1
|
Khalilpour J, Zangbar HS, Alipour MR, Pakdel FQ, Zavari Z, Shahabi P. Chronic Sustained Hypoxia Leads to Brainstem Tauopathy and Declines the Power of Rhythms in the Ventrolateral Medulla: Shedding Light on a Possible Mechanism. Mol Neurobiol 2024; 61:3121-3143. [PMID: 37976025 DOI: 10.1007/s12035-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Firouz Qaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
2
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|
3
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
4
|
Trevizan-Baú P, Dhingra RR, Burrows EL, Dutschmann M, Stanić D. Tauopathy in the periaqueductal gray, kölliker-fuse nucleus and nucleus retroambiguus is not predicted by ultrasonic vocalization in tau-P301L mice. Behav Brain Res 2019; 369:111916. [PMID: 31004684 DOI: 10.1016/j.bbr.2019.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Upper airway and vocalization control areas such as the periaqueductal gray (PAG), kölliker-fuse nucleus (KF) and nucleus retroambiguus (NRA) are prone to developing tauopathy in mice expressing the mutant human tau P301L protein. Consequently, impaired ultrasonic vocalization (USV) previously identified in tau-P301L mice at the terminal disease stage of 8-9 months of age, was attributed to the presence of tauopathy in these regions. Our aim was to establish whether the onset of USV disorders manifest prior to the terminal stage, and if USV disorders are predictive of the presence of tauopathy in the PAG, KF and NRA. USVs produced by tau-P301L and wildtype mice aged 3-4, 5-6 or 8-9 months were recorded during male-female interaction. Immunohistochemistry was then performed to assess the presence or degree of tauopathy in the PAG, KF and NRA of mice displaying normal or abnormal USV patterns. Comparing various USV measurements, including the number, duration and frequency of calls, revealed no differences between tau-P301L and wildtype mice across all age groups, and linear discriminant analysis also failed to identify separate USV populations. Finally, the presence of tauopathy in the PAG, KF and NRA in individual tau-P301L mice did not reliably associate with USV disorders. Our findings that tauopathy in designated mammalian vocalization centres, such as the PAG, KF and NRA, did not associate with USV disturbances in tau-P301L mice questions whether USV phenotypes in this transgenic mouse are valid for studying tauopathy-related human voice and speech disorders.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Emma L Burrows
- Mental Health Theme, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| |
Collapse
|
5
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
6
|
Rojo AI, Pajares M, García-Yagüe AJ, Buendia I, Van Leuven F, Yamamoto M, López MG, Cuadrado A. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol 2018; 18:173-180. [PMID: 30029164 PMCID: PMC6052199 DOI: 10.1016/j.redox.2018.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.
Collapse
Affiliation(s)
- Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain.
| | - Marta Pajares
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Angel J García-Yagüe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain; Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
7
|
No evidence in support of a prodromal respiratory control signature in the TgF344-AD rat model of Alzheimer's disease. Respir Physiol Neurobiol 2018; 265:55-67. [PMID: 29969703 DOI: 10.1016/j.resp.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition disturbing major brain networks, including those pivotal to the motor control of breathing. The aim of this study was to examine respiratory control in the TgF344-AD transgenic rat model of AD. At 8-11 months of age, basal minute ventilation and ventilatory responsiveness to chemostimulation were equivalent in conscious wild-type (WT) and TgF344-AD rats. Under urethane anesthesia, basal diaphragm and genioglossus EMG activities were similar in WT and TgF344-AD rats. The duration of phenylbiguanide-induced apnoea was significantly shorter in TgF344-AD rats compared with WT. Following bilateral cervical vagotomy, diaphragm and genioglossus EMG responsiveness to chemostimulation were intact in TgF344-AD rats. Amyloid precursor protein C-terminal fragments were elevated in the TgF344-AD brainstem, in the absence of amyloid-β accumulation or alterations in tau phosphorylation. Brainstem pro-inflammatory cytokine concentrations were not increased in TgF344-AD rats. We conclude that neural control of breathing is preserved in TgF344-AD rats at this stage of the disease.
Collapse
|
8
|
Ebel DL, Torkilsen CG, Ostrowski TD. Blunted Respiratory Responses in the Streptozotocin-Induced Alzheimer's Disease Rat Model. J Alzheimers Dis 2017; 56:1197-1211. [PMID: 28106557 DOI: 10.3233/jad-160974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is known for the progressive decline of cognition and memory. In addition to these disease-defining symptoms, impairment of respiratory function is frequently observed and often expressed by sleep-disordered breathing or reduced ability to adjust respiration when oxygen demand is elevated. The mechanisms for this are widely unknown. Postmortem analysis from the brainstem of AD patients reveals pathological alterations, including in nuclei responsible for respiratory control. In this study, we analyzed respiratory responses and morphological changes in brainstem nuclei following intracerebroventricular (ICV) injections of streptozotocin (STZ), a rat model commonly used to mimic sporadic AD. ICV-STZ induced significant astrogliosis in the commissural part of the nucleus tractus solitarii, an area highly involved in respiration control. The astrogliosis was identified by a significant increase in S100B-immunofluorescence that is similar to the astrogliosis found in the CA1 region of the hippocampus. Using plethysmography, the control group displayed a typical age-dependent decrease of ventilation that was absent in the STZ rat group. This is indicative of elevated minute ventilation at rest after STZ treatment. Peripheral chemoreflex responses were significantly blunted in STZ rats as seen by a reduced respiratory rate and minute ventilation to hypoxia. Central chemoreflex responses to hypercapnia, on the other hand, only decreased in respiratory rate following STZ treatment. Overall, our results show that ICV-STZ induces respiratory dysfunction at rest and in response to hypoxia. This provides a new tool to study the underlying mechanisms of breathing disorders in clinical AD.
Collapse
|
9
|
The Kölliker-Fuse nucleus: a review of animal studies and the implications for cranial nerve function in humans. Eur Arch Otorhinolaryngol 2015; 273:3505-3510. [PMID: 26688431 DOI: 10.1007/s00405-015-3861-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
To review the scientific literature on the relationship between Kölliker-Fuse nucleus (KF) and cranial nerve function in animal models, with view to evaluating the potential role of KF maturation in explaining age-related normal physiologic parameters and developmental and acquired impairment of cranial nerve function in humans. Medical databases (Medline and PubMed). Studies investigating evidence of KF activity responsible for a specific cranial nerve function that were based on manipulation of KF activity or the use of neural markers were included. Twenty studies were identified that involved the trigeminal (6 studies), vagus (9), and hypoglossal nerves (5). These pertained specifically to a role of the KF in mediating the dive reflex, laryngeal adductor control, swallowing function and upper airway tone. The KF acts as a mediator of a number of important functions that relate primarily to laryngeal closure, upper airway tone and swallowing. These areas are characterized by a variety of disorders that may present to the otolaryngologist, and hence the importance of understanding the role played by the KF in maintaining normal function.
Collapse
|
10
|
Crespo-Biel N, Theunis C, Borghgraef P, Lechat B, Devijver H, Maurin H, Van Leuven F. Phosphorylation of protein Tau by GSK3β prolongs survival of bigenic Tau.P301L×GSK3β mice by delaying brainstem tauopathy. Neurobiol Dis 2014; 67:119-32. [DOI: 10.1016/j.nbd.2014.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022] Open
|
11
|
Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β. Eur J Neurosci 2014; 40:2442-53. [DOI: 10.1111/ejn.12595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Benoit Lechat
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Peter Borghgraef
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Herman Devijver
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | | | - Fred Van Leuven
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| |
Collapse
|
12
|
Bautista TG, Dutschmann M. Ponto-medullary nuclei involved in the generation of sequential pharyngeal swallowing and concomitant protective laryngeal adduction in situ. J Physiol 2014; 592:2605-23. [PMID: 24639482 DOI: 10.1113/jphysiol.2014.272468] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both swallowing and respiration involve postinspiratory laryngeal adduction. Swallowing-related postinspiratory neurons are likely to be located in the nucleus of the solitary tract (NTS) and those involved in respiration are found in the Kölliker-Fuse nucleus (KF). The function of KF and NTS in the generation of swallowing and its coordination with respiration was investigated in perfused brainstem preparations of juvenile rats (n = 41). Orally injected water evoked sequential pharyngeal swallowing (s-PSW) seen as phasic, spindle-shaped bursting of vagal nerve activity (VNA) against tonic postinspiratory discharge. KF inhibition by microinjecting isoguvacine (GABAA receptor agonist) selectively attenuated tonic postinspiratory VNA (n = 10, P < 0.001) but had no effect on frequency or timing of s-PSW. KF disinhibition after bicuculline (GABAA receptor antagonist) microinjections caused an increase of the tonic VNA (n = 8, P < 0.01) resulting in obscured and delayed phasic s-PSW. Occurrence of spontaneous PSW significantly increased after KF inhibition (P < 0.0001) but not after KF disinhibition (P = 0.14). NTS isoguvacine microinjections attenuated the occurrence of all PSW (n = 5, P < 0.01). NTS bicuculline microinjections (n = 6) resulted in spontaneous activation of a disordered PSW pattern and long-lasting suppression of respiratory activity. Pharmacological manipulation of either KF or NTS also triggered profound changes in respiratory postinspiratory VNA. Our results indicate that the s-PSW comprises two functionally distinct components. While the primary s-PSW is generated within the NTS, a KF-mediated laryngeal adductor reflex safeguards the lower airways from aspiration. Synaptic interaction between KF and NTS is required for s-PSW coordination with respiration as well as for proper gating and timing of s-PSW.
Collapse
Affiliation(s)
- Tara G Bautista
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| |
Collapse
|
13
|
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 2014; 9:e87605. [PMID: 24498342 PMCID: PMC3912020 DOI: 10.1371/journal.pone.0087605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/21/2013] [Indexed: 02/04/2023] Open
Abstract
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease.
Collapse
|
14
|
Flabeau O, Meissner WG, Ozier A, Berger P, Tison F, Fernagut PO. Breathing variability and brainstem serotonergic loss in a genetic model of multiple system atrophy. Mov Disord 2014; 29:388-95. [PMID: 24442757 DOI: 10.1002/mds.25804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 12/12/2022] Open
Abstract
Breathing disorders like sleep apnea, stridor, and dysrythmic breathing are frequent in patients with multiple system atrophy (MSA). These observations have been related to neurodegeneration in several pontomedullary respiratory nuclei and may explain the occurrence of sudden death. In this study, we sought to determine whether these functional and neuropathological characteristics could be replicated in a transgenic model of MSA. Mice expressing human wild-type α-synuclein under the control of the proteolipid promoter (PLP-αSYN) were compared with age-matched controls. Using whole-body, unrestrained plethysmography, the following breathing parameters were measured: inspiratory and expiratory times, tidal volume, expiratory volume, peak inspiratory and expiratory flows, and respiratory frequency. For each category, the mean, coefficient of variation, and irregularity score were analyzed. Brains were then processed for stereological cell counts of pontomedullary respiratory nuclei. A significant increase in the coefficient of variation and irregularity score was observed for inspiratory time, tidal volume, and expiratory volume in PLP-αSYN mice (P < 0.05). Glial cytoplasmic inclusions were found in the medullary raphe of PLP-αSYN mice, together with a loss of serotonergic immunoreactivity in the raphe obscurus (P < 0.001) and pallidus (P < 0.01). There was a negative correlation between α-synuclein burden and raphe pallidus cell counts (P < 0.05). There was no significant neuronal loss in the pre-Botzinger complex. The PLP-αSYN mouse model replicates the breathing variability and part of the neuronal depletion in pontomedullary respiratory nuclei observed in patients with MSA. Our findings support the use of this model for future candidate drugs in the breathing disorders observed in MSA.
Collapse
Affiliation(s)
- Olivier Flabeau
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | | | | | | | | | | |
Collapse
|
15
|
The physiological significance of postinspiration in respiratory control. PROGRESS IN BRAIN RESEARCH 2014; 212:113-30. [DOI: 10.1016/b978-0-444-63488-7.00007-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, Smet-Nocca C, Lippens G, Hilaire G, Gijsen H, Moechars D, Van Leuven F. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One 2013; 8:e84442. [PMID: 24376810 PMCID: PMC3871570 DOI: 10.1371/journal.pone.0084442] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.
Collapse
Affiliation(s)
- Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Clément Menuet
- MP3-Respiration, UMR CNRS 6231, Faculté Saint-Jérôme, Marseille, France
| | - Clara Theunis
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Justin V. Louis
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Hervé Maurin
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Caroline Smet-Nocca
- Groupe RMN-Glycobiologie, CNRS, University de Lille, Villeneuve d'Ascq, France
| | - Guy Lippens
- Groupe RMN-Glycobiologie, CNRS, University de Lille, Villeneuve d'Ascq, France
| | - Gerard Hilaire
- MP3-Respiration, UMR CNRS 6231, Faculté Saint-Jérôme, Marseille, France
| | - Harrie Gijsen
- Department Neuroscience, Janssen Research & Development, Beerse, Belgium
| | - Dieder Moechars
- Department Neuroscience, Janssen Research & Development, Beerse, Belgium
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
17
|
Whittington RA, Bretteville A, Dickler MF, Planel E. Anesthesia and tau pathology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:147-55. [PMID: 23535147 PMCID: PMC3741335 DOI: 10.1016/j.pnpbp.2013.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration.
Collapse
Affiliation(s)
- Robert A. Whittington
- Department of Anesthesiology, Columbia University, New York, NY 10032,Corresponding Author: Robert A. Whittington, MD, Columbia University, College of Physicians and Surgeons, Department of Anesthesiology, 622 West 168th Street PH 5, New York, NY 10032, Tel: 212-305-1567, Fax: 212-305-0777,
| | - Alexis Bretteville
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Maya F. Dickler
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2,Université Laval, Département de Psychiatrie et Neurosciences, Québec (QC), Canada, G1V 0A6
| |
Collapse
|
18
|
Ramos-Rodriguez JJ, Molina-Gil S, Rey-Brea R, Berrocoso E, Garcia-Alloza M. Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice. PLoS One 2013; 8:e79947. [PMID: 24278223 PMCID: PMC3837012 DOI: 10.1371/journal.pone.0079947] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Senile plaques and neurofibrillary tangles are major neuropathological features of Alzheimer's Disease (AD), however neuronal loss is the alteration that best correlates with cognitive impairment in AD patients. Underlying neurotoxic mechanisms are not completely understood although specific neurotransmission deficiencies have been observed in AD patients and, in animal models, cholinergic and noradrenergic denervation may increase amyloid-beta deposition and tau phosphorylation in denervated areas. On the other hand brainstem neurodegeneration has been suggested as an initial event in AD, and serotonergic dysfunction, as well as reductions in raphe neurones density, have been reported in AD patients. In this study we addressed whether specific serotonergic denervation, by administering 5,7-dihydroxitriptamine (5,7-DHT) in the raphe nuclei, could also worsen central pathology in APPswe/PS1dE9 mice or interfere with learning and memory activities. In our hands specific serotonergic denervation increased tau phosphorylation in denervated cortex, without affecting amyloid-beta (Aβ) pathology. We also observed that APPswe/PS1dE9 mice lesioned with 5,7-DHT were impaired in the Morris water maze test, supporting a synergistic effect of the serotonergic denervation and the presence of APP/PS1 transgenes on learning and memory impairment. Altogether our data suggest that serotonergic denervation may interfere with some pathological aspects observed in AD, including tau phosphorylation or cognitive impairment, without affecting Aβ pathology, supporting a differential role of specific neurotransmitter systems in AD.
Collapse
Affiliation(s)
| | - Sara Molina-Gil
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
| | - Raquel Rey-Brea
- Department of Neuroscience, School of Medicine, University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - Esther Berrocoso
- Department of Neuroscience, School of Medicine, University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- * E-mail:
| |
Collapse
|
19
|
Viemari JC, Menuet C, Hilaire G. [Electrophysiological, molecular and genetic identifications of the pre-Bötzinger complex]. Med Sci (Paris) 2013; 29:875-82. [PMID: 24148126 DOI: 10.1051/medsci/20132910015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
From birth onwards, rhythmic breathing is required for blood oxygenation and survival in mammals. During their lifespan, human or mouse or elephant will spontaneously produce several hundreds of millions of respiratory movements. The central nervous command responsible for these spontaneous rhythmic movements is elaborated by a complex neural network extending within the brainstem. In the medulla, a special part of this network contains respiratory pacemaker neurons that play a crucial role in respiratory rhythmogenesis: the pre-Bötzinger complex. This review summarizes and discusses the main electrophysiological, molecular and genetic mechanisms contributing to the function and the perinatal maturation of the pre-Bötzinger complex.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Équipe P3M (plasticité et physiopathologie de la motricité), institut de neurosciences de la Timone, UMR 7289, CNRS-Aix-Marseille université, 27, boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
20
|
Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP, Reis P, Hickman DT, Adolfsson O, Chuard N, Ndao DM, Borghgraef P, Devijver H, Van Leuven F, Pfeifer A, Muhs A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One 2013; 8:e72301. [PMID: 23977276 PMCID: PMC3747157 DOI: 10.1371/journal.pone.0072301] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404. We demonstrate that the liposome-based vaccine elicited, rapidly and robustly, specific antisera in wild-type mice and in Tau.P301L mice. Long-term vaccination proved to be safe, because it improved the clinical condition and reduced indices of tauopathy in the brain of the Tau.P301L mice, while no signs of neuro-inflammation or other adverse neurological effects were observed. The data corroborate the hypothesis that liposomes carrying phosphorylated peptides of protein Tau have considerable potential as safe and effective treatment against tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clara Theunis
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Natalia Crespo-Biel
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | - Peter Borghgraef
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
| | - Fred Van Leuven
- Experimental Genetics Group, Department Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| | | | | |
Collapse
|
21
|
Geerts H, Roberts P, Spiros A, Carr R. A strategy for developing new treatment paradigms for neuropsychiatric and neurocognitive symptoms in Alzheimer's disease. Front Pharmacol 2013; 4:47. [PMID: 23596419 PMCID: PMC3627142 DOI: 10.3389/fphar.2013.00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/28/2013] [Indexed: 01/01/2023] Open
Abstract
Successful disease modifying drug development for Alzheimer's disease (AD) has hit a roadblock with the recent failures of amyloid-based therapies, highlighting the translational disconnect between preclinical animal models and clinical outcome. Although disease modifying therapies are the Holy Grail to pursue, symptomatic therapies addressing cognitive and neuropsychiatric aspects of the disease are also extremely important for the quality of life of patients and caregivers. Despite the fact that neuropsychiatric problems in Alzheimer patients are the major driver for costs associated with institutionalization, no good preclinical animal models with predictive validity have been documented. We propose a combination of quantitative systems pharmacology (QSP), phenotypic screening and preclinical animal models as a novel strategy for addressing the bottleneck in both cognitive and neuropsychiatric drug discovery and development for AD. Preclinical animal models such as transgene rats documenting changes in neurotransmitters with tau and amyloid pathology will provide key information that together with human imaging, pathology and clinical data will inform the virtual patient model. In this way QSP modeling can partially overcome the translational disconnect and reduce the attrition of drug programs in the clinical setting. This approach is different from target driven drug discovery as it aims to restore emergent properties of the networks and therefore likely will identify multitarget drugs. We review examples on how this hybrid humanized QSP approach has been helpful in predicting clinical outcomes in schizophrenia treatment and cognitive impairment in AD and expand on how this strategy could be applied to neuropsychiatric symptoms in dementia. We believe such an innovative approach when used carefully could change the Research and Development paradigm for symptomatic treatment in AD.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Berwyn, PA, USA ; Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | | | |
Collapse
|
22
|
Morcinek K, Köhler C, Götz J, Schröder H. Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice. Brain Res 2013; 1497:73-84. [DOI: 10.1016/j.brainres.2012.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/24/2022]
|
23
|
The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep 2012; 2:1244-58. [PMID: 23103168 DOI: 10.1016/j.celrep.2012.09.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 11/22/2022] Open
Abstract
JMJD3 (KDM6B) antagonizes Polycomb silencing by demethylating lysine 27 on histone H3. The interplay of methyltransferases and demethylases at this residue is thought to underlie critical cell fate transitions, and the dynamics of H3K27me3 during neurogenesis posited for JMJD3 a critical role in the acquisition of neural fate. Despite evidence of its involvement in early neural commitment, however, its role in the emergence and maturation of the mammalian CNS remains unknown. Here, we inactivated Jmjd3 in the mouse and found that its loss causes perinatal lethality with the complete and selective disruption of the pre-Bötzinger complex (PBC), the pacemaker of the respiratory rhythm generator. Through genetic and electrophysiological approaches, we show that the enzymatic activity of JMJD3 is selectively required for the maintenance of the PBC and controls critical regulators of PBC activity, uncovering an unanticipated role of this enzyme in the late structuring and function of neuronal networks.
Collapse
|
24
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
25
|
Irmler M, Gentier RJG, Dennissen FJA, Schulz H, Bolle I, Hölter SM, Kallnik M, Cheng JJ, Klingenspor M, Rozman J, Ehrhardt N, Hermes DJHP, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Meyer HE, Hopkins DA, Van Leeuwen FW, Beckers J. Long-term proteasomal inhibition in transgenic mice by UBB(+1) expression results in dysfunction of central respiration control reminiscent of brainstem neuropathology in Alzheimer patients. Acta Neuropathol 2012; 124:187-97. [PMID: 22730000 PMCID: PMC3400757 DOI: 10.1007/s00401-012-1003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 12/29/2022]
Abstract
Aging and neurodegeneration are often accompanied by a functionally impaired ubiquitin–proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB+1) accumulates in disease-specific aggregates. UBB+1 mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading. The resulting mutant protein has been shown to inhibit proteasome function. To elucidate causative effects and neuropathological consequences of UBB+1 accumulation, we used a UBB+1 expressing transgenic mouse line that models UPS inhibition in neurons and exhibits behavioral phenotypes reminiscent of Alzheimer’s disease (AD). In order to reveal affected organs and functions, young and aged UBB+1 transgenic mice were comprehensively phenotyped for more than 240 parameters. This revealed unexpected changes in spontaneous breathing patterns and an altered response to hypoxic conditions. Our findings point to a central dysfunction of respiratory regulation in transgenic mice in comparison to wild-type littermate mice. Accordingly, UBB+1 was strongly expressed in brainstem regions of transgenic mice controlling respiration. These regions included, e.g., the medial part of the nucleus of the tractus solitarius and the lateral subdivisions of the parabrachial nucleus. In addition, UBB+1 was also strongly expressed in these anatomical structures of AD patients (Braak stage #6) and was not expressed in non-demented controls. We conclude that long-term UPS inhibition due to UBB+1 expression causes central breathing dysfunction in a transgenic mouse model of AD. The UBB+1 expression pattern in humans is consistent with the contribution of bronchopneumonia as a cause of death in AD patients.
Collapse
Affiliation(s)
- Martin Irmler
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Romina J. G. Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Frank J. A. Dennissen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Holger Schulz
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Epidemiology I, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Ines Bolle
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Lung Biology and Disease, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Sabine M. Hölter
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Developmental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Magdalena Kallnik
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Developmental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Jing Jun Cheng
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Martin Klingenspor
- Technische Universität München, ZIEL—Research Center for Nutrition and Food Sciences, Molecular Nutritional Medicine, Gregor-Mendel-Straße 2, 85350 Freising-Weihenstephan, Germany
| | - Jan Rozman
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München, ZIEL—Research Center for Nutrition and Food Sciences, Molecular Nutritional Medicine, Gregor-Mendel-Straße 2, 85350 Freising-Weihenstephan, Germany
| | - Nicole Ehrhardt
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Denise J. H. P. Hermes
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Valérie Gailus-Durner
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München, WZW—Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, 85350 Freising-Weihenstephan, Germany
| | - Helmut E. Meyer
- Medical Proteome Center, Ruhr University Bochum, Bochum, Germany
| | - David A. Hopkins
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Fred W. Van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Johannes Beckers
- Helmholtz Zentrum München, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München, WZW—Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
26
|
Cleary DR, Phillips RS, Wallisch M, Heinricher MM. A novel, non-invasive method of respiratory monitoring for use with stereotactic procedures. J Neurosci Methods 2012; 209:337-43. [PMID: 22771713 DOI: 10.1016/j.jneumeth.2012.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
Accurate monitoring of respiration is often needed for neurophysiological studies, as either a dependent experimental variable or an indicator of physiological state. Current options for respiratory monitoring of animals held in a stereotaxic frame include EMG recordings, pneumotachograph measurements, inductance-plethysmography, whole-body plethysmography (WBP), and visual monitoring. While powerful, many of these methods prevent access to the animal's body, interfere with experimental manipulations, or require deep anesthesia and additional surgery. For experiments where these issues may be problematic, we developed a non-invasive method of recording respiratory parameters specifically for use with animals held in a stereotaxic frame. This system, ventilation pressure transduction (VPT), measures variations in pressure at the animal's nostril from inward and outward airflow during breathing. These pressure changes are detected by a sensitive pressure transducer, then filtered and amplified. The output is an analog signal representing each breath. VPT was validated against WBP using 10% carbon dioxide and systemic morphine (4mg/kg) challenges in lightly anesthetized animals. VPT accurately represented breathing rate and tidal volume changes under both baseline and challenge conditions. This novel technique can therefore be used to measure respiratory rate and relative tidal volume when stereotaxic procedures are needed for neuronal manipulations and recording.
Collapse
Affiliation(s)
- Daniel R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd.,Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
27
|
Crespo-Biel N, Theunis C, Van Leuven F. Protein tau: prime cause of synaptic and neuronal degeneration in Alzheimer's disease. Int J Alzheimers Dis 2012; 2012:251426. [PMID: 22720188 PMCID: PMC3376502 DOI: 10.1155/2012/251426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/16/2012] [Indexed: 12/02/2022] Open
Abstract
The microtubule-associated protein Tau (MAPT) is a major component of the pathogenesis of a wide variety of brain-damaging disorders, known as tauopathies. These include Alzheimer's disease (AD), denoted as secondary tauopathy because of the obligatory combination with amyloid pathology. In all tauopathies, protein Tau becomes aberrantly phosphorylated, adopts abnormal conformations, and aggregates into fibrils that eventually accumulate as threads in neuropil and as tangles in soma. The argyrophilic neurofibrillary threads and tangles, together denoted as NFT, provide the postmortem pathological diagnosis for all tauopathies. In AD, neurofibrillary threads and tangles (NFTs) are codiagnostic with amyloid depositions but their separated and combined contributions to clinical symptoms remain elusive. Importantly, NFTs are now considered a late event and not directly responsible for early synaptic dysfunctions. Conversely, the biochemical and pathological timeline is not exactly known in human tauopathy, but experimental models point to smaller Tau-aggregates, termed oligomers or multimers, as synaptotoxic in early stages. The challenge is to molecularly define these Tau-isoforms that cause early cognitive and synaptic impairments. Here, we discuss relevant studies and data obtained in our mono- and bigenic validated preclinical models, with the perspective of Tau as a therapeutic target.
Collapse
Affiliation(s)
| | | | - Fred Van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, KU Leuven, Campus Gasthuisberg ON1-06.602, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Menuet C, Borghgraef P, Voituron N, Gestreau C, Gielis L, Devijver H, Dutschmann M, Van Leuven F, Hilaire G. Isoflurane anesthesia precipitates tauopathy and upper airways dysfunction in pre-symptomatic Tau.P301L mice: Possible implication for neurodegenerative diseases. Neurobiol Dis 2012; 46:234-43. [DOI: 10.1016/j.nbd.2012.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 01/23/2012] [Indexed: 11/26/2022] Open
|
29
|
Early improved and late defective cognition is reflected by dendritic spines in Tau.P301L mice. J Neurosci 2012; 31:18036-47. [PMID: 22159117 DOI: 10.1523/jneurosci.4859-11.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cognitive demise correlates with progressive brain tauopathy in dementing patients. Improved cognition of young Tau.P301L mice contrasts with dysfunction later in life and remains unexplained (Boekhoorn et al., 2006). To unravel early mechanisms, we composed a correlative time line of clinical symptoms, cognitive defects, and biochemical and pathological traits, including comprehensive analysis of dendritic spines in specified regions of the cortex and hippocampus of young and adult Tau.P301L mice. Remarkably, young Tau.P301L mice have not more, but more mature spines than wild-type mice, revealing the anatomical substrate for their improved cognition and LTP. Spine maturation remained high in the hippocampus of adult Tau.P301L mice. However, spines regressed in length paralleling impaired cognition and increased Tau phosphorylation (Terwel et al., 2005). Conversely, spine maturation was unaffected in adult Tau.4R mice, while spine density was increased and length reduced similar to Tau.P301L mice. To explain how protein Tau promoted spinogenesis, we analyzed hippocampal synaptosomes and dendritic spines for mouse and human Tau. While synaptosomes were positive for both mouse and human Tau, weak variable reaction in spines was observed only after fixation according to Bouin. Mouse Tau was absent from spines in wild-type mice, dissociating the pathological actions of Tau in transgenic mice by relocalization into dendrites and spines from the physiological actions of protein Tau in axons only. We conclude that mutant protein Tau modulates cognition and morphology of spines similarly and in both directions, with pathology later in life coinciding with increased phosphorylation and relocalization of Tau from axons to soma and processes.
Collapse
|
30
|
Menuet C, Cazals Y, Gestreau C, Borghgraef P, Gielis L, Dutschmann M, Van Leuven F, Hilaire G. Age-related impairment of ultrasonic vocalization in Tau.P301L mice: possible implication for progressive language disorders. PLoS One 2011; 6:e25770. [PMID: 22022446 PMCID: PMC3192129 DOI: 10.1371/journal.pone.0025770] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/09/2011] [Indexed: 12/03/2022] Open
Abstract
Background Tauopathies, including Alzheimer's Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects. Methodology/Principal Findings At age 4–5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8–10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice. Conclusions In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy.
Collapse
Affiliation(s)
- Clément Menuet
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Yves Cazals
- Neurovegetative physiology laboratory, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Christian Gestreau
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Peter Borghgraef
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lies Gielis
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Fred Van Leuven
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gérard Hilaire
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
- * E-mail:
| |
Collapse
|