUSIONS Urinary noradrenaline was higher in all patients with SDB. Subjects with OSA, a more severe form of SDB, had higher urine levels of noradrenaline and adrenaline. Hence, noradrenaline and adrenaline may be markers of sympathetic overtone in patients with SDB and could potentially act as surrogate markers for SDB complications. Further studies are needed to assess this association.
Collapse
|
10
|
Liu Q, Hao T, Li L, Huang D, Lin Z, Fang Y, Wang D, Zhang X. Construction of a mitochondrial dysfunction related signature of diagnosed model to obstructive sleep apnea. Front Genet 2022; 13. [PMID: 36468038 PMCID: PMC9714559 DOI: 10.3389/fgene.2022.1056691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The molecular mechanisms underlying obstructive sleep apnea (OSA) and its comorbidities may involve mitochondrial dysfunction. However, very little is known about the relationships between mitochondrial dysfunction-related genes and OSA. Methods: Mitochondrial dysfunction-related differentially expressed genes (DEGs) between OSA and control adipose tissue samples were identified using data from the Gene Expression Omnibus database and information on mitochondrial dysfunction-related genes from the GeneCards database. A mitochondrial dysfunction-related signature of diagnostic model was established using least absolute shrinkage and selection operator Cox regression and then verified. Additionally, consensus clustering algorithms were used to conduct an unsupervised cluster analysis. A protein-protein interaction network of the DEGs between the mitochondrial dysfunction-related clusters was constructed using STRING database and the hub genes were identified. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were conducted to explore the mechanisms involved in mitochondrial dysfunction in OSA. Immune cell infiltration analyses were conducted using CIBERSORT and single-sample GSEA (ssGSEA). Results: we established mitochondrial dysfunction related four-gene signature of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could easily distinguish between OSA patients and controls. In addition, based on mitochondrial dysfunction-related gene expression, we identified two clusters among all the samples and three clusters among the OSA samples. A total of 10 hub genes were selected from the PPI network of DEGs between the two mitochondrial dysfunction-related clusters. There were correlations between the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested that autophagy, inflammation pathways, and immune pathways are crucial in mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages were significantly different between the OSA and control samples, while several immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory T cells, and type 17 T helper cells), were significantly different among mitochondrial dysfunction-related clusters of OSA samples. Conclusion: A novel mitochondrial dysfunction-related four-gen signature of diagnostic model was built. The genes are potential biomarkers for OSA and may play important roles in the development of OSA complications.
Collapse
Affiliation(s)
- Qian Liu
- Shantou University Medical College, Shantou, China
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Daqi Huang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Ze Lin
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dong Wang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Zolotoff C, Puech C, Roche F, Perek N. Effects of intermittent hypoxia with thrombin in an in vitro model of human brain endothelial cells and their impact on PAR-1/PAR-3 cleavage. Sci Rep 2022; 12:12305. [PMID: 35853902 PMCID: PMC9296553 DOI: 10.1038/s41598-022-15592-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with obstructive sleep apnea/hypopnea (OSA) are at high risk of cerebrovascular diseases leading to cognitive impairment. The oxidative stress generated by intermittent hypoxia (IH) could lead to an increase in blood-brain barrier (BBB) permeability, an essential interface for the protection of the brain. Moreover, in patients with OSA, blood coagulation could be increased leading to cardiovascular complications. Thrombin is a factor found increased in these populations that exerts various cellular effects through activation of protease activated receptors (PARs). Thus, we have evaluated in an in vitro BBB model the association of IH with thrombin at two concentrations. We measured the apparent BBB permeability, expression of tight junctions, ROS production, HIF-1α expression, and cleavage of PAR-1/PAR-3. Pre-treatment with dabigatran was performed. IH and higher thrombin concentrations altered BBB permeability: high levels of HIF-1α expression, ROS and PAR-1 activation compared to PAR-3 in such conditions. Conversely, lower concentration of thrombin associated with IH appear to have a protective effect on BBB with a significant cleavage of PAR-3. Dabigatran reversed the deleterious effect of thrombin at high concentrations but also suppressed the beneficial effect of low dose thrombin. Therefore, thrombin and PARs represent novel attractive targets to prevent BBB opening in OSA.
Collapse
Affiliation(s)
- Cindy Zolotoff
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France. .,Faculté de Médecine - Campus Santé Innovations, 10 Rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Clémentine Puech
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Frédéric Roche
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France.,Service de Physiologie Clinique Et de L'Exercice, Centre VISAS, CHU Saint Etienne, Saint-Priest-en-Jarez, France
| | - Nathalie Perek
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France
| |
Collapse
|
12
|
Li Y, Wang Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sci 2022; 12:808. [PMID: 35741693 PMCID: PMC9221409 DOI: 10.3390/brainsci12060808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive function is affected by low pressure and hypoxia in high-altitude environments, and is regulated by altitude and exposure time. With the economic development in the Qinghai-Tibet Plateau, the increase in work and study activities, as well as the development of plateau tourism, mountaineering, and other activities, the number of plateau immigrants is increasing daily. Long-term hypoxia challenges human physical and mental health, restricts work efficiency, and thus affects plateau economic development and human wellbeing. Therefore, it is of scientific and social significance to study how long-term exposure to the hypoxic plateau environment affects the physical and mental health of lowlanders as part of the ongoing development of the current plateau region. In this paper, we reviewed the research progress and mechanism of the effects of long-term (≥1 year) high-altitude (>2500 m) hypoxia exposure on the cognitive function of lowlanders, and suggested that the scope and sample size of the research should be expanded in the future, and that follow-up studies should be carried out to explore the time threshold of cognitive impairment and its compensatory or repair mechanism.
Collapse
Affiliation(s)
- Yuan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China
| | - Yan Wang
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
GAUR A, KALIAPPAN A, BALAN Y, SAKTHIVADIVEL V, MEDALA K, UMESH M. Sleep and Alzheimer: The Link. MAEDICA 2022; 17:177-185. [PMID: 35733758 PMCID: PMC9168575 DOI: 10.26574/maedica.2022.17.1.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease is the most common type of dementia which has both cognitive and non-cognitive disabilities. Recent research has proved that sleep deprivation and insomnia have been related to the pathophysiology of Alzheimer's disease and would influence the symptoms and progression of the disease. We look at the current research that supports the idea that the lack of sleep relates to cognitive decline and dementia, with an emphasis on Alzheimer's disease. We integrated the various possible mechanisms of sleep deprivation leading to Alzheimer's disease and cognitive decline. The role of neuroinflammation, generation of reactive oxidative species and sleep disturbances play a central role in tau generation and Aβ deposition. An approach to manage sleep changes can widely prevent the cognitive decline of Alzheimer's disease.
Collapse
Affiliation(s)
- Archana GAUR
- Department of Physiology, All India Institute of Medical Science, Bibinagar, Hyderabad, Telangana, India
| | - Ariyanachi KALIAPPAN
- Department of Anatomy, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Yuvaraj BALAN
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Varatharajan SAKTHIVADIVEL
- Department of General Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Kalpana MEDALA
- Department of Physiology, All India Institute of Medical Science, Bibinagar, Hyderabad, Telangana, India
| | - Madhusudhan UMESH
- Department of Physiology, All India Institute of Medical Science, Bibinagar, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Thomas JM, Sudhadevi T, Basa P, Ha AW, Natarajan V, Harijith A. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Int J Mol Sci 2022; 23:ijms23031254. [PMID: 35163176 PMCID: PMC8835774 DOI: 10.3390/ijms23031254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.
Collapse
Affiliation(s)
- Jaya M. Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Alison W. Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Correspondence: ; Tel.: +1-(216)-286-7038
| |
Collapse
|
16
|
Abstract
Multiple Sclerosis (MS) is a common neuroinflammatory disorder which is associated with disabling clinical consequences. The MS disease process may involve neural centers implicated in the control of breathing, leading to ventilatory disturbances during both wakefulness and sleep. In this chapter, a brief overview of MS disease mechanisms and clinical sequelae including sleep disorders is provided. The chapter then focuses on obstructive sleep apnea-hypopnea (OSAH) which is the most prevalent respiratory control abnormality encountered in ambulatory MS patients. The diagnosis, prevalence, and clinical consequences as well as data on effects of OSAH treatment in MS patients are discussed, including the impact on the disabling symptom of fatigue and other clinical sequelae. We also review pathophysiologic mechanisms contributing to OSAH in MS, and in turn mechanisms by which OSAH may impact on the MS disease process, resulting in a bidirectional relationship between these two conditions. We then discuss central sleep apnea, other respiratory control disturbances, and the pathogenesis and management of respiratory muscle weakness and chronic hypoventilation in MS. We also provide a brief overview of Neuromyelitis Optica Spectrum Disorders and review current data on respiratory control disturbances and sleep-disordered breathing in that condition.
Collapse
Affiliation(s)
- R John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Marta Kaminska
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Daria Trojan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Turkiewicz S, Ditmer M, Sochal M, Białasiewicz P, Strzelecki D, Gabryelska A. Obstructive Sleep Apnea as an Acceleration Trigger of Cellular Senescence Processes through Telomere Shortening. Int J Mol Sci 2021; 22:12536. [PMID: 34830418 PMCID: PMC8624921 DOI: 10.3390/ijms222212536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Obstructive sleep apnea (OSA) is chronic disorder which is characterized by recurrent pauses of breathing during sleep which leads to hypoxia and its two main pathological sequelae: oxidative stress and chronic inflammation. Both are also associated with cellular senescence. As OSA patients present with higher prevalence of age-related disorders, such as atrial hypertension or diabetes mellitus type 2, a relationship between OSA and accelerated aging is observable. Furthermore, it has been established that these OSA are associated with telomere shortening. This process in OSA is likely caused by increased oxidative DNA damage due to increased reactive oxygen species levels, DNA repair disruptions, hypoxia, chronic inflammation, and circadian clock disturbances. The aim of the review is to summarize study outcomes on changes in leukocyte telomere length (LTL) in OSA patients and describe possible molecular mechanisms which connect cellular senescence and the pathophysiology of OSA. The majority of OSA patients are characterized by LTL attrition due to oxidative stress, hypoxia and inflammation, which make a kind of positive feedback loop, and circadian clock disturbance.
Collapse
Affiliation(s)
- Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (M.D.); (M.S.); (P.B.)
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (M.D.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (M.D.); (M.S.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (M.D.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (M.D.); (M.S.); (P.B.)
| |
Collapse
|
18
|
Ginerete RP, Mascio G, Liberatore F, Bucci D, Antenucci N, Di Pietro P, Cannella M, Imbriglio T, Notartomaso S, Nicoletti F, Bruno V, Battaglia G. Repeated episodes of transient reduction of oxygen exposure simulating aircraft cabin conditions enhance resilience to stress in mice. Eur J Neurosci 2021; 54:7109-7124. [PMID: 34655118 DOI: 10.1111/ejn.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.
Collapse
Affiliation(s)
- Roxana Paula Ginerete
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Giada Mascio
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Francesca Liberatore
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Nico Antenucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Paola Di Pietro
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Milena Cannella
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Tiziana Imbriglio
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Serena Notartomaso
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Changes in Locomotor Activity and Oxidative Stress-Related Factors after the Administration of an Amino Acid Mixture by Generation and Age. Int J Mol Sci 2021; 22:ijms22189822. [PMID: 34575986 PMCID: PMC8466552 DOI: 10.3390/ijms22189822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/05/2022] Open
Abstract
Amino acids, as nutrients, are expected to improve sleep disorders. This study aimed to evaluate the generation- and age-dependent sleep-improving effects of γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) coadministration. The differentially expressed genes and generation-related behavior after the administration of a GABA/5-HTP mixture were measured in a Drosophila model, while age-related changes in gene expression and oxidative stress-related parameters were measured in a mouse model. The GABA/5-HTP-treated group showed significant behavioral changes compared to the other groups. Sequencing revealed that the GABA/5-HTP mixture influenced changes in nervous system-related genes, including those involved in the regulation of the expression of behavioral and synaptic genes. Additionally, total sleep time increased with age, and nighttime sleep time in the first- and third-generation flies was significantly different from that of the control groups. The GABA/5-HTP mixture induced significant changes in the expression of sleep-related receptors in both models. Furthermore, the GABA/5-HTP mixture reduced levels of ROS and ROS reaction products in an age-dependent manner. Therefore, the increase in behavioral changes caused by GABA/5-HTP mixture administration was effective in eliminating ROS activity across generations and ages.
Collapse
|
20
|
Sheikh M, Kuperberg S. An organ systems-based review of outcomes associated with sleep apnea in hospitalized patients. Medicine (Baltimore) 2021; 100:e26857. [PMID: 34449455 PMCID: PMC8389950 DOI: 10.1097/md.0000000000026857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
The current global health crisis due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted the medical community to investigate the effects of underlying medical conditions, including sleep-disordered breathing, on inpatient care. Obstructive sleep apnea (OSA) is a common form of sleep-disordered breathing that may complicate numerous acquired conditions, particularly in inpatient and critical care settings. Viral pneumonia is a major contributor to intensive care unit (ICU) admissions and often presents more severely in patients with underlying pulmonary disease, especially those with obesity and OSA. This review summarizes the most recent data regarding complications of both OSA and obesity and highlights their impact on clinical outcomes in hospitalized patients. Additionally, it will highlight pertinent evidence for the complications of OSA in an organ-systems approach. Finally, this review will also discuss impatient treatment approaches for OSA, particularly in relation to the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Maaz Sheikh
- Stony Brook University Hospital, Department of Internal Medicine, Stony Brook, NY
| | - Stephen Kuperberg
- Stony Brook University Hospital, Department of Pulmonology and Critical Care, Department of Internal Medicine, Stony Brook, NY
| |
Collapse
|
21
|
Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia Iii AJ. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 2021; 11:6005. [PMID: 33727588 PMCID: PMC7966401 DOI: 10.1038/s41598-021-85357-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Over one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer’s disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis. We demonstrate that IH creates a pro-oxidant condition that reduces the Tbr2+ neural progenitor pool early in the process, while also suppressing terminal differentiation of adult born neurons during late adult neurogenesis. We further show that IH-dependent cell-autonomous hypoxia inducible factor 1-alpha (HIF1a) signaling is activated in early neuroprogenitors and enhances the generation of adult born neurons upon termination of IH. Our findings indicate that oscillations in oxygen homeostasis, such as those found in sleep apnea, have complex stage-dependent influence over hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alejandra Arias-Cavieres
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alfredo J Garcia Iii
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA. .,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
22
|
Xu L, Yang Y, Chen J. The role of reactive oxygen species in cognitive impairment associated with sleep apnea. Exp Ther Med 2020; 20:4. [PMID: 32934669 PMCID: PMC7471880 DOI: 10.3892/etm.2020.9132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA), a common breathing and sleeping disorder, is associated with a broad range of neurocognitive difficulties. Intermittent hypoxia (IH), one major characteristic of OSA, has been shown to impair learning and memory due to increased levels of reactive oxygen species (ROS). Under normal conditions, ROS are produced in low concentrations and act as signaling molecules in different processes. However, IH treatment leads to elevated ROS production via multiple pathways, including mitochondrial electron transport chain dysfunction and in particular complex I dysfunction, and induces oxidative tissue damage. Moreover, elevated ROS results in the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) and increased activity of peroxisomes, such as NADPH oxidase, xanthine oxidase and phospholipase A2. Furthermore, oxidative tissue damage has been found in regions of the brains of patients with OSA, including the cortex and hippocampus, which are associated with memory and executive function. Furthermore, increased ROS levels in these regions of the brain induce damage via inflammation, apoptosis, ER stress and neuronal activity disturbance. The present review focuses on the mechanism of excessive ROS production in an OSA model and the relationship between ROS and cognitive impairment.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Department of Pathology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China.,Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yibo Yang
- College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 201424, P.R. China
| | - Jian Chen
- Department of Pathology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
23
|
Salidroside Ameliorates Mitochondria-Dependent Neuronal Apoptosis after Spinal Cord Ischemia-Reperfusion Injury Partially through Inhibiting Oxidative Stress and Promoting Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3549704. [PMID: 32774670 PMCID: PMC7396093 DOI: 10.1155/2020/3549704] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is the second most common injury of the spinal cord and has the risk of neurological dysfunction and paralysis, which can seriously affect patient quality of life. Salidroside (Sal) is an active ingredient extracted from Herba Cistanche with a variety of biological attributes such as antioxidant, antiapoptotic, and neuroprotective activities. Moreover, Sal has shown a protective effect in ischemia-reperfusion injury of the liver, heart, and brain, but its effect in ischemia-reperfusion injury of the spinal cord has not been elucidated. Here, we demonstrated for the first time that Sal pretreatment can significantly improve functional recovery in mice after spinal cord ischemia-reperfusion injury and significantly inhibit the apoptosis of neurons both in vivo and in vitro. Neurons have a high metabolic rate, and consequently, mitochondria, as the main energy-supplying suborganelles, become the main injury site of spinal cord ischemia-reperfusion injury. Mitochondrial pathway-dependent neuronal apoptosis is increasingly confirmed by researchers; therefore, Sal's effect on mitochondria naturally attracted our attention. By means of a range of experiments both in vivo and in vitro, we found that Sal can reduce reactive oxygen species production through antioxidant stress to reduce mitochondrial permeability and mitochondrial damage, and it can also enhance the PINK1-Parkin signaling pathway and promote mitophagy to eliminate damaged mitochondria. In conclusion, our results show that Sal is beneficial to the protection of spinal cord neurons after ischemia-reperfusion injury, mainly by reducing apoptosis associated with the mitochondrial-dependent pathway, among which Sal's antioxidant and autophagy-promoting properties play an important role.
Collapse
|
24
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Meng Y, Tian M, Yin S, Lai S, Zhou Y, Chen J, He M, Liao Z. Downregulation of TSPO expression inhibits oxidative stress and maintains mitochondrial homeostasis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother 2020; 121:109588. [DOI: 10.1016/j.biopha.2019.109588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
|
26
|
Laouafa S, Iturri P, Arias-Reyes C, Marcouiller F, Gonzales M, Joseph V, Bairam A, Soliz J. Erythropoietin and caffeine exert similar protective impact against neonatal intermittent hypoxia: Apnea of prematurity and sex dimorphism. Exp Neurol 2019; 320:112985. [PMID: 31254520 DOI: 10.1016/j.expneurol.2019.112985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/21/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Apnea of prematurity (AoP) is associated with severe and repeated episodes of arterial oxygen desaturation (intermittent hypoxia - IH), which in turn increases the number of apneas. So far, there is no data addressing whether IH leads to sex-specific respiratory consequences, neither if drugs targeting AoP are more effective in males or females. We used rat pups for investigating whether IH-mediated increase of apneas is sex-specific. We also tested whether caffeine (treatment of choice of AoP), erythropoietin (Epo - a neuroprotective factor and potent respiratory stimulant), and combination of both (caffeine+Epo) prevent the IH-mediated formation of apneas in a sex-dependent manner. Newborn rats exposed to IH (21% - 10% FIO2-8 h a day - 10 cycles per hour) during postnatal days (P) 3-10 were used in this work. Animals were administered drug vehicle, Epo, caffeine and Epo + caffeine (daily from P3 to P10) gavage. At P10 the frequency of apneas at rest (as an index of respiratory dysfunction induced by IH), and respiratory parameters were measured by plethysmography. Our results showed that IH significantly increases the number of apneas in male but not in female rat pups. Moreover, caffeine and Epo in males similarly prevented the increase of apneas induced by IH, and the administration of both drugs together did not provide a cumulative beneficial effect. No impact of drugs was evidenced in females. Apart from apneas, IH increased the normoxic basal ventilation (ventilation at rest) of male animals, and treatments did not prevent such alteration. Besides, no IH- nor treatment-mediated modulation of basal ventilation was found in the basal ventilation of female animals. Analysis of the activity of pro- and antioxidative molecules revealed that IH induces oxidative stress in the brainstem of male and female animals and that all tested treatments similarly prevented such oxidative imbalance in pups of both sexes. We concluded that neonatal IH and the treatments tested to prevent its respiratory consequences are sex-specific. The mechanics associated with such prevention are directly linked with the prevention of oxidative stress and the maturation of the brain. These findings are relevant to understanding better the AoP disorder and for proposing Epo as a new therapeutical tool.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Pablo Iturri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada; Departamento de Biologia Celular y Molecular, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andres, La Paz, Bolivia
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Marcelino Gonzales
- Instituto Boliviano de Biologia de la Altura, Facultad de Medicina, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada; Departamento de Biologia Celular y Molecular, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
27
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
28
|
Effects of hypoxia-reoxygenation stress on mitochondrial proteome and bioenergetics of the hypoxia-tolerant marine bivalve Crassostrea gigas. J Proteomics 2019; 194:99-111. [DOI: 10.1016/j.jprot.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022]
|
29
|
Di Fiore JM, Dylag AM, Honomichl RD, Hibbs AM, Martin RJ, Tatsuoka C, Raffay TM. Early inspired oxygen and intermittent hypoxemic events in extremely premature infants are associated with asthma medication use at 2 years of age. J Perinatol 2019; 39:203-211. [PMID: 30367103 PMCID: PMC6351157 DOI: 10.1038/s41372-018-0264-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Extremely premature infants are at risk for childhood wheezing. Early respiratory support and intermittent hypoxemia (IH) events may be associated with adverse breathing outcomes. STUDY DESIGN A single-center retrospective cohort study of 137 premature infants <28 weeks gestational age characterized the associations of cumulative oxygen, cumulative mean airway pressure, IH, and oxygen saturation (SpO2) on the primary outcome of prescription asthma medication use at 2-year follow-up. Relative risk was calculated by generalized estimating equations. RESULTS Reported asthma medication use was 46%. At 1-3 days of age, elevated cumulative oxygen exposure, increased daily IH, and lower mean SpO2 (adjusted for gestational age and sex) and increased cumulative mean airway pressure exposure (unadjusted) were associated with asthma medication use. CONCLUSION Increased oxygen and frequent IH events during just the first 3 days of age may help identify extremely premature newborns at risk for symptomatic childhood wheezing requiring prescription asthma medications.
Collapse
Affiliation(s)
- Juliann M. Di Fiore
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Andrew M. Dylag
- Division of Neonatology, Golisano Children’s Hospital, University of Rochester, Rochester, NY
| | - Ryan D. Honomichl
- Division of Neurology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH
| | - Anna Maria Hibbs
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Richard J. Martin
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Curtis Tatsuoka
- Division of Neurology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH
| | - Thomas M. Raffay
- Division of Neonatology, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
30
|
Sprick JD, Mallet RT, Przyklenk K, Rickards CA. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol 2019; 104:278-294. [PMID: 30597638 DOI: 10.1113/ep087122] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? Remote ischaemic preconditioning (RIPC) and hypoxic preconditioning as novel therapeutic approaches for cardiac and neuroprotection. What advances does it highlight? There is improved understanding of mechanisms and signalling pathways associated with ischaemic and hypoxic preconditioning, and potential pitfalls with application of these therapies to clinical trials have been identified. Novel adaptations of preconditioning paradigms have also been developed, including intermittent hypoxia training, RIPC training and RIPC-exercise, extending their utility to chronic settings. ABSTRACT Myocardial infarction and stroke remain leading causes of death worldwide, despite extensive resources directed towards developing effective treatments. In this Symposium Report we highlight the potential applications of intermittent ischaemic and hypoxic conditioning protocols to combat the deleterious consequences of heart and brain ischaemia. Insights into mechanisms underlying the protective effects of intermittent hypoxia training are discussed, including the activation of hypoxia-inducible factor-1 and Nrf2 transcription factors, synthesis of antioxidant and ATP-generating enzymes, and a shift in microglia from pro- to anti-inflammatory phenotypes. Although there is little argument regarding the efficacy of remote ischaemic preconditioning (RIPC) in pre-clinical models, this strategy has not consistently translated into the clinical arena. This lack of translation may be related to the patient populations targeted thus far, and the anaesthetic regimen used in two of the major RIPC clinical trials. Additionally, we do not fully understand the mechanism through which RIPC protects the vital organs, and co-morbidities (e.g. hypercholesterolemia, diabetes) may interfere with its efficacy. Finally, novel adaptations have been made to extend RIPC to more chronic settings. One adaptation is RIPC-exercise (RIPC-X), an innovative paradigm that applies cyclical RIPC to blood flow restriction exercise (BFRE). Recent findings suggest that this novel exercise modality attenuates the exaggerated haemodynamic responses that may limit the use of conventional BFRE in some clinical settings. Collectively, intermittent ischaemic and hypoxic conditioning paradigms remain an exciting frontier for the protection against ischaemic injuries.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
31
|
Chen J, Gu H, Wurster RD, Cheng Z. Baroreflex Control of Heart Rate in Mice Overexpressing Human SOD1: Functional Changes in Central and Vagal Efferent Components. Neurosci Bull 2018; 35:91-97. [PMID: 30460537 PMCID: PMC6357281 DOI: 10.1007/s12264-018-0302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Excessive reactive oxygen species (ROS) (such as the superoxide radical) are commonly associated with cardiac autonomic dysfunctions. Though superoxide dismutase 1 (SOD1) overexpression may protect against ROS damage to the autonomic nervous system, superoxide radical reduction may change normal physiological functions. Previously, we demonstrated that human SOD1 (hSOD1) overexpression does not change baroreflex bradycardia and tachycardia but rather increases aortic depressor nerve activity in response to arterial pressure changes in C57B6SJL-Tg (SOD1)2 Gur/J mice. Since the baroreflex arc includes afferent, central, and efferent components, the objective of this study was to determine whether hSOD1 overexpression alters the central and vagal efferent mediation of heart rate (HR) responses. Our data indicate that SOD1 overexpression decreased the HR responses to vagal efferent nerve stimulation but did not change the HR responses to aortic depressor nerve (ADN) stimulation. Along with the previous study, we suggest that SOD1 overexpression preserves normal baroreflex function but may differentially alter the functions of the ADN, vagal efferents, and central components. While SOD1 overexpression likely enhanced ADN function and the central mediation of bradycardia, it decreased vagal efferent control of HR.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - He Gu
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, IL, 60153, USA
| | - Zixi Cheng
- Division of Neuroscience and Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
32
|
Carissimi A, Martinez D, Kim LJ, Fiori CZ, Vieira LR, Rosa DP, Pires GN. Intermittent hypoxia, brain glyoxalase-1 and glutathione reductase-1, and anxiety-like behavior in mice. ACTA ACUST UNITED AC 2018; 40:376-381. [PMID: 30110090 PMCID: PMC6899376 DOI: 10.1590/1516-4446-2017-2310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Sleep apnea has been associated with anxiety, but the mechanisms of the sleep apnea-anxiety relationship are unresolved. Sleep apnea causes oxidative stress, which might enhance anxiety-like behavior in rodents. To clarify the apnea-anxiety connection, we tested the effect of intermittent hypoxia, a model of sleep apnea, on the anxiety behavior of mice. METHODS The rodents were exposed daily to 480 one-minute cycles of intermittent hypoxia to a nadir of 7±1% inspiratory oxygen fraction or to a sham procedure with room air. After 7 days, the mice from both groups were placed in an elevated plus maze and were video recorded for 10 min to allow analysis of latency, frequency, and duration in open and closed arms. Glyoxalase-1 (Glo1) and glutathione reductase-1 (GR1) were measured in the cerebral cortex, hippocampus, and striatum by Western blotting. RESULTS Compared to controls, the intermittent hypoxia group displayed less anxiety-like behavior, perceived by a statistically significant increase in the number of entries and total time spent in open arms. A higher expression of GR1 in the cortex was also observed. CONCLUSION The lack of a clear anxiety response as an outcome of intermittent hypoxia exposure suggests the existence of additional layers in the anxiety mechanism in sleep apnea, possibly represented by sleepiness and irreversible neuronal damage.
Collapse
Affiliation(s)
- Alicia Carissimi
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Denis Martinez
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares, UFRGS, Porto Alegre, RS, Brazil.,Divisão de Cardiologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Lenise J Kim
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Cintia Z Fiori
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares, UFRGS, Porto Alegre, RS, Brazil.,Divisão de Cardiologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil
| | - Luciana R Vieira
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Darlan P Rosa
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil.,Faculdade Cenecista de Bento Gonçalves (CNEC), Bento Gonçalves, RS, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
33
|
Pak VM, Mazzotti DR, Keenan BT, Hirotsu C, Gehrman P, Bittencourt L, Pack AI, Tufik S. Candidate gene analysis in the São Paulo Epidemiologic Sleep Study (EPISONO) shows an association of variant in PDE4D and sleepiness. Sleep Med 2018; 47:106-112. [DOI: 10.1016/j.sleep.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022]
|
34
|
Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J. Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 2018; 41:4985474. [PMID: 29697839 PMCID: PMC6047438 DOI: 10.1093/sleep/zsy072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Study Objectives Based on the fact that erythropoietin (Epo) administration in rodents protects against spatial learning and cognitive deficits induced by chronic intermittent hypoxia (CIH)-mediated oxidative damage, here we tested the hypothesis that Epo in the brain protects against cardiorespiratory disorders and oxidative stress induced by CIH in adult mice. Methods Adult control and transgenic mice overexpressing Epo in the brain only (Tg21) were exposed to CIH (21%-10% O2-10 cycles/hour-8 hours/day-7 days) or room air. After CIH exposure, we used the tail cuff method to measure arterial pressure, and whole-body plethysmography to assess the frequency of apneic episodes at rest, minute ventilation, and ventilatory responses to hypoxia and hypercapnia. Finally, the activity of pro-oxidant (XO-xanthine oxidase, and NADPH) and antioxidant (super oxide dismutase) enzymes was evaluated in the cerebral cortex and brainstem. Results Exposure of control mice to CIH significantly increased the heart rate and arterial pressure, the number of apneic events, and the ventilatory response to hypoxia and hypercapnia. Furthermore, CIH increased the ratio of pro-oxidant to antioxidant enzymes in cortex and brainstem tissues. Both physiological and molecular changes induced by CIH were prevented in transgenic Tg21 mice. Conclusions We conclude that the neuroprotective effect of Epo prevents oxidative damage in the brain and cardiorespiratory disorders induced by CIH. Considering that Epo is used in clinics to treat chronic kidney disease and stroke, our data show convincing evidence suggesting that Epo may be a promising alternative drug to treat sleep-disorder breathing.
Collapse
Affiliation(s)
- Elizabeth Elliot-Portal
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Tara Adele Janes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
35
|
Culebras A, Anwar S. Sleep Apnea Is a Risk Factor for Stroke and Vascular Dementia. Curr Neurol Neurosci Rep 2018; 18:53. [DOI: 10.1007/s11910-018-0855-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Nair D, Ramesh V, Gozal D. Cognitive Deficits Are Attenuated in Neuroglobin Overexpressing Mice Exposed to a Model of Obstructive Sleep Apnea. Front Neurol 2018; 9:426. [PMID: 29922222 PMCID: PMC5996123 DOI: 10.3389/fneur.2018.00426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is a highly prevalent disease manifesting as intermittent hypoxia during sleep (IH) and is increasingly recognized as being independently associated with neurobehavioral deficits. These deficits may be due to increased apoptosis in the hippocampus and cerebral cortex, as well as increased oxidative stress and inflammation. It has been reported that neuroglobin (Ngb) is upregulated in response to hypoxia-ischemia insults and exhibits a protective role in ischemia-reperfusion brain injury. We hypothesized that transgenic overexpression of Ngb would attenuate spatial learning deficits in a murine model of OSA. Methods:Wild-type mice and Ngb overexpressing male mice (Ngb-TG) were randomly assigned to either IH or room air (RA) exposures. The effects of IH during the light period on performance in a water maze spatial task were assessed, as well as anxiety and depressive-like behaviors using elevated plus maze (EPM) and forced swim tests. Cortical tissues from all the mice were extracted for biochemical studies for lipid peroxidation. Results:Ngb TG mice exhibited increased Ngb immunoreactivity in brain tissues and IH did not elicit significant changes in Ngb expression in either Ngb-TG mice or WT mice. On a standard place training task in the water maze, Ngb-TG mice displayed preserved spatial learning, and were protected from the reduced spatial learning performances observed in WT mice exposed to IH. Furthermore, anxiety and depression levels were enhanced in WT mice exposed to IH as compared to RA controls, while alterations emerged in Ngb-TG mice exposed to IH. Furthermore, WT mice, but not Ngb-TG mice had significantly elevated levels of malondialdehyde in cortical lysates following IH exposures. Conclusions:In a murine model of OSA, oxidative stress responses and neurocognitive and behavioral impairments induced by IH during sleep are attenuated by the neuroprotective effects of Ngb.
Collapse
Affiliation(s)
- Deepti Nair
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States.,Atlantic Health System, Morristown, NJ, United States.,Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, United States
| | - Vijay Ramesh
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - David Gozal
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Pandey A, Kar SK. Rapid Eye Movement sleep deprivation of rat generates ROS in the hepatocytes and makes them more susceptible to oxidative stress. ACTA ACUST UNITED AC 2018; 11:245-253. [PMID: 30746042 PMCID: PMC6361303 DOI: 10.5935/1984-0063.20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Rapid Eye Movement sleep deprivation (REMSD) of rats causes inflammation of
the liver and apoptotic cell death of neurons and hepatocytes. Studies also
suggest that REM sleep deprivation can cause muscle as well as cardiac
injury and neurodegenerative diseases. Objective and methods The aim of this research was to determine whether REM sleep deprivation of
rats would increase the levels of reactive oxygen species (ROS) in the
hepatocytes and create oxidative stress in them. We selectively deprived the
rats for REM sleep using the standard flower pot method. Results We observed that when rats were subjected to REM sleep deprivation, the
levels of ROS in their hepatocytes increased ~184.33% compared to large
platform control (LPC) group by day 9 of deprivation, but it returned
towards normal level (~49.27%) after recovery sleep for 5 days. Nitric oxide
synthase (iNOS) gene expression and protein levels as determined by
real-time PCR and western blot analysis respectively were found to be
elevated in hepatocytes of REM sleep deprived rats as compared to the LPC
group. The level of nitric oxide (NO) in the hepatocytes of REMSD rats also
increased by ~404.40% as compared to the LPC group but sleep recovery for 5
days normalized the effect (~135.35% compared to LPC group). We used a large
platform control group as a reference group to compare with the REM sleep
deprived group as the effect on the hepatocytes of both LPC group and cage
control groups were not significantly different. Discussion We have analyzed the oxidative stress generated in the hepatocytes of rats
due to REM sleep deprivation and further consequences of it. REMS
deprivation not only increased the levels of ROS in the hepatocytes but also
induced iNOS and NO in them. REM sleep deprived hepatocytes became more
susceptible to oxidative stresses on further exposures. Furthermore, our
study has great pathological and physiological.
Collapse
Affiliation(s)
- Atul Pandey
- Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.,The Hebrew University of Jerusalem, Department of Ecology, Evolution and Behavior - Jerusalem - Jerusalem - Israel
| | - Santosh K Kar
- Jawaharlal Nehru University, School of Biotechnology - New Delhi - Delhi - India.,Kallinga Institute of Industrial Technology, School of Biotechnology - Bhubaneshwar - Bhubneshwar - India
| |
Collapse
|
38
|
Nadjar A, Wigren HKM, Tremblay ME. Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders. Front Cell Neurosci 2017; 11:250. [PMID: 28912686 PMCID: PMC5582207 DOI: 10.3389/fncel.2017.00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.
Collapse
Affiliation(s)
- Agnes Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche AgronomiqueBordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux UniversityBordeaux, France.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada)Québec, QC, Canada
| | | | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Québec-Université LavalQuébec, QC, Canada.,Département de médecine moléculaire, Université LavalQuébec, QC, Canada
| |
Collapse
|
39
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Gozal D, Gileles-Hillel A, Cortese R, Li Y, Almendros I, Qiao Z, Khalyfa AA, Andrade J, Khalyfa A. Visceral White Adipose Tissue after Chronic Intermittent and Sustained Hypoxia in Mice. Am J Respir Cell Mol Biol 2017; 56:477-487. [PMID: 28107636 DOI: 10.1165/rcmb.2016-0243oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Angiogenesis, a process induced by hypoxia in visceral white adipose tissues (vWAT) in the context of obesity, mediates obesity-induced metabolic dysfunction and insulin resistance. Chronic intermittent hypoxia (IH) and sustained hypoxia (SH) induce body weight reductions and insulin resistance of different magnitudes, suggesting different hypoxia inducible factor (HIF)-1α-related activity. Eight-week-old male C57BL/6J mice (n = 10-12/group) were exposed to either IH, SH, or room air (RA). vWAT were analyzed for insulin sensitivity (phosphorylated (pAKT)/AKT), HIF-1α transcription using chromatin immunoprecipitation (ChIP)-sequencing, angiogenesis using immunohistochemistry, and gene expression of different fat cell markers and HIF-1α gene targets using quantitative polymerase chain reaction or microarrays. Body and vWAT weights were reduced in hypoxia (SH > IH > RA; P < 0.001), with vWAT in IH manifesting vascular rarefaction and increased proinflammatory macrophages. HIF-1α ChIP-sequencing showed markedly increased binding sites in SH-exposed vWAT both at 6 hours and at 6 weeks compared with IH, the latter also showing decreased vascular endothelial growth factor, endothelial nitric oxide synthase, P2RX5, and PAT2 expression, and insulin resistance (IH > > > SH = RA; P < 0.001). IH induces preferential whitening of vWAT, as opposed to prominent browning in SH. Unlike SH, IH elicits early HIF-1α activity that is unsustained over time and is accompanied by concurrent vascular rarefaction, inflammation, and insulin resistance. Thus, the dichotomous changes in HIF-1α transcriptional activity and brown/beige/white fat balance in IH and SH should enable exploration of mechanisms by which altered sympathetic outflow, such as that which occurs in apneic patients, results in whitening, rather than the anticipated browning of adipose tissues that occurs in SH.
Collapse
Affiliation(s)
- David Gozal
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Alex Gileles-Hillel
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Rene Cortese
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Yan Li
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Isaac Almendros
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and.,3 Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; and.,4 CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Zhuanhong Qiao
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Ahamed A Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Jorge Andrade
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Abdelnaby Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| |
Collapse
|
41
|
Effect of Hypoxic Injury in Mood Disorder. Neural Plast 2017; 2017:6986983. [PMID: 28717522 PMCID: PMC5498932 DOI: 10.1155/2017/6986983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoxemia is a common complication of the diseases associated with the central nervous system, and neurons are highly sensitive to the availability of oxygen. Neuroplasticity is an important property of the neural system controlling breathing, memory, and cognitive ability. However, the underlying mechanism has not yet been clearly elucidated. In recent years, several pieces of evidence have highlighted the effect of hypoxic injury on neuronal plasticity in the pathogenesis and treatment of mood disorder. Therefore, the present study reviewed the relevant articles regarding hypoxic injury and neuronal plasticity and discussed the pathological changes and physiological functions of neurons in hypoxemia in order to provide a translational perspective to the relevance of hypoxic injury and mood disorder.
Collapse
|
42
|
Buratti L, Petrelli C, Potente E, Plutino A, Viticchi G, Falsetti L, Provinciali L, Silvestrini M. Prevalence of obstructive sleep apnea syndrome in a population of patients with transient global amnesia. Sleep Med 2017; 32:36-39. [PMID: 28366339 DOI: 10.1016/j.sleep.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The etiology of transient global amnesia (TGA) is largely undetermined. The aim of this study was to investigate whether the prevalence of obstructive sleep apnea syndrome (OSAS), a condition associated with subtle changes in brain structures involved in memory processes, increases in subjects who have previously experienced a TGA episode. METHODS Twenty-nine patients who had had a TGA episode were included. A case-control model was used, matching cases with controls by sex, age, and body mass index category. Diagnosis of OSAS was based on the results of the Berlin Questionnaire, which was later confirmed by means of an all-night polysomnography recording. RESULTS The prevalence of OSAS among TGA patients was significantly higher with respect to that in controls (44.8% vs 13.8%, p = 0.020, χ2 test). At logistic regression model, subjects with TGA had an odds ratio of 8.409 (95% confidence interval = 1.674-42.243; p = 0.010) of having OSAS when compared with controls. CONCLUSIONS According to our findings, an accurate investigation of sleep disturbances could be considered for a complete assessment of patients with TGA. The subtle cerebral anatomo-functional damage induced by the repeated nocturnal apneic episodes may be a pathophysiologic link between OSAS and TGA.
Collapse
Affiliation(s)
- L Buratti
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - C Petrelli
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - E Potente
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - A Plutino
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - G Viticchi
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - L Falsetti
- Internal and Subintensive Medicine, Ospedali Riuniti Ancona, Italy
| | - L Provinciali
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - M Silvestrini
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
43
|
Ostrowski TD, Dantzler HA, Polo-Parada L, Kline DD. H 2O 2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels. Am J Physiol Cell Physiol 2017; 312:C651-C662. [PMID: 28274920 DOI: 10.1152/ajpcell.00195.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H2O2) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H2O2 on cytosolic Ca2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H2O2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca2+ concentration ([Ca2+]i). The H2O2-mediated increase in [Ca2+]i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca2+ source. The effect, however, was abolished by removal of extracellular Ca2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca2+ channels (VGCCs) as targets for H2O2 modulation. Recording of the total voltage-dependent Ca2+ current confirmed H2O2 enhanced Ca2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H2O2 The number of responder cells to H2O2 also decreased in the presence of dithiothreitol, suggesting the actions of H2O2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H2O2 increases [Ca2+]i and its Ca2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri.,Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Heather A Dantzler
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - David D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
44
|
Role of Oxidative Stress in the Neurocognitive Dysfunction of Obstructive Sleep Apnea Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9626831. [PMID: 27774119 PMCID: PMC5059616 DOI: 10.1155/2016/9626831] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/01/2016] [Indexed: 01/28/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by chronic nocturnal intermittent hypoxia and sleep fragmentations. Neurocognitive dysfunction, a significant and extraordinary complication of OSAS, influences patients' career, family, and social life and reduces quality of life to some extent. Previous researches revealed that repetitive hypoxia and reoxygenation caused mitochondria and endoplasmic reticulum dysfunction, overactivated NADPH oxidase, xanthine oxidase, and uncoupling nitric oxide synthase, induced an imbalance between prooxidants and antioxidants, and then got rise to a series of oxidative stress (OS) responses, such as protein oxidation, lipid peroxidation, and DNA oxidation along with inflammatory reaction. OS in brain could trigger neuron injury especially in the hippocampus and cerebral cortex regions. Those two regions are fairly susceptible to hypoxia and oxidative stress production which could consequently result in cognitive dysfunction. Apart from continuous positive airway pressure (CPAP), antioxidant may be a promising therapeutic method to improve partially reversible neurocognitive function. Understanding the role that OS played in the cognitive deficits is crucial for future research and therapeutic strategy development. In this paper, recent important literature concerning the relationship between oxidative stress and cognitive impairment in OSAS will be summarized and the results can provide a rewarding overview for future breakthrough in this field.
Collapse
|
45
|
Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep 2016; 6:34151. [PMID: 27678302 PMCID: PMC5039704 DOI: 10.1038/srep34151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
This study was performed to assess the effect of chronic intermittent hypoxia (CIH) on the liver, the associated mechanisms and the potential therapeutic roles of adiponectin (Ad). Sixty rats were randomly assigned to four groups: the normal control (NC), NC and Ad supplement (NC + Ad), CIH, and CIH and Ad supplement (CIH + Ad) groups. The rats in the CIH and CIH + Ad groups were exposed to a hypoxic environment for 4 months. Rats in the NC + Ad and CIH + Ad groups were also treated with an intravenous injection of Ad (10 ug), twice a week. The plasma levels of hepatic enzymes, serum triglyceride, liver triglyceride, fasting blood glucose and hepatic cell apoptosis in hepatic tissue, were higher in the CIH group than in the NC and NC + Ad groups. However, the Ad supplementation in the CIH + Ad group rescued the hepatic tissue insult by activating the AMP-activated protein kinase (AMPK) pathway. In conclusion, Ad could protect against CIH-induced hepatic injury partly through the AMPK pathway.
Collapse
|
46
|
He Y, Chen R, Wang J, Pan W, Sun Y, Han F, Wang Q, Liu C. Neurocognitive impairment is correlated with oxidative stress in patients with moderate-to-severe obstructive sleep apnea hypopnea syndrome. Respir Med 2016; 120:25-30. [PMID: 27817812 DOI: 10.1016/j.rmed.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Patients with obstructive sleep apnea hypopnea syndrome (OSAHS) are associated with increased risk of neurocognitive impairment, which are largely recognized as mild cognitive impairment (MCI), and oxidative stress is postulated as one of the underlying mechanisms. This study aimed to investigate the relationship between MCI and oxidative stress biomarkers in OSAHS. METHODS A total of 119 middle-aged patients with moderate-to-severe OSAHS were included. Based on the baseline Montreal Cognitive Assessment (MoCA, validated Chinese version), 86 and 33 patients presented with normal cognitive function (NC, MoCA ≥26) and mild cognitive impairment (MCI, MoCA <26), respectively. Overnight PSG, MoCA and serum levels of ischemia-modified albumin (IMA), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) were collected and analyzed. RESULTS Compared to NC group, patients with MCI were characterized with significantly greater waist-to-height ratio, AHI, ODI and time ratio of SpO2<90%, and lower average SpO2 and time ratio of rapid eye movement (REM). All three oxidative stress biomarkers were markedly elevated in MCI group. Binary logistic regression analysis demonstrated that MCI is significantly correlated with serum levels of IMA, REM ratio and the age of patients. CONCLUSIONS The neurocognitive impairment in moderate-to-severe OSAHS patients is associated with significantly elevated oxidative stress. IMA might be a new useful biomarker correlated with mild cognitive impairment of the patients.
Collapse
Affiliation(s)
- Yanyu He
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Rui Chen
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| | - Jing Wang
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wenying Pan
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yanqiu Sun
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Fei Han
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Qiaojun Wang
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Chunfeng Liu
- Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Laboratory of Aging and Nervous Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Khalyfa A, Gileles-Hillel A, Gozal D. The Challenges of Precision Medicine in Obstructive Sleep Apnea. Sleep Med Clin 2016; 11:213-26. [DOI: 10.1016/j.jsmc.2016.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Ding W, Cai Y, Wang W, Ji L, Dong Y, Zhang X, Su M, Liu J, Lu G, Zhang X. Adiponectin protects the kidney against chronic intermittent hypoxia-induced injury through inhibiting endoplasmic reticulum stress. Sleep Breath 2016; 20:1069-74. [PMID: 26993339 DOI: 10.1007/s11325-016-1321-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE The current study was carried out to assess the effects of chronic intermittent hypoxia (CIH) on the kidney, the intervention roles of adiponectin (Ad), and the associated mechanisms. METHODS Sixty Wistar rats were randomly divided into four groups: the normal control (NC), normal control plus Ad supplement (NC + Ad), CIH, and CIH plus Ad supplement (CIH + Ad) groups. The rats in both CIH and CIH + Ad groups were submitted to a CIH environment for 4 months, while the rats in NC and NC + Ad groups were housed with the normal air for 4 months. In addition, the rats in NC + Ad and CIH + Ad groups were treated with an intravenous injection of Ad at a dosage of 10 μg per injection, twice a week, for four successive months. RESULTS The production level of reactive oxygen species (ROS) and the protein levels of endoplasmic reticulum (ER) stress, as well as the cell apoptosis level in kidney, were all higher in the CIH group than in the NC and NC + Ad groups (all p < 0.05). However, the ROS production, the protein of ER stress, and cell apoptosis levels in kidney were all lower in the CIH + Ad group than those in the CIH group (all p < 0.05). CONCLUSION Ad could protect against CIH-induced renal cell apoptosis through inhibiting ROS-related ER stress.
Collapse
Affiliation(s)
- Wenxiao Ding
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yuanpei Cai
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenjing Wang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lingling Ji
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yanbin Dong
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaofeng Zhang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Mei Su
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiannan Liu
- Department of Respiratory Diseases, Jiangsu Geriatric Hospital, 42 Jiangsu Road, Nanjing, 210029, China
| | - Gan Lu
- Department of Respiratory Diseases, Jiangsu Geriatric Hospital, 42 Jiangsu Road, Nanjing, 210029, China.
| | - Xilong Zhang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
49
|
Developmental loss of parvalbumin-positive cells in the prefrontal cortex and psychiatric anxiety after intermittent hypoxia exposures in neonatal rats might be mediated by NADPH oxidase-2. Behav Brain Res 2016; 296:134-140. [DOI: 10.1016/j.bbr.2015.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
|
50
|
Environmental Enrichment Prevent the Juvenile Hypoxia-Induced Developmental Loss of Parvalbumin-Immunoreactive Cells in the Prefrontal Cortex and Neurobehavioral Alterations Through Inhibition of NADPH Oxidase-2-Derived Oxidative Stress. Mol Neurobiol 2015; 53:7341-7350. [DOI: 10.1007/s12035-015-9656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
|